1
|
Huang Y, Shi Q, Cheng W. A Rootless Duckweed-Inspired Flexible Artificial Leaf from Plasmonic Photocatalysts. ACS NANO 2024; 18:29214-29222. [PMID: 39387648 DOI: 10.1021/acsnano.4c11435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The naturally existing leaves are ubiquitous two-dimensional flexible solar-to-chemical conversion systems that can run continuously in a sustainable manner. However, the current artificial photocatalytic systems are unable to achieve this due to the grand challenge in integrating existing photocatalysts in a flexible layout with high conversion efficiency and the ability to function independently. Here, we report on a rootless duckweed-inspired artificial leaf based on a lightweight, flexible, Janus plasmonic nanosheet-integrated sponge. The Janus plasmonic catalytically active nanosheet was made from self-assembled gold nanocube nanoassemblies grown on the porous sponges, which were further coated with an ultrathin palladium layer on one side via a ligand symmetry-breaking method. This sponge-based photocatalytic system is lightweight yet able to float on a water surface and conducts the gas-liquid reaction without auxiliary pumping and mixing devices. In a model reaction of 4-nitrophenol reduction, this floating leaf could achieve 2.5-fold and 65-fold higher efficiency than the corresponding dispersion and precipitation systems, respectively. The film theory is used to explain the sponge-based lightweight solar-to-chemical conversion system in a detailed kinetic and thermodynamic analysis, including the reaction rate constant, activation energy, enthalpy, entropy, Gibbs energy, and equilibrium constant.
Collapse
Affiliation(s)
- Yifeng Huang
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia
| | - Qianqian Shi
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia
- School of Biomedical Engineering, University of Sydney, Darlington 2008, New South Wales, Australia
| |
Collapse
|
2
|
Ding W, Xia Y, Song H, Li T, Yang D, Dong A. Macroscopic Superlattice Membranes Self-Assembled from Gold Nanobipyramids with Precisely Tunable Tip Arrangements for SERS. Angew Chem Int Ed Engl 2024; 63:e202401945. [PMID: 38527964 DOI: 10.1002/anie.202401945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
A persistent challenge in utilizing Au nanocrystals for surface-enhanced Raman spectroscopy (SERS) lies in achieving controllable superstructures that maximize SERS performance. Here, a novel strategy is proposed to enhance the SERS performance by precisely adjusting the tip arrangements of Au nanobipyramids (BPs) in two-dimensional (2D) superlattices (SLs). This is achieved through ligand-exchange of Au BPs, followed by liquid-air interfacial assembly, resulting in large-area, transferrable SL membranes. The key to controlling the arrangement of Au BPs in the SLs is the regulation of the amount of free ligands added during self-assembly, which allows for the precise formation of various configurations such as tilted SLs, tip-on-tip SLs, and tip-to-tip SLs. Among these configurations, tip-on-tip SLs exhibit the highest enhancement factor for SERS, reaching an impressive value of 1.95×108, with uniform and consistent SERS signals across a large area. The experimental findings are further corroborated by simulations using the finite element method. This study establishes an efficient method for engineering the microstructure of 2D SLs composed of Au BPs, highlighting the importance of fine-tuning the tip arrangements of Au BPs to regulate SERS performance.
Collapse
Affiliation(s)
- Weikun Ding
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yan Xia
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hengyao Song
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Tongtao Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Dong Yang
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Angang Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
3
|
Jiang L, Mao X, Liu C, Guo X, Deng R, Zhu J. 2D superlattices via interfacial self-assembly of polymer-grafted Au nanoparticles. Chem Commun (Camb) 2023; 59:14223-14235. [PMID: 37962523 DOI: 10.1039/d3cc04587k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Nanoparticle (NP) superlattices are periodic arrays of nanoscale building blocks. Because of the collective effect between functional NPs, NP superlattices can exhibit exciting new properties that are distinct from those of individual NPs or corresponding bulk materials. In particular, two-dimensional (2D) NP superlattices have attracted increasing attention due to their emerging applications in micro/opto-electronics, catalysis, sensing, and other fields. Among various preparation methods, evaporation-induced interfacial self-assembly has become the most popular method for preparing 2D NP superlattices because it is a simple, low-cost, and scalable process that can be widely applied to various NPs. Introducing soft ligands, such as polymers, can not only provide convenience in controlling the self-assembly process and tuning superlattice structures but also improve the properties of 2D NP superlattices. This feature article focuses on the methods of evaporation-induced self-assembly of polymer-grafted Au NPs into free-standing 2D NP superlattice films at air/liquid interfaces and 2D NP superlattice coatings on substrates, followed by studies on in situ tracking of the self-assembly evolution process through small-angle X-ray scattering. Their application in nano-floating gate memory devices is also included. Finally, the challenges and perspectives of this direction are discussed.
Collapse
Affiliation(s)
- Liangzhu Jiang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xi Mao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Changxu Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiaodan Guo
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Renhua Deng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
4
|
Tang Y, Liu H, Wang Q, Qi X, Yu L, Šulc P, Zhang F, Yan H, Jiang S. DNA Origami Tessellations. J Am Chem Soc 2023. [PMID: 37329284 DOI: 10.1021/jacs.3c03044] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Molecular tessellation research aims to elucidate the underlying principles that govern intricate patterns in nature and to leverage these principles to create precise and ordered structures across multiple scales, thereby facilitating the emergence of novel functionalities. DNA origami nanostructures are excellent building blocks for constructing tessellation patterns. However, the size and complexity of DNA origami tessellation systems are currently limited by several unexplored factors relevant to the accuracy of essential design parameters, the applicability of design strategies, and the compatibility between different tiles. Here, we present a general method for creating DNA origami tiles that grow into tessellation patterns with micrometer-scale order and nanometer-scale precision. Interhelical distance (D) was identified as a critical design parameter determining tile conformation and tessellation outcome. Finely tuned D facilitated the accurate geometric design of monomer tiles with minimized curvature and improved tessellation capability, enabling the formation of single-crystalline lattices ranging from tens to hundreds of square micrometers. The general applicability of the design method was demonstrated by 9 tile geometries, 15 unique tile designs, and 12 tessellation patterns covering Platonic, Laves, and Archimedean tilings. Particularly, we took two strategies to increase the complexity of DNA origami tessellation, including reducing the symmetry of monomer tiles and coassembling tiles of different geometries. Both yielded various tiling patterns that rivaled Platonic tilings in size and quality, indicating the robustness of the optimized tessellation system. This study will promote DNA-templated, programmable molecular and material patterning and open up new opportunities for applications in metamaterial engineering, nanoelectronics, and nanolithography.
Collapse
Affiliation(s)
- Yue Tang
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Hao Liu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Qi Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaodong Qi
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Lu Yu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Fei Zhang
- Department of Chemistry, School of Arts & Sciences-Newark, Rutgers University, Newark, New Jersey 07102, United States
| | - Hao Yan
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Shuoxing Jiang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
5
|
Liu Y, Qin Z, Zhou J, Jia X, Li H, Wang X, Chen Y, Sun Z, He X, Li H, Wang G, Chang H. Nano-biosensor for SARS-CoV-2/COVID-19 detection: methods, mechanism and interface design. RSC Adv 2023; 13:17883-17906. [PMID: 37323463 PMCID: PMC10262965 DOI: 10.1039/d3ra02560h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
The epidemic of coronavirus disease 2019 (COVID-19) was a huge disaster to human society. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to COVID-19, has resulted in a large number of deaths. Even though the reverse transcription-polymerase chain reaction (RT-PCR) is the most efficient method for the detection of SARS-CoV-2, the disadvantages (such as long detection time, professional operators, expensive instruments, and laboratory equipment) limit its application. In this review, the different kinds of nano-biosensors based on surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), field-effect transistor (FET), fluorescence methods, and electrochemical methods are summarized, starting with a concise description of their sensing mechanism. The different bioprobes (such as ACE2, S protein-antibody, IgG antibody, IgM antibody, and SARS-CoV-2 DNA probes) with different bio-principles are introduced. The key structural components of the biosensors are briefly introduced to give readers an understanding of the principles behind the testing methods. In particular, SARS-CoV-2-related RNA mutation detection and its challenges are also briefly described. We hope that this review will encourage readers with different research backgrounds to design SARS-CoV-2 nano-biosensors with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Yansheng Liu
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| | - Zhenle Qin
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Jin Zhou
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiaobo Jia
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Hongli Li
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiaohong Wang
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Yating Chen
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Zijun Sun
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiong He
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Hongda Li
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| | - Guofu Wang
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Haixin Chang
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| |
Collapse
|
6
|
Zhang H, Yang W, Liu Q, Gao Y, Yue Z, Xu B. Mechanical Janus Structures by Soft-Hard Material Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208339. [PMID: 36385516 DOI: 10.1002/adma.202208339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Engineering Janus structures that possess anisotropic features in functions have attracted growing attention for a wide range of applications in sensors, catalysis, and biomedicine, and are yet usually designed at the nanoscale with distinct physical or chemical functionalities in their opposite sides. Inspired by the seamless integration of soft and hard materials in biological structures, here a mechanical Janus structure composed of soft and hard materials with a dramatic difference in mechanical properties at an additively manufacturable macroscale is presented. In the combination of extensive experimental, theoretical, and computational studies, the design principle of soft-hard materials integrated mechanical Janus structures is established and their unique rotation mechanism is addressed. The systematic studies of assembling the Janus structure units into superstructures with well-ordered organizations by programming the local rotations are further shown, providing a direct route of designing superstructures by leveraging mechanical Janus structures with unique soft-hard material integration. Applications are conducted to demonstrate the features and functionalities of assembled superstructures with local ordered organizations in regulating and filtering acoustic wave propagations, thereby providing exemplification applications of mechanical Janus design in functional structures and devices.
Collapse
Affiliation(s)
- Haozhe Zhang
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Weizhu Yang
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, P. R. China
| | - Qingchang Liu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Yuan Gao
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Zhufeng Yue
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, P. R. China
| | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
7
|
Zhang X, Zhao K, Wang X, Wang H, Yang W, Liu J, Li D. Surface-enhanced Raman spectroscopy for environmental monitoring using gold clusters anchored on reduced graphene oxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158879. [PMID: 36152854 DOI: 10.1016/j.scitotenv.2022.158879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Surface-enhanced Raman spectroscopy is a strong and sensitive analysis tool that can realize single-molecule level detection and provide the fingerprint information of molecules, which has been widely applied in analysing chemistry and biomolecules and monitoring environment. However, it is still a challenge to design and prepare SERS substrates with high enhancement factor, simple synthesis, stability and reproducibility. Here, we synthesized gold clusters anchored on reduced graphene oxide (Au clusters@rGO) using co-reduction method to achieve high SERS enhancement. The substrate of gold clusters anchored on reduced graphene oxide combines the chemical enhancement of reduced graphene oxide and the electromagnetic enhancement of gold clusters, leading to an ultrahigh enhancement factor of 3.5 × 107. The efficient SERS was ascribed to the high localized surface plasmon resonance (LSPR) of aggregations of gold clusters, the synergistic effect of gold clusters and reduced graphene oxide, and the charge transfer between graphene and the molecules. This research will provide an invaluable strategy to design and prepare superior-property SERS substrates.
Collapse
Affiliation(s)
- Xiangyu Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Kai Zhao
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xianhui Wang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, China
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia.
| | - Jingquan Liu
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Da Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
8
|
Zeng P, Hang L, Zhang G, Wang Y, Chen Z, Yu J, Zhang T, Cai W, Li Y. Atom Absorption Energy Directed Symmetry-Breaking Synthesis of Au-Ag Hierarchical Nanostructures and Their Efficient Photothermal Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204748. [PMID: 36180406 DOI: 10.1002/smll.202204748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Asymmetric plasmonic hierarchical nanostructures (HNs) are of great significance in optics, catalysis, and sensors, but the complex growth kinetics and lack of fine structure design limit their practical applications. Herein, a new atom absorption energy strategy is developed to achieve a series of Au-Ag HNs with the continuously tuned contact area in Janus and Ag island number/size on Au seeds. Different from the traditional passive growth mode, this strategy endows seed with a hand to capture the hetero atoms in a proactive manner, which is beyond the size, shape, and assembles of Au seed. Density functional theory reveals ththe adsorption of PDDA on Au surface leads to lower formation energy of Au-Ag bonds (-3.96 eV) than FSDNA modified Au surface (-2.44 eV). The competitive adsorption of two ligands on Au seed is the decisive factor for the formation of diverse Au-Ag HNs. In particular, the Au-Ag2 HNs exhibit outstanding photothermal conversion capability in the near-infrared window, and in vivo experiments verify them as superior photothermal therapy agents. This work highlights the importance of the atom absorption energy strategy in unlocking the diversity of HNs and may push the synthesis and application of superstructures to a higher level.
Collapse
Affiliation(s)
- Pan Zeng
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lifeng Hang
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, 518037, P. R. China
| | - Guofeng Zhang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yifan Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhiming Chen
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jie Yu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Tao Zhang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Weiping Cai
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yue Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
9
|
Fang G, Lin X, Liang X, Wu J, Xu W, Hasi W, Dong B. Machine Learning-Driven 3D Plasmonic Cavity-in-Cavity Surface-Enhanced Raman Scattering Platform with Triple Synergistic Enhancement Toward Label-Free Detection of Antibiotics in Milk. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204588. [PMID: 36161767 DOI: 10.1002/smll.202204588] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/03/2022] [Indexed: 06/16/2023]
Abstract
The surface-enhanced Raman scattering (SERS) technique with ultrahigh sensitivity has gained attention to meet the increasing demands for food safety analysis. The integration of machine learning and SERS facilitates the practical applicability of sensing devices. In this study, a machine learning-driven 3D plasmonic cavity-in-cavity (CIC) SERS platform is proposed for sensitive and quantitative detection of antibiotics. The platform is prepared by transferring truncated concave nanocubes (NCs) to an obconical-shaped template surface. Owing to the triple synergistic enhancement effect, the highly ordered 3D CIC arrays improve the simulated electromagnetic field intensity and experimental SERS activity, demonstrating a 33.1-fold enhancement compared to a typical system consisting of Au NCs deposited on a flat substrate. The integration of machine learning and Raman spectroscopy eliminates subjective judgments on the concentration of detectors using a single feature peak and achieves accurate identification. The machine learning-driven CIC SERS platform is capable of detecting ampicillin traces in milk with a detection limit of 0.1 ppm, facilitating quantitative analysis of different concentrations of ampicillin. Therefore, the proposed platform has potential applications in food safety monitoring, health care, and environmental sampling.
Collapse
Affiliation(s)
- Guoqiang Fang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials and Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China
- National Key Laboratory of Science and Technology on Tuneable Laser, Harbin Institute of Technology, Harbin, 150080, China
| | - Xiang Lin
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials and Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China
| | - Xiu Liang
- Advanced Materials Institute, Shandong Academy of Sciences Qilu University of Technology, Jinan, 250014, China
| | - Jinlei Wu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials and Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China
| | - Wen Xu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials and Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China
| | - Wuliji Hasi
- National Key Laboratory of Science and Technology on Tuneable Laser, Harbin Institute of Technology, Harbin, 150080, China
| | - Bin Dong
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials and Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China
| |
Collapse
|
10
|
Shin DI, Yoo SS, Park SH, Lee G, Bae WK, Kwon SJ, Yoo PJ, Yi GR. Percolated Plasmonic Superlattices of Nanospheres with 1 nm-Level Gap as High-Index Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203942. [PMID: 35867886 DOI: 10.1002/adma.202203942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Nanophotonics relies on precise control of refractive index (RI) which can be designed with metamaterials. Plasmonic superstructures of nanoparticles (NPs) can suggest a versatile way of tuning RI. However, the plasmonic effects in the superstructures demand 1 nm-level exquisite control over the interparticle gap, which is challenging in a sub-wavelength NPs. Thus far, a large-area demonstration has been mostly discouraged. Here, heteroligand AuNPs are prepared, which are stable in oil but become Janus particles at the oil-water interface, called "adaptive Janus particles." NPs are bound at the interface and assembled into 2D arrays over square centimeters as toluene evaporates, which distinctively exhibits the RI tunability. In visible and NIR light, the 2D superstructures exhibit the highest-ever RI (≈7.8) with varying the size and interparticle gap of NPs, which is successfully explained by a plasmonic percolation model. Furthermore, fully solution-processable 2D plasmonic superstructures are proved to be advantageous in flexible photonic devices such as distributed Bragg reflectors.
Collapse
Affiliation(s)
- Dong-In Shin
- Sungkyun Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Seong Soo Yoo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seong Hun Park
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Gaehang Lee
- Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Wan Ki Bae
- Sungkyun Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seok Joon Kwon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Pil Jin Yoo
- Sungkyun Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
11
|
Vinnacombe-Willson GA, Conti Y, Jonas SJ, Weiss PS, Mihi A, Scarabelli L. Surface Lattice Plasmon Resonances by Direct In Situ Substrate Growth of Gold Nanoparticles in Ordered Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205330. [PMID: 35903851 PMCID: PMC9549758 DOI: 10.1002/adma.202205330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/13/2022] [Indexed: 05/24/2023]
Abstract
Precise arrangements of plasmonic nanoparticles on substrates are important for designing optoelectronics, sensors and metamaterials with rational electronic, optical and magnetic properties. Bottom-up synthesis offers unmatched control over morphology and optical response of individual plasmonic building blocks. Usually, the incorporation of nanoparticles made by bottom-up wet chemistry starts from batch synthesis of colloids, which requires time-consuming and hard-to-scale steps like ligand exchange and self-assembly. Herein, an unconventional bottom-up wet-chemical synthetic approach for producing gold nanoparticle ordered arrays is developed. Water-processable hydroxypropyl cellulose stencils facilitate the patterning of a reductant chemical ink on which nanoparticle growth selectively occurs. Arrays exhibiting lattice plasmon resonances in the visible region and near infrared (quality factors of >20) are produced following a rapid synthetic step (<10 min), all without cleanroom fabrication, specialized equipment, or self-assembly, constituting a major step forward in establishing in situ growth approaches. Further, the technical capabilities of this method through modulation of the particle size, shape, and array spacings directly on the substrate are demonstrated. Ultimately, establishing a fundamental understanding of in situ growth has the potential to inform the fabrication of plasmonic materials; opening the door for in situ growth fabrication of waveguides, lasing platforms, and plasmonic sensors.
Collapse
Affiliation(s)
- Gail A Vinnacombe-Willson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ylli Conti
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| | - Steven J Jonas
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Agustín Mihi
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| | - Leonardo Scarabelli
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| |
Collapse
|
12
|
Li X, Lin X, Fang G, Dong H, Li J, Cong S, Wang L, Yang S. Interfacial layer-by-layer self-assembly of PS nanospheres and Au@Ag nanorods for fabrication of broadband and sensitive SERS substrates. J Colloid Interface Sci 2022; 620:388-398. [DOI: 10.1016/j.jcis.2022.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
13
|
Zhang J, Li X, Liu Y, Feng J, Zhao J, Geng Y, Gao H, Wang T, Yang W, Jiang L, Wu Y. Confined Assembly of Colloidal Nanorod Superstructures by Locally Controlling Free-Volume Entropy in Nonequilibrium Fluids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202119. [PMID: 35522854 DOI: 10.1002/adma.202202119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Long-range-ordered structures of nanoparticles with controllable orientation have advantages in applications toward sensors, photoelectric conversion, and field-effect transistors. The assembly process of nanorods in colloidal systems undergoes a nonequilibrium process from dispersion to aggregation. A variety of assembly methods such as solvent volatilization, electromagnetic field induction, and photoinduction are restricted to suppress local perturbations during the nonequilibrium concentration of nanoparticles, which are adverse to controlling the orientation and order of assembled structures. Here, a confined assembly method is reported by locally controlling free-volume entropy in nonequilibrium fluids to fabricate microstructure arrays based on colloidal nanorods with controllable orientation and long-range order. The unique fluid dynamics of the liquid bridge is utilized to form a local region, where the free volume entropy reduction triggers assembly near the three-phase contact line (TPCL), allowing nanorods to assemble in 2D closest packing parallel to the TPCL for the maximum Gibbs free energy reduction. By manipulating the orientation of liquid flow, microstructures are assembled with programmable geometry, which sustains polarized photoluminescence and polarization-dependent photodetection. This confined assembly method opens up perspectives on assemblies of nanomaterials with controllable orientation and long-range order as a platform for multifunctional integrated devices.
Collapse
Affiliation(s)
- Jingyuan Zhang
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiao Li
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yawei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiangang Feng
- Department of Chemical and Biomolecular Sciences, National University of Singapore, Singapore, 117585, Singapore
| | - Jinjin Zhao
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yue Geng
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hanfei Gao
- Ji Hua Laboratory, Foshan, Guangdong, 528200, P. R. China
| | - Tie Wang
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Wensheng Yang
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Lei Jiang
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Ji Hua Laboratory, Foshan, Guangdong, 528200, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Ji Hua Laboratory, Foshan, Guangdong, 528200, P. R. China
| |
Collapse
|
14
|
Zhu C, Liu D, Yan M, Xu G, Zhai H, Luo J, Wang G, Jiang D, Yuan Y. Three-dimensional surface-enhanced Raman scattering substrates constructed by integrating template-assisted electrodeposition and post-growth of silver nanoparticles. J Colloid Interface Sci 2022; 608:2111-2119. [PMID: 34752981 DOI: 10.1016/j.jcis.2021.10.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/23/2021] [Indexed: 11/27/2022]
Abstract
Three-dimensional (3D) plasmonic nano-arrays can provide high surface-enhanced Raman scattering (SERS) sensitivity, good spectral uniformity and excellent reproducibility. However, it is still a challenge to develop a simple and efficient method for fabrication of 3D plasmonic nano-arrays with high SERS performance. Here we report a facile approach to construct ordered arrays of silver (Ag) nanoparticles-assembled spherical micro-cavities using polystyrene (PS) sphere template-assisted electrodeposition and post-growth. The electrodeposited small Ag nanoparticles grow into bigger stable nanoparticles during the post-growth process, which could significantly improve the SERS sensitivity. The Ag nanoparticles-assembled 3D micro-cavity array provides much more hotspots in the excitation laser beam-covered volume than the two-dimensional counterpart. The relative standard deviation (RSD) of 612 cm-1 peak of rhodamine 6G (R6G) was calculated to be 8%, and the RSD of the characteristic peak taken from substrates of different batches was less than 10%. The detectable lower concentration as low as 1 fM was achieved for an aqueous solution of R6G. Such SERS substrate also showed high sensitivity to thiram (fungicide) and paraquat (herbicide) in water with limits of detection of 0.067 nM and 2.5 nM respectively. Furthermore, it also demonstrated that SERS detection of pesticide residues on fruits can be realized, showing a potential application in rapid monitoring food safety.
Collapse
Affiliation(s)
- Chuhong Zhu
- College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China; School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
| | - Dan Liu
- College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China; School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Manqing Yan
- College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Gengsheng Xu
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Haichao Zhai
- College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China; School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Juan Luo
- College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Guowei Wang
- College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Daochuan Jiang
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Yupeng Yuan
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
15
|
Song L, Xu BB, Cheng Q, Wang X, Luo X, Chen X, Chen T, Huang Y. Instant interfacial self-assembly for homogeneous nanoparticle monolayer enabled conformal "lift-on" thin film technology. SCIENCE ADVANCES 2021; 7:eabk2852. [PMID: 34936430 PMCID: PMC8694583 DOI: 10.1126/sciadv.abk2852] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/10/2021] [Indexed: 05/21/2023]
Abstract
Thin film fabrication is of great importance in modern engineering. Here, we propose a universal and conformal thin film technique enabled by the wetting empowered interfacial self-assembly. By tailoring the contact angle of nanoparticle (NP), a NP monolayer can be assembled instantly (within 5 seconds) with an excellent harvesting efficiency (up to 97.5 weight %). This self-assembly strategy presents a universal applicability on various materials, e.g., nonmetal, metal, and core-shell structures, and can achieve a monolayer with same in-plane area as a 95 cm2 wafer in a single process, indicating great potential for scale-up manufacturing. Through a template transfer, we coat the surface of different substrates (plastic, paper, etc.) with the assembled film in a conformal and nondestructive “lift-on” manner and subsequently demonstrate fluorescent micropatterns. This self-assembly strategy has great implications in advancing thin film technology in a user-friendly and cost-effective fashion for applications in anti-counterfeiting, actuators, and wearable/flexible electronics.
Collapse
Affiliation(s)
- Liping Song
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering, Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei 230026, China
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Qian Cheng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaoyuan Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoning Luo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Xue Chen
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
- Corresponding author.
| |
Collapse
|
16
|
Ag Nanoislands Modified Carbon Fiber Nanostructure: A Versatile and Ultrasensitive Surface-Enhanced Raman Scattering Platform for Antiepileptic Drug Detection. COATINGS 2021. [DOI: 10.3390/coatings12010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A high-efficiency surface-enhanced Raman scattering (SERS) detection method with ultra-high sensitivity has been widely applied in drug component detection to optimize the product quality verification standards. Herein, a controllable strategy of sputtering Ag nanoislands on carbon fiber (C-fiber) via magnetron sputtering technology was proposed to fabricate a versatile Ag-C-fiber SERS active substrate. A wide range of multi-level electromagnetic enhancement “hot spots” distributed on Ag-C-fiber nanostructures can efficiently amplify Raman signals and the experimental enhancement factor (EEF) value was 3.871 × 106. Furthermore, substantial “hot spots” of large-scale distribution guaranteed the superior reproducibility of Raman signal with relative standard deviation (RSD) values less than 12.97%. Limit of detection (LOD) results indicated that when crystal violet (CV) is employed as probe molecule, the LOD was located at 1 × 10−13 M. By virtue of ultra-sensitivity and good flexibility of the Ag-C-fiber nanotemplate, Raman signals of two kinds of antiepileptic drugs called levetiracetam and sodium valproate were successfully obtained using an SERS-based spectral method. The Ag-C-fiber SERS detection platform demonstrated a good linear response (R2 = 0.97486) in sensing sodium valproate concentrations in the range of 1 × 103 ng/μL−1–1 ng/μL. We believe that this reliable strategy has potential application for trace detection and rapid screening of antiepileptic drugs in the clinic.
Collapse
|
17
|
Yong Z, Yap LW, Fu R, Shi Q, Guo Z, Cheng W. Seagrass-inspired design of soft photocatalytic sheets based on hydrogel-integrated free-standing 2D nanoassemblies of multifunctional nanohexagons. MATERIALS HORIZONS 2021; 8:2533-2540. [PMID: 34870300 DOI: 10.1039/d1mh00753j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural leaves are virtually two-dimensional (2D) flexible photocatalytic system. In particular, seagrass can efficiently harvest low-intensity sunlight to drive photochemical reactions continuously in an aqueous solution. To mimic this process, we present a novel 2D hydrogel-integrated photocatalytic sheet based on free-standing nanoassemblies of multifunctional nanohexagons (mNHs). The mNHs building blocks is made of plasmonic gold nanohexagons (NHs) decorated with Pd nanoparticles in the corners and CdS nanoparticles throughout their exposed surfaces. The mNHs can self-assemble into free-standing 2D nanoassemblies and be integrated with thin hydrogel films, which can catalyze chemical reactions under visible light illumination. Hydrogels are translucent, porous, and soft, allowing for continuous photochemical conversion in an aqueous environment. Using methylene blue (MB) as a model system, we demonstrate a soft seagrass-like photodegradation design, which offers high efficiency, continuous operation without the need of catalyst regeneration, and omnidirectional light-harvesting capability under low-intensity sunlight irradiation, defying their rigid substrate-supported random aggregates and solution-based discrete counterparts.
Collapse
Affiliation(s)
- Zijun Yong
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia.
| | - Lim Wei Yap
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia.
| | - Runfang Fu
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia.
| | - Qianqian Shi
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia.
| | - Zhirui Guo
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia.
| | - Wenlong Cheng
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia.
| |
Collapse
|
18
|
Shi C, Ye S, Wang X, Meng F, Liu J, Yang T, Zhang W, Wei J, Ta N, Lu GQ(M, Hu M, Liu J. Modular Construction of Prussian Blue Analog and TiO 2 Dual-Compartment Janus Nanoreactor for Efficient Photocatalytic Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001987. [PMID: 33854873 PMCID: PMC8024990 DOI: 10.1002/advs.202001987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/09/2020] [Indexed: 05/24/2023]
Abstract
Janus structures that include different functional compartments have attracted significant attention due to their specific properties in a diverse range of applications. However, it remains challenge to develop an effective strategy for achieving strong interfacial interaction. Herein, a Janus nanoreactor consisting of TiO2 2D nanocrystals integrated with Prussian blue analog (PBA) single crystals is proposed and synthesized by mimicking the planting process. In situ etching of PBA particles induces nucleation and growth of TiO2 nanoflakes onto the concave surface of PBA particles, and thus enhances the interlayer interaction. The anisotropic PBA-TiO2 Janus nanoreactor demonstrates enhanced photocatalytic activities for both water reduction and oxidation reactions compared with TiO2 and PBA alone. As far as it is known, this is the first PBA-based composite that serves as a bifunctional photocatalyst for solar water splitting. The interfacial structure between two materials is vital for charge separation and transfer based on the spectroscopic studies. These results shed light on the elaborate construction of Janus nanoreactor, highlighting the important role of interfacial design at the microscale level.
Collapse
Affiliation(s)
- Chunjing Shi
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences, and Dalian National Laboratory for Clean Energy457 Zhongshan RoadDalian116023P. R. China
- School of Physics and Materials ScienceEast China Normal University500 Dongchuan RoadShanghai200241P. R. China
| | - Sheng Ye
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences, and Dalian National Laboratory for Clean Energy457 Zhongshan RoadDalian116023P. R. China
| | - Xuewen Wang
- The College of ChemistryNanchang University999 Xuefu RoadNanchang330031P. R. China
| | - Fanning Meng
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences, and Dalian National Laboratory for Clean Energy457 Zhongshan RoadDalian116023P. R. China
| | - Junxue Liu
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences, and Dalian National Laboratory for Clean Energy457 Zhongshan RoadDalian116023P. R. China
| | - Ting Yang
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences, and Dalian National Laboratory for Clean Energy457 Zhongshan RoadDalian116023P. R. China
| | - Wei Zhang
- School of Physics and Materials ScienceEast China Normal University500 Dongchuan RoadShanghai200241P. R. China
| | - Jiatong Wei
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences, and Dalian National Laboratory for Clean Energy457 Zhongshan RoadDalian116023P. R. China
| | - Na Ta
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences, and Dalian National Laboratory for Clean Energy457 Zhongshan RoadDalian116023P. R. China
| | | | - Ming Hu
- School of Physics and Materials ScienceEast China Normal University500 Dongchuan RoadShanghai200241P. R. China
| | - Jian Liu
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences, and Dalian National Laboratory for Clean Energy457 Zhongshan RoadDalian116023P. R. China
- DICP‐Surrey Joint Centre for Future MaterialsDepartment of Chemical and Process EngineeringUniversity of SurreyGuildfordSurreyGU2 7XHUK
| |
Collapse
|
19
|
Fu R, Shi Q, Yong Z, Griffith JC, Yap LW, Cheng W. Self-assembled Janus plasmene nanosheets as flexible 2D photocatalysts. MATERIALS HORIZONS 2021; 8:259-266. [PMID: 34821304 DOI: 10.1039/d0mh01275k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A leaf is a free-standing photocatalytic system that can effectively harvest solar energy and convert CO2 and H2O into carbohydrates in a continuous manner without the need for regeneration or tedious product extraction steps. Despite encouraging advances achieved in designing artificial photocatalysts, most of them function in bulk solution or on rigid surfaces. Here, we report on a 2D flexible photocatalytic system based on close packed Janus plasmene nanosheets. One side of the Janus nanosheets is hydrophilic with catalytically active palladium, while the opposite side is hydrophobic with plasmonic nanocrystals. Such a unique design ensures a stable nanostructure on a flexible polymer substrate, preventing dissolution/degradation of plasmonic photocatalysts during chemical conversion in aqueous solutions. Using catalytic reduction of 4-nitrophenol as a model reaction, we demonstrated efficient plasmon-enhanced photochemical conversion on our flexible Janus plasmene. The photocatalytic efficiency could be tuned by adjusting the palladium thickness or types of constituent building blocks or their orientations, indicating the potential for tailor-made catalyst design for desired reactions. Furthermore, the flexible Janus plasmene nanosheets were designed into a small 3D printed artificial tree, which could continuously convert 30 mL of chemicals in 45 minutes.
Collapse
Affiliation(s)
- Runfang Fu
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
20
|
Hartl T, Will M, Čapeta D, Singh R, Scheinecker D, Boix de la Cruz V, Dellmann S, Lacovig P, Lizzit S, Senkovskiy BV, Grüneis A, Kralj M, Knudsen J, Kotakoski J, Michely T, Bampoulis P. Cluster Superlattice Membranes. ACS NANO 2020; 14:13629-13637. [PMID: 32910634 DOI: 10.1021/acsnano.0c05740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cluster superlattice membranes consist of a two-dimensional hexagonal lattice of similar-sized nanoclusters sandwiched between single-crystal graphene and an amorphous carbon matrix. The fabrication process involves three main steps, the templated self-organization of a metal cluster superlattice on epitaxial graphene on Ir(111), conformal embedding in an amorphous carbon matrix, and subsequent lift-off from the Ir(111) substrate. The mechanical stability provided by the carbon-graphene matrix makes the membrane stable as a free-standing material and enables transfer to other substrates. The fabrication procedure can be applied to a wide variety of cluster materials and cluster sizes from the single-atom limit to clusters of a few hundred atoms, as well as other two-dimensional layer/host matrix combinations. The versatility of the membrane composition, its mechanical stability, and the simplicity of the transfer procedure make cluster superlattice membranes a promising material in catalysis, magnetism, energy conversion, and optoelectronics.
Collapse
Affiliation(s)
- Tobias Hartl
- II. Physikalisches Institut, Universität zu Köln, Cologne, D-50937, Germany
| | - Moritz Will
- II. Physikalisches Institut, Universität zu Köln, Cologne, D-50937, Germany
| | - Davor Čapeta
- Institute of Physics, Bijenička cesta 46, 10000, Zagreb, Croatia
| | - Rajendra Singh
- Faculty of Physics, Vienna University, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Daniel Scheinecker
- Faculty of Physics, Vienna University, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Virginia Boix de la Cruz
- MAX IV Laboratory and Division of Synchrotron Radiation Research, Lund University, Box 118, 22100 Lund, Sweden
| | - Sophia Dellmann
- II. Physikalisches Institut, Universität zu Köln, Cologne, D-50937, Germany
| | - Paolo Lacovig
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 Km 163.5, I-34149 Trieste, Italy
| | - Silvano Lizzit
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 Km 163.5, I-34149 Trieste, Italy
| | - Boris V Senkovskiy
- II. Physikalisches Institut, Universität zu Köln, Cologne, D-50937, Germany
| | - Alexander Grüneis
- II. Physikalisches Institut, Universität zu Köln, Cologne, D-50937, Germany
| | - Marko Kralj
- Institute of Physics, Bijenička cesta 46, 10000, Zagreb, Croatia
| | - Jan Knudsen
- MAX IV Laboratory and Division of Synchrotron Radiation Research, Lund University, Box 118, 22100 Lund, Sweden
| | - Jani Kotakoski
- Faculty of Physics, Vienna University, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Thomas Michely
- II. Physikalisches Institut, Universität zu Köln, Cologne, D-50937, Germany
| | - Pantelis Bampoulis
- II. Physikalisches Institut, Universität zu Köln, Cologne, D-50937, Germany
| |
Collapse
|
21
|
Enzyme-like electrocatalysis from 2D gold nanograss-nanocube assemblies. J Colloid Interface Sci 2020; 575:24-34. [PMID: 32344216 DOI: 10.1016/j.jcis.2020.04.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 11/24/2022]
Abstract
Nanotechnology's rapid development of nanostructured materials with disruptive material properties has inspired research for their use as electrocatalysts to potentially substitute enzymes. Herein, a novel electrocatalytic nanomaterial was constructed by growing gold nanograss (AuNG) on 2D nanoassemblies of gold nanocubes (AuNC). The resulting structure (NG@NC) was used for the detection of H2O2via its electrochemical reduction. The NG@NC electrode displayed a large active surface area, resulting in improved electron transfer efficiency. On the nanoscale, AuNG maintained its structure, providing high stability and reproducibility of the sensing platform. Our nanostructured electrode showed excellent catalytic activity towards H2O2 at an applied potential of -0.5 V vs Ag/AgCl. This facilitated H2O2 detection with excellent selectivity in an environment like human urine, and a linear response from 50 µM to 30 mM, with a sensitivity of 100.66 ± 4.0 μA mM-1 cm-2. The NG@NC-based sensor hence shows great potential in nonenzymatic electrochemical sensing.
Collapse
|
22
|
Deng K, Luo Z, Tan L, Quan Z. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem Soc Rev 2020; 49:6002-6038. [PMID: 32692337 DOI: 10.1039/d0cs00541j] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Self-assembly of colloidal nanoparticles (NPs) into superstructures offers a flexible and promising pathway to manipulate the nanometer-sized particles and thus make full use of their unique properties. This bottom-up strategy builds a bridge between the NP regime and a new class of transformative materials across multiple length scales for technological applications. In this field, anisotropic NPs with size- and shape-dependent physical properties as self-assembly building blocks have long fascinated scientists. Self-assembly of anisotropic NPs not only opens up exciting opportunities to engineer a variety of intriguing and complex superlattice architectures, but also provides access to discover emergent collective properties that stem from their ordered arrangement. Thus, this has stimulated enormous research interests in both fundamental science and technological applications. This present review comprehensively summarizes the latest advances in this area, and highlights their rich packing behaviors from the viewpoint of NP shape. We provide the basics of the experimental techniques to produce NP superstructures and structural characterization tools, and detail the delicate assembled structures. Then the current understanding of the assembly dynamics is discussed with the assistance of in situ studies, followed by emergent collective properties from these NP assemblies. Finally, we end this article with the remaining challenges and outlook, hoping to encourage further research in this field.
Collapse
Affiliation(s)
- Kerong Deng
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zhishan Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Li Tan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
23
|
Cheng Q, Song L, Lin H, Yang Y, Huang Y, Su F, Chen T. Free-Standing 2D Janus Gold Nanoparticles Monolayer Film with Tunable Bifacial Morphologies via the Asymmetric Growth at Air-Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:250-256. [PMID: 31697894 DOI: 10.1021/acs.langmuir.9b03189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Large scaled two-dimensional free-standing monolayer films of gold nanoparticles show distinctive optical, electrical, and chem-physical propertie making them a new class of advanced plasmonic materials differing from bulk materials and individual nanoparticles in solution. The conventional 2D gold nanoparticle films usually possess symmetric structures and identical properties of gold nanoparticles on both sides. Herein, we developed an easy and efficient approach to construct a new type of free-standing 2D gold nanoparticle monolayer film with asymmetric gold nanoparticle structures and functions, called a 2D Janus gold nanoparticle film. The remarkable feature of our method is the subsequent asymmetric growth on one side of the interfacial self-assembled gold nanoparticle monolayer film at the air-liquid interface. It is very easy to control the morphology of the Janus film by simply and precisely adjusting the size and shape of the gold nanoparticles on the top side, and selectively tuning the structure and composition on the bottom side of the film by growing gold nanoparticles or other noble metals such as Ag, Pt, and Pd. Unlike the conventionally prepared Janus films at solid substrate that require long-time etching and transfer procedures, other features of our method include the short time in which the interfacial self-assembly and the subsequent asymmetric growth are completed as well as the easily transferable property of the Janus film onto different substrates, such as quartz glass sheets, silicon wafers, and PDMS. The obtained Janus gold nanoparticle film shows asymmetric wettabilities, optical properties, and surface-enhanced Raman scattering (SERS) effects, which is promising for a range of potential applications in optical devices, sensors, and asymmetric catalysis.
Collapse
Affiliation(s)
- Qian Cheng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
- School of Chemical Sciences, University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Liping Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
- School of Chemical Sciences, University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Han Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
| | - Yanping Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
| | - Youju Huang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
- School of Chemical Sciences, University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou , Zhejiang 311121 , China
| | - Fengmei Su
- National Engineering Research Centre for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education , Zhengzhou University , Zhengzhou 450002 , P.R. China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
- School of Chemical Sciences, University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| |
Collapse
|
24
|
A Novel Strategy for Fabricating a Strong Nanoparticle Monolayer and Its Enhanced Mechanism. NANOMATERIALS 2019; 9:nano9101468. [PMID: 31623172 PMCID: PMC6835882 DOI: 10.3390/nano9101468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 09/29/2019] [Accepted: 10/13/2019] [Indexed: 01/09/2023]
Abstract
This work presents the preparation of cross-linking Au nanoparticle (NP) monolayer membranes by the thiol exchange reaction and their enhanced mechanical properties. Dithiol molecules were used as a cross-linking mediator to connect the adjacent nanoparticles by replacing the original alkanethiol ligand in the monolayer. After cross-linking, the membrane integrity was maintained and no significant fracture was observed, which is crucial for the membrane serving as a nanodevice. TEM (Transmission Electron Microscopy), UV–Vis absorption spectrum, and GISAXS (grazing incidence small angle X-ray scattering) were performed to characterize the nanostructure before and after cross-linking. All results proved that the interparticle distance in the monolayer was controllably changed by using dithiols of different lengths as the cross-linking agent. Moreover, the modulus of the cross-linking monolayer was measured by atomic force microscopy (AFM) and the result showed that the membrane with a longer dithiol molecule had a larger modulus, which might derive from the unbroken and intact structure of the cross-linking monolayer due to the selected appropriately lengthed dithiol. This study provides a new way of producing a nanoparticle monolayer membrane with enhanced mechanical properties.
Collapse
|