1
|
Shih HA, Zhou J, Snowden IL, Takamura Y, Hong SS. Freestanding Perovskite and Brownmillerite SrCoO x Membranes for Direct Imaging of Topotactic Phase Transitions. NANO LETTERS 2025; 25:5860-5866. [PMID: 40135523 DOI: 10.1021/acs.nanolett.5c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Topotactic phase transitions between perovskite SrCoO3 and brownmillerite SrCoO2.5 have garnered attention for application in energy-efficient neuromorphic computing systems. However, the evolution of local microstructures, crucial for designing topotactic devices and improving switching performance, remains underexplored due to the limitations of epitaxial thin films bound to bulk substrates. Here, we report the synthesis and characterization of topotactic oxide SrCoOx as a freestanding membrane, successfully stabilizing both perovskite and brownmillerite phases. Plan-view transmission electron microscopy identifies the extraordinary formation of filamentary one-dimensional (1D) domains of SrCoO2.5 phases during the topotactic phase transition, correlated with the 1D oxygen vacancy channels that facilitate rapid oxygen ion diffusion. These 1D domains serve as direct evidence of the anisotropic nature of the topotactic phase transition, dictated by oxygen diffusion. These findings also underscore the advantages of freestanding membrane geometries for developing a fundamental understanding of phase transitions in complex oxides.
Collapse
Affiliation(s)
- Hudson Alex Shih
- Department of Materials Science & Engineering, University of California, Davis, One Shields Ave., Davis, California 95616, United States
| | - Jieyang Zhou
- Department of Materials Science & Engineering, University of California, Davis, One Shields Ave., Davis, California 95616, United States
| | - Izoah Leone Snowden
- Department of Materials Science & Engineering, University of California, Davis, One Shields Ave., Davis, California 95616, United States
| | - Yayoi Takamura
- Department of Materials Science & Engineering, University of California, Davis, One Shields Ave., Davis, California 95616, United States
| | - Seung Sae Hong
- Department of Materials Science & Engineering, University of California, Davis, One Shields Ave., Davis, California 95616, United States
| |
Collapse
|
2
|
Hu W, Fan Z, Mo L, Lin H, Li M, Li W, Ou J, Tao R, Tian G, Qin M, Zeng M, Lu X, Zhou G, Gao X, Liu JM. Volatile Resistive Switching and Short-Term Synaptic Plasticity in a Ferroelectric-Modulated SrFeO x Memristor. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9595-9605. [PMID: 39882776 DOI: 10.1021/acsami.4c19627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
SrFeOx (SFO) offers a topotactic phase transformation between an insulating brownmillerite SrFeO2.5 (BM-SFO) phase and a conductive perovskite SrFeO3 (PV-SFO) phase, making it a competitive candidate for use in resistive memory and neuromorphic computing. However, most of existing SFO-based memristors are nonvolatile devices which struggle to achieve short-term synaptic plasticity (STP). To address this issue and realize STP, we propose to leverage ferroelectric polarization to effectively draw ions across the interface so that the PV-SFO conductive filaments (CFs) can be ruptured in absence of an external field. As a proof of concept, we fabricate ferroelectric Pb(Zr0.2Ti0.8)O3 (PZT)/BM-SFO bilayer films with Au top electrodes and SrRuO3 bottom electrodes. The device exhibits the desired volatile resistive switching behavior, with its low resistance state decaying over time. Such volatility is attributed to the positive polarization charge near the PZT/SFO interface, which can attract the oxygen ions from SFO to PZT and hence lead to the rupture of CFs. Moreover, this volatile device successfully emulates STP-related synaptic functions, including excitatory postsynaptic current, paired-pulse facilitation, learning-experience behavior, associative learning, and reservoir computing. Our study showcases an effective method for achieving volatile resistive switching and STP, which may be applied to various systems beyond SFO-based memristors.
Collapse
Affiliation(s)
- Wenjie Hu
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Zhen Fan
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Linyuan Mo
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Haipeng Lin
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Meixia Li
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Wenjie Li
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Jiali Ou
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Ruiqiang Tao
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Guo Tian
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Minghui Qin
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Min Zeng
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Xubing Lu
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Guofu Zhou
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Xingsen Gao
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Jun-Ming Liu
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Koirala KP, Hossain MD, Wang L, Zhuo Z, Yang W, Bowden ME, Spurgeon SR, Wang C, Sushko PV, Du Y. Layer Resolved Cr Oxidation State Modulation in Epitaxial SrFe 0.67Cr 0.33O 3-δ Thin Films. NANO LETTERS 2024; 24:14244-14251. [PMID: 39481117 DOI: 10.1021/acs.nanolett.4c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Understanding how doping influences physicochemical properties of ABO3 perovskite oxides is critical for tailoring their functionalities. In this study, SrFe0.67Cr0.33O3-δ epitaxial thin films were used to examine the effects of Fe and Cr competition on structure and B-site cation oxidation states. The films exhibit a perovskite-like structure near the film/substrate interface, while a brownmillerite-like structure with horizontal oxygen vacancy channels predominates near the surface. Electron energy loss spectroscopy shows Fe remains Fe3+, while Cr varies from ∼Cr3+ (tetrahedral layers) to ∼Cr4+ (octahedral layers) within brownmillerite phases and becomes ∼Cr4.5+ in perovskite-like phases. Theoretical simulations indicate that Cr-O bond arrangements and the way oxygen vacancies interact with Cr and Fe drive Cr charge disproportionation. High-valent Cr cations introduce additional densities of states near the Fermi level, reducing the optical bandgap from ∼2.0 eV (SrFeO2.5) to ∼1.7 eV (SrFe0.67Cr0.33O3-δ). These findings offer insights into B-site cation doping in the perovskite oxide framework.
Collapse
Affiliation(s)
- Krishna Prasad Koirala
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mohammad Delower Hossain
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Zengqing Zhuo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mark E Bowden
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Steven R Spurgeon
- National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Peter V Sushko
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
4
|
Su R, Chen D, Cheng W, Xiao R, Deng Y, Duan Y, Li Y, Ye L, An H, Xu J, Lai PT, Miao X. Oxygen Vacancy Compensation-Induced Analog Resistive Switching in the SrFeO 3-δ/Nb:SrTiO 3 Epitaxial Heterojunction for Noise-Tolerant High-Precision Image Recognition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54115-54128. [PMID: 39327975 DOI: 10.1021/acsami.4c07951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Neuromorphic computing, inspired by the brain's architecture, promises to surpass the limitations of von Neumann computing. In this paradigm, synaptic devices play a crucial role, with resistive switching memory (memristors) emerging as promising candidates due to their low power consumption and scalability advantages. This study focuses on the development of metal/oxide-semiconductor heterojunctions, which offer several technological advantages and have broad potential for applications in artificial neural synapses. However, constructing high-quality epitaxial interfaces between metal and oxide semiconductors and designing modifiable contact barriers are challenging. Herein, we construct high-quality epitaxial metal/semiconductor interfaces based on the metallicity of the perovskite phase SrFeO3-δ (PV-SFO) and a small Schottky barrier in contact with Nb-doped SrTiO3 (NSTO). X-ray diffraction patterns, reciprocal space mapping results, and cross-sectional transmission electron microscopy images reveal that the prepared PV-SFO film exhibits a perfect single-crystal structure and an excellent epitaxial interface with the NSTO (111) substrate. The corresponding memristor exhibits analog-type resistive-variable characteristics with an ON/OFF ratio of ∼1000, stable data retention after 10,000 s, and no noticeable fluctuation in resistance after 10,000 pulse cycles. Electron energy loss spectroscopy, first-principles calculations, and electrical measurements reveal that compensating or restoring oxygen vacancies at the NSTO surface decreases or increases the contact barrier between PV-SFO and NSTO, respectively, thereby gradually regulating the resistance value. Furthermore, high-quality epitaxial PV-SFO/NSTO devices achieve up to 98.21% recognition accuracy for handwriting recognition tasks using LeNet-5-based network structures and 92.21% accuracy for color images using visual geometry group (VGG) network structures. This work contributes to the advancement of interface-type memristors and provides valuable insights into enhancing synaptic functionality in neuromorphic computing systems.
Collapse
Affiliation(s)
- Rui Su
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Dunbao Chen
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Weiming Cheng
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruizi Xiao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuheng Deng
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Yufeng Duan
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yi Li
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lei Ye
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongyu An
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Jingping Xu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peter To Lai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Xiangshui Miao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Zhang R, Su R, Shen C, Xiao R, Cheng W, Miao X. Research Progress on the Application of Topological Phase Transition Materials in the Field of Memristor and Neuromorphic Computing. SENSORS (BASEL, SWITZERLAND) 2023; 23:8838. [PMID: 37960537 PMCID: PMC10650417 DOI: 10.3390/s23218838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/07/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Topological phase transition materials have strong coupling between their charge, spin orbitals, and lattice structure, which makes them have good electrical and magnetic properties, leading to promising applications in the fields of memristive devices. The smaller Gibbs free energy difference between the topological phases, the stable oxygen vacancy ordered structure, and the reversible topological phase transition promote the memristive effect, which is more conducive to its application in information storage, information processing, information calculation, and other related fields. In particular, extracting the current resistance or conductance of the two-terminal memristor to convert to the weight of the synapse in the neural network can simulate the behavior of biological synapses in their structure and function. In addition, in order to improve the performance of memristors and better apply them to neuromorphic computing, methods such as ion doping, electrode selection, interface modulation, and preparation process control have been demonstrated in memristors based on topological phase transition materials. At present, it is considered an effective method to obtain a unique resistive switching behavior by improving the process of preparing functional layers, regulating the crystal phase of topological phase transition materials, and constructing interface barrier-dependent devices. In this review, we systematically expound the resistance switching mechanism, resistance switching performance regulation, and neuromorphic computing of topological phase transition memristors, and provide some suggestions for the challenges faced by the development of the next generation of non-volatile memory and brain-like neuromorphic devices based on topological phase transition materials.
Collapse
Affiliation(s)
| | | | | | | | - Weiming Cheng
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China; (R.Z.); (R.S.); (C.S.); (R.X.); (X.M.)
| | | |
Collapse
|
6
|
Yang Z, Wang L, Dhas JA, Engelhard MH, Bowden ME, Liu W, Zhu Z, Wang C, Chambers SA, Sushko PV, Du Y. Guided anisotropic oxygen transport in vacancy ordered oxides. Nat Commun 2023; 14:6068. [PMID: 37770428 PMCID: PMC10539514 DOI: 10.1038/s41467-023-40746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/07/2023] [Indexed: 09/30/2023] Open
Abstract
Anisotropic and efficient transport of ions under external stimuli governs the operation and failure mechanisms of energy-conversion systems and microelectronics devices. However, fundamental understanding of ion hopping processes is impeded by the lack of atomically precise materials and probes that allow for the monitoring and control at the appropriate time- and length- scales. In this work, using in-situ transmission electron microscopy, we directly show that oxygen ion migration in vacancy ordered, semiconducting SrFeO2.5 epitaxial thin films can be guided to proceed through two distinctly different diffusion pathways, each resulting in different polymorphs of SrFeO2.75 with different ground electronic properties before reaching a fully oxidized, metallic SrFeO3 phase. The diffusion steps and reaction intermediates are revealed by means of ab-initio calculations. The principles of controlling oxygen diffusion pathways and reaction intermediates demonstrated here may advance the rational design of structurally ordered oxides for tailored applications and provide insights for developing devices with multiple states of regulation.
Collapse
Affiliation(s)
- Zhenzhong Yang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jeffrey A Dhas
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Mark H Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Mark E Bowden
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Wen Liu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Zihua Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Scott A Chambers
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Peter V Sushko
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
7
|
Jeon J, Eom K, Lee M, Kim S, Lee H. Collective Control of Potential-Constrained Oxygen Vacancies in Oxide Heterostructures for Gradual Resistive Switching. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301452. [PMID: 37150870 DOI: 10.1002/smll.202301452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Indexed: 05/09/2023]
Abstract
Filamentary resistive switching in oxides is one of the key strategies for developing next-generation non-volatile memory devices. However, despite numerous advantages, their practical applications in neuromorphic computing are still limited due to non-uniform and indeterministic switching behavior. Given the inherent stochasticity of point defect migration, the pursuit of reliable switching likely demands an innovative approach. Herein, a collective control of oxygen vacancies is introduced in LaAlO3 /SrTiO3 (LAO/STO) heterostructures to achieve reliable and gradual resistive switching. By exploiting an electrostatic potential constraint in ultrathin LAO/STO heterostructures, the formation of conducting filaments is suppressed, but instead precisely control the concentration of oxygen vacancies. Since the conductance of the LAO/STO device is governed by the ensemble concentration of oxygen vacancies, not their individual probabilistic migrations, the resistive switching is more uniform and deterministic compared to conventional filamentary devices. It provides direct evidence for the collective control of oxygen vacancies by spectral noise analysis and modeling by Monte-Carlo simulation. As a proof of concept, the significantly-improved analog switching performance of the filament-free LAO/STO devices is demonstrated, revealing potential for neuromorphic applications. The results establish an approach to store information by point defect concentration, akin to biological ionic channels, for enhancing switching characteristics of oxide materials.
Collapse
Affiliation(s)
- Jaeyoung Jeon
- Department of Physics, Ajou University, Suwon, 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Kitae Eom
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Minkyung Lee
- Department of Physics, Ajou University, Suwon, 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Sungkyu Kim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Hyungwoo Lee
- Department of Physics, Ajou University, Suwon, 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
8
|
Weng Z, Huang H, Li X, Zhang Y, Shao R, Yi Y, Lu Y, Zeng X, Zou J, Chen L, Li W, Meng Y, Asefa T, Huang C. Coordination Tailoring of Epitaxial Perovskite-Derived Iron Oxide Films for Efficient Water Oxidation Electrocatalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Zhuanglin Weng
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haoliang Huang
- Anhui Laboratory of Advanced Photon Science and Technology, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiaowen Li
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yihao Zhang
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ruiwen Shao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Institute of Convergence in Medicine and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yazhuo Yi
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yalin Lu
- Anhui Laboratory of Advanced Photon Science and Technology, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xierong Zeng
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jizhao Zou
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lang Chen
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Yuying Meng
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Tewodros Asefa
- Department of Chemistry and Chemical Biology & Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway 08854, New Jersey, United States
| | - Chuanwei Huang
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
Lo HY, Huang CW, Chiu CC, Chen JY, Shen FC, Wang CH, Chen YJ, Wang CH, Yang JC, Wu WW. Revealing Resistive Switching Mechanism in CaFeO x Perovskite System with Electroforming-Free and Reset Voltage-Controlled Multilevel Resistance Characteristics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205306. [PMID: 36328712 DOI: 10.1002/smll.202205306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Recently, perovskite (PV) oxides with ABO3 structures have attracted considerable interest from scientists owing to their functionality. In this study, CaFeOx is introduced to reveal the resistive switching properties and mechanism of oxygen vacancy transition in PV and brownmillerite (BM) structures. BM-CaFeO2.5 is grown on an Nb-STO conductive substrate epitaxially. CaFeOx exhibits excellent endurance and reliability. In addition, the CaFeOx also demonstrates an electroforming-free characteristic and multilevel resistance properties. To construct the switching mechanism, high-resolution transmission electron microscopy is used to observe the topotactic phase change in CaFeOx . In addition, scanning TEM and electron energy loss spectroscopy show the structural evolution and valence state variation of CaFeOx after the switching behavior. This study not only reveals the switching mechanism of CaFeOx , but also provides a PV oxide option for the dielectric material in resistive random-access memory (RRAM) devices.
Collapse
Affiliation(s)
- Hung-Yang Lo
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No.1001, University Rd., East Dist., Hsinchu City, 30010, Taiwan (R.O.C.)
| | - Chun-Wei Huang
- Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Rd., Seatwen Dist., Taichung City, 407802, Taiwan (R.O.C.)
| | - Chun-Chien Chiu
- Department of Physics, National Cheng Kung University, No.1, University Rd., East Dist., Tainan City, 701, Taiwan (R.O.C.)
| | - Jui-Yuan Chen
- Department of Materials Science and Engineering, National United University, No. 2, Lienda, Miaoli City, Miaoli County, 360302, Taiwan (R.O.C.)
| | - Fang-Chun Shen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No.1001, University Rd., East Dist., Hsinchu City, 30010, Taiwan (R.O.C.)
| | - Che-Hung Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No.1001, University Rd., East Dist., Hsinchu City, 30010, Taiwan (R.O.C.)
| | - Yen-Jung Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No.1001, University Rd., East Dist., Hsinchu City, 30010, Taiwan (R.O.C.)
| | - Chien-Hua Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No.1001, University Rd., East Dist., Hsinchu City, 30010, Taiwan (R.O.C.)
| | - Jan-Chi Yang
- Department of Physics, National Cheng Kung University, No.1, University Rd., East Dist., Tainan City, 701, Taiwan (R.O.C.)
| | - Wen-Wei Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No.1001, University Rd., East Dist., Hsinchu City, 30010, Taiwan (R.O.C.)
- Center for the Intelligent Semiconductor Nano-system Technology Research, National Yang Ming Chiao Tung University, 300, Hsinchu, Taiwan
| |
Collapse
|
10
|
Wang G, Li H, Zhang Q, Zhang C, Yuan J, Wang Y, Lu J. Nanomicelles Array for Ultrahigh-Density Data Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202637. [PMID: 35810450 DOI: 10.1002/smll.202202637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
High-density data storage devices based on organic and polymer materials are currently restricted by two key issues, size limitations and uniformity of memory cells. Herein, one triblock polymer is synthesized by ring-opening metathesis polymerization, where the polymer contains an electron-donor-acceptor (A1 D) segment, an electron-acceptor (A2 ) segment, and a hydrophilic segment, that shows ternary memory behavior in a conventional sandwich-type device. The polymers that have monodisperse molecular weight dispersity self-assemble into nanomicelles with a uniform size of 80 nm. Each nanomicelle is composed of an A1 DA2 -type hydrophobic core stabilized with a hydrophilic shell. Nanobowls based on conductive oxide are prepared via the template method, wherein the nanomicelles are present as independent nanoscale memory units to produce an array of micelle matrices. Investigations of the resulting nanomemory device using conductive atomic force microscopy show that the micelles exhibit a predominant semiconductor memory behavior. Compared to traditional ternary devices with a memory unit size of ≈1 mm, this innovative fabrication method based on arrayed uniform nanomicelles downscales the size of storage cells to 80 nm. Furthermore, the described system leads to a greatly enhanced storage density (>108 times over the same area), which opens up new paths for further development of ultrahigh-density data storage devices.
Collapse
Affiliation(s)
- Guan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qijian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
- School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, P. R. China
| | - Cheng Zhang
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Junwei Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Yuxiang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
11
|
Liu Q, Gao S, Xu L, Yue W, Zhang C, Kan H, Li Y, Shen G. Nanostructured perovskites for nonvolatile memory devices. Chem Soc Rev 2022; 51:3341-3379. [PMID: 35293907 DOI: 10.1039/d1cs00886b] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Perovskite materials have driven tremendous advances in constructing electronic devices owing to their low cost, facile synthesis, outstanding electric and optoelectronic properties, flexible dimensionality engineering, and so on. Particularly, emerging nonvolatile memory devices (eNVMs) based on perovskites give birth to numerous traditional paradigm terminators in the fields of storage and computation. Despite significant exploration efforts being devoted to perovskite-based high-density storage and neuromorphic electronic devices, research studies on materials' dimensionality that has dominant effects on perovskite electronics' performances are paid little attention; therefore, a review from the point of view of structural morphologies of perovskites is essential for constructing perovskite-based devices. Here, recent advances of perovskite-based eNVMs (memristors and field-effect-transistors) are reviewed in terms of the dimensionality of perovskite materials and their potentialities in storage or neuromorphic computing. The corresponding material preparation methods, device structures, working mechanisms, and unique features are showcased and evaluated in detail. Furthermore, a broad spectrum of advanced technologies (e.g., hardware-based neural networks, in-sensor computing, logic operation, physical unclonable functions, and true random number generator), which are successfully achieved for perovskite-based electronics, are investigated. It is obvious that this review will provide benchmarks for designing high-quality perovskite-based electronics for application in storage, neuromorphic computing, artificial intelligence, information security, etc.
Collapse
Affiliation(s)
- Qi Liu
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Song Gao
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Lei Xu
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Wenjing Yue
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Chunwei Zhang
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Hao Kan
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Yang Li
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China. .,State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors & Chinese Academy of Sciences and Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China.
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors & Chinese Academy of Sciences and Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China.
| |
Collapse
|
12
|
Sun B, Zhou G, Sun L, Zhao H, Chen Y, Yang F, Zhao Y, Song Q. ABO 3 multiferroic perovskite materials for memristive memory and neuromorphic computing. NANOSCALE HORIZONS 2021; 6:939-970. [PMID: 34652346 DOI: 10.1039/d1nh00292a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The unique electron spin, transfer, polarization and magnetoelectric coupling characteristics of ABO3 multiferroic perovskite materials make them promising candidates for application in multifunctional nanoelectronic devices. Reversible ferroelectric polarization, controllable defect concentration and domain wall movement originated from the ABO3 multiferroic perovskite materials promotes its memristive effect, which further highlights data storage, information processing and neuromorphic computing in diverse artificial intelligence applications. In particular, ion doping, electrode selection, and interface modulation have been demonstrated in ABO3-based memristive devices for ultrahigh data storage, ultrafast information processing, and efficient neuromorphic computing. These approaches presented today including controlling the dopant in the active layer, altering the oxygen vacancy distribution, modulating the diffusion depth of ions, and constructing the interface-dependent band structure were believed to be efficient methods for obtaining unique resistive switching (RS) behavior for various applications. In this review, internal physical dynamics, preparation technologies, and modulation methods are systemically examined as well as the progress, challenges, and possible solutions are proposed for next generation emerging ABO3-based memristive application in artificial intelligence.
Collapse
Affiliation(s)
- Bai Sun
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Guangdong Zhou
- School of Artificial Intelligence and School of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Linfeng Sun
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Yuanzheng Chen
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Feng Yang
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yong Zhao
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
- Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qunliang Song
- School of Artificial Intelligence and School of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
13
|
Zhao J, Chen K, Li SE, Zhang Q, Wang JO, Guo EJ, Qian H, Gu L, Qian T, Ibrahim K, Fan Z, Guo H. Electronic-structure evolution of SrFeO 3-xduring topotactic phase transformation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:064001. [PMID: 34740209 DOI: 10.1088/1361-648x/ac36fd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Oxygen-vacancy-induced topotactic phase transformation between the ABO2.5brownmillerite structure and the ABO3perovskite structure attracts ever-increasing attention due to the perspective applications in catalysis, clean energy field, and memristors. However, a detailed investigation of the electronic-structure evolution during the topotactic phase transformation for understanding the underlying mechanism is highly desired. In this work, multiple analytical methods were used to explore evolution of the electronic structure of SrFeO3-xthin films during the topotactic phase transformation. The results indicate that the increase in oxygen content induces a new unoccupied state of O 2pcharacter near the Fermi energy, inducing the insulator-to-metal transition. More importantly, the hole states are more likely constrained to thedx2-y2orbital than to thed3z2-r2orbital. Our results reveal an unambiguous evolution of the electronic structure of SrFeO3-xfilms during topotactic phase transformation, which is crucial not only for fundamental understanding but also for perspective applications such as solid-state oxide fuel cells, catalysts, and memristor devices.
Collapse
Affiliation(s)
- Jiali Zhao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Kaihui Chen
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Shi-En Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jia-Ou Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Er-Jia Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Haijie Qian
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Tian Qian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Kurash Ibrahim
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhen Fan
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Haizhong Guo
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, People's Republic of China
| |
Collapse
|
14
|
Liu N, Cao Y, Zhu YL, Wang YJ, Tang YL, Wu B, Zou MJ, Feng YP, Ma XL. Spinodal Decomposition-Driven Endurable Resistive Switching in Perovskite Oxides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31001-31009. [PMID: 34156226 DOI: 10.1021/acsami.1c06649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Common pursuits of developing nanometric logic and neuromorphic applications have motivated intensive research studies into low-dimensional resistive random-access memory (RRAM) materials. However, fabricating resistive switching medium with inherent stability and homogeneity still remains a bottleneck. Herein, we report a self-assembled uniform biphasic system, comprising low-resistance 3 nm-wide (Bi0.4,La0.6)FeO3-δ nanosheets coherently embedded in a high-resistance (Bi0.2,La0.8)FeO3-δ matrix, which were spinodally decomposed from an overall stoichiometry of the (Bi0.24,La0.76)FeO3-δ parent phase, as a promising nanocomposite to be a stable and endurable RRAM medium. The Bi-rich nanosheets accommodating high concentration of oxygen vacancies as corroborated by X-ray photoelectron spectroscopy and electron energy loss spectroscopy function as fast carrier channels, thus enabling an intrinsic electroforming-free character. Surficial electrical state and resistive switching properties are investigated using multimodal scanning probe microscopy techniques and macroscopic I-V measurements, showing high on/off ratio (∼103) and good endurance (up to 1.6 × 104 cycles). The established spinodal decomposition-driven phase-coexistence BLFO system demonstrates the merits of stability, uniformity, and endurability, which is promising for further application in RRAM devices.
Collapse
Affiliation(s)
- Nan Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yi Cao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yin-Lian Zhu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yu-Jia Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yun-Long Tang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bo Wu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Min-Jie Zou
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan-Peng Feng
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiu-Liang Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- State Key Lab of Advanced Processing and Recycling on Non-ferrous Metals, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, China
| |
Collapse
|
15
|
Mou X, Tang J, Lyu Y, Zhang Q, Yang S, Xu F, Liu W, Xu M, Zhou Y, Sun W, Zhong Y, Gao B, Yu P, Qian H, Wu H. Analog memristive synapse based on topotactic phase transition for high-performance neuromorphic computing and neural network pruning. SCIENCE ADVANCES 2021; 7:7/29/eabh0648. [PMID: 34272239 PMCID: PMC8284889 DOI: 10.1126/sciadv.abh0648] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/02/2021] [Indexed: 05/31/2023]
Abstract
Inspired by the human brain, nonvolatile memories (NVMs)-based neuromorphic computing emerges as a promising paradigm to build power-efficient computing hardware for artificial intelligence. However, existing NVMs still suffer from physically imperfect device characteristics. In this work, a topotactic phase transition random-access memory (TPT-RAM) with a unique diffusive nonvolatile dual mode based on SrCoO x is demonstrated. The reversible phase transition of SrCoO x is well controlled by oxygen ion migrations along the highly ordered oxygen vacancy channels, enabling reproducible analog switching characteristics with reduced variability. Combining density functional theory and kinetic Monte Carlo simulations, the orientation-dependent switching mechanism of TPT-RAM is investigated synergistically. Furthermore, the dual-mode TPT-RAM is used to mimic the selective stabilization of developing synapses and implement neural network pruning, reducing ~84.2% of redundant synapses while improving the image classification accuracy to 99%. Our work points out a new direction to design bioplausible memristive synapses for neuromorphic computing.
Collapse
Affiliation(s)
- Xing Mou
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jianshi Tang
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
- Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, China
| | - Yingjie Lyu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Qingtian Zhang
- Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, China
| | - Siyao Yang
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Feng Xu
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Wei Liu
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Minghong Xu
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yu Zhou
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Wen Sun
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yanan Zhong
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Bin Gao
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, China
| | - Pu Yu
- Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, China.
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - He Qian
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, China
| | - Huaqiang Wu
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Alkali-deficiency driven charged out-of-phase boundaries for giant electromechanical response. Nat Commun 2021; 12:2841. [PMID: 33990584 PMCID: PMC8121868 DOI: 10.1038/s41467-021-23107-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 11/08/2022] Open
Abstract
Traditional strategies for improving piezoelectric properties have focused on phase boundary engineering through complex chemical alloying and phase control. Although they have been successfully employed in bulk materials, they have not been effective in thin films due to the severe deterioration in epitaxy, which is critical to film properties. Contending with the opposing effects of alloying and epitaxy in thin films has been a long-standing issue. Herein we demonstrate a new strategy in alkali niobate epitaxial films, utilizing alkali vacancies without alloying to form nanopillars enclosed with out-of-phase boundaries that can give rise to a giant electromechanical response. Both atomically resolved polarization mapping and phase field simulations show that the boundaries are strained and charged, manifesting as head-head and tail-tail polarization bound charges. Such charged boundaries produce a giant local depolarization field, which facilitates a steady polarization rotation between the matrix and nanopillars. The local elastic strain and charge manipulation at out-of-phase boundaries, demonstrated here, can be used as an effective pathway to obtain large electromechanical response with good temperature stability in similar perovskite oxides. Phase boundary engineering through chemical alloying and phase control is a traditional approach to enhancing piezoelectric properties. Here, the authors design a strategy in alkali niobate films, utilizing alkali vacancies without alloying to form nanopillars enclosed.
Collapse
|
17
|
Lim JS, Lee J, Lee BJ, Kim YJ, Park HS, Suh J, Nahm HH, Kim SW, Cho BG, Koo TY, Choi E, Kim YH, Yang CH. Harnessing the topotactic transition in oxide heterostructures for fast and high-efficiency electrochromic applications. SCIENCE ADVANCES 2020; 6:6/41/eabb8553. [PMID: 33036971 PMCID: PMC7546704 DOI: 10.1126/sciadv.abb8553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Mobile oxygen vacancies offer a substantial potential to broaden the range of optical functionalities of complex transition metal oxides due to their high mobility and the interplay with correlated electrons. Here, we report a large electro-absorptive optical variation induced by a topotactic transition via oxygen vacancy fluidic motion in calcium ferrite with large-scale uniformity. The coloration efficiency reaches ~80 cm2 C-1, which means that a 300-nm-thick layer blocks 99% of transmitted visible light by the electrical switching. By tracking the color propagation, oxygen vacancy mobility can be estimated to be 10-8 cm2 s-1 V-1 near 300°C, which is a giant value attained due to the mosaic pseudomonoclinic film stabilized on LaAlO3 substrate. First-principles calculations reveal that the defect density modulation associated with hole charge injection causes a prominent change in electron correlation, resulting in the light absorption modulation. Our findings will pave the pathway for practical topotactic electrochromic applications.
Collapse
Affiliation(s)
- Ji Soo Lim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Lattice Defectronics, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jounghee Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Byeoung Ju Lee
- Department of Physics, University of Seoul, Seoul 02504, Republic of Korea
| | - Yong-Jin Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Lattice Defectronics, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Heung-Sik Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Lattice Defectronics, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeonghun Suh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Lattice Defectronics, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ho-Hyun Nahm
- Graduate School of Nanoscience and Technology, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang-Woo Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Byeong-Gwan Cho
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Tae Yeong Koo
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Eunjip Choi
- Department of Physics, University of Seoul, Seoul 02504, Republic of Korea
| | - Yong-Hyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea.
- Graduate School of Nanoscience and Technology, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chan-Ho Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea.
- Center for Lattice Defectronics, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for the NanoCentury, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
18
|
Tian J, Zhang Y, Fan Z, Wu H, Zhao L, Rao J, Chen Z, Guo H, Lu X, Zhou G, Pennycook SJ, Gao X, Liu JM. Nanoscale Phase Mixture and Multifield-Induced Topotactic Phase Transformation in SrFeO x. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21883-21893. [PMID: 32314574 DOI: 10.1021/acsami.0c03684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoscale phase mixtures in transition-metal oxides (TMOs) often render these materials susceptible to external stimuli (electric field, mechanical stress, etc.), which can lead to rich functional properties and device applications. Here, direct observation and multifield manipulation of a nanoscale mixture of brownmillerite SrFeO2.5 (BM-SFO) and perovskite SrFeO3 (PV-SFO) phases in SrFeOx (SFO) epitaxial thin films are reported. The mixed-phase SFO film in its pristine state exhibits a nanoscaffold structure consisting of PV-SFO nanodomains embedded in the BM-SFO matrix. This nanoscaffold structure produces gridlike patterns in the current and electrochemical strain maps, owing to the strikingly different electrical and electrochemical properties of BM-SFO and PV-SFO. Moreover, electric field control of reversible topotactic phase transformation between BM-SFO and PV-SFO is demonstrated by electric-field-induced reversible changes in surface height, conductance, and electrochemical strain response. In addition, it is also shown that the BM-SFO → PV-SFO phase transformation can be enabled by applying mechanical stress. This study therefore not only identifies a strong nanometric structure-property correlation in the mixed-phase SFO but also offers a new paradigm for the multifield control of topotactic phase transformation.
Collapse
Affiliation(s)
- Junjiang Tian
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yang Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhen Fan
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Haijun Wu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhao
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Jingjing Rao
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Zuhuang Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haizhong Guo
- School of Physical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xubing Lu
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Stephen J Pennycook
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xingsen Gao
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Jun-Ming Liu
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|