1
|
Zhang L, Wang Y, Li Y, Chen ZS, Hu C. Advanced materials for cancer treatment and beyond. Front Pharmacol 2025; 16:1557155. [PMID: 40110134 PMCID: PMC11920709 DOI: 10.3389/fphar.2025.1557155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
Conservative anti-cancer treatment represented by chemotherapy and surgery lacks tumor-specificity and could hardly resolve the problems associated with multidrug resistance (MDR) in cancers. Novel therapeutic materials in cancer treatment, such as those with anti-MDR or controllable treatment features, represent a significant trend due to their advantages of high and specific efficacy and timely intervention of cancer progress. In addition to their excellent biocompatibility and specificity, they can be utilized in therapies that require ease of operation, provided they are designed with high detection sensitivity. In this review, we summarize a series of recently developed materials that exhibit these advantages, including immune-enhancing and tumor microenvironment (TME)- responsive materials, and those with integrated therapeutic and imaging capabilities. We also introduce advanced modification approaches that can impart essential targeting functionalities to these materials.
Collapse
Affiliation(s)
- Lei Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Yanan Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yangjia Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Chaohua Hu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Tian F, Guo RC, Wu C, Liu X, Zhang Z, Wang Y, Wang H, Li G, Yu Z. Assembly of Glycopeptides in Living Cells Resembling Viral Infection for Cargo Delivery. Angew Chem Int Ed Engl 2024; 63:e202404703. [PMID: 38655625 DOI: 10.1002/anie.202404703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Self-assembly in living cells represents one versatile strategy for drug delivery; however, it suffers from the limited precision and efficiency. Inspired by viral traits, we here report a cascade targeting-hydrolysis-transformation (THT) assembly of glycosylated peptides in living cells holistically resembling viral infection for efficient cargo delivery and combined tumor therapy. We design a glycosylated peptide via incorporating a β-galactose-serine residue into bola-amphiphilic sequences. Co-assembling of the glycosylated peptide with two counterparts containing irinotecan (IRI) or ligand TSFAEYWNLLSP (PMI) results in formation of the glycosylated co-assemblies SgVEIP, which target cancer cells via β-galactose-galectin-1 association and undergo galactosidase-induced morphological transformation. While GSH-reduction causes release of IRI from the co-assemblies, the PMI moieties release p53 and facilitate cell death via binding with protein MDM2. Cellular experiments show membrane targeting, endo-/lysosome-mediated internalization and in situ formation of nanofibers in cytoplasm by SgVEIP. This cascade THT process enables efficient delivery of IRI and PMI into cancer cells secreting Gal-1 and overexpressing β-galactosidase. In vivo studies illustrate enhanced tumor accumulation and retention of the glycosylated co-assemblies, thereby suppressing tumor growth. Our findings demonstrate an in situ assembly strategy mimicking viral infection, thus providing a new route for drug delivery and cancer therapy in the future.
Collapse
Affiliation(s)
- Feng Tian
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ruo-Chen Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chunxia Wu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yamei Wang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hao Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Gongyu Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin, 300308, China
| |
Collapse
|
3
|
Ming L, Wu H, Fan Q, Dong Z, Huang J, Xiao Z, Xiao N, Huang H, Liu H, Li Z. Bio-inspired drug delivery systems: A new attempt from bioinspiration to biomedical applications. Int J Pharm 2024; 658:124221. [PMID: 38750980 DOI: 10.1016/j.ijpharm.2024.124221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Natural organisms have evolved sophisticated and multiscale hierarchical structures over time to enable survival. Currently, bionic design is revolutionizing drug delivery systems (DDS), drawing inspiration from the structure and properties of natural organisms that offer new possibilities to overcome the challenges of traditional drug delivery systems. Bionic drug delivery has contributed to a significant improvement in therapeutic outcomes, providing personalized regimens for patients with various diseases and enhancing both their quality of life and drug efficacy. Therefore, it is important to summarize the progress made so far and to discuss the challenges and opportunities for future development. Herein, we review the recent advances in bio-inspired materials, bio-inspired drug vehicles, and drug-loading platforms of biomimetic structures and properties, emphasizing the importance of adapting the structure and function of organisms to meet the needs of drug delivery systems. Finally, we highlight the delivery strategies of bionics in DDS to provide new perspectives and insights into the research and exploration of bionics in DDS. Hopefully, this review will provide future insights into utilizing biologically active vehicles, bio-structures, and bio-functions, leading to better clinical outcomes.
Collapse
Affiliation(s)
- Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Qimeng Fan
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Zishu Dong
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Jia Huang
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Zijian Xiao
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Nan Xiao
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical, University, Jiangxi, Ganzhou 341000, China.
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China.
| | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China.
| |
Collapse
|
4
|
Zhu X, Shi Z, Mao Y, Lächelt U, Huang R. Cell Membrane Perforation: Patterns, Mechanisms and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310605. [PMID: 38344881 DOI: 10.1002/smll.202310605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Indexed: 02/21/2024]
Abstract
Cell membrane is crucial for the cellular activities, and any disruption to it may affect the cells. It is demonstrated that cell membrane perforation is associated with some biological processes like programmed cell death (PCD) and infection of pathogens. Specific developments make it a promising technique to perforate the cell membrane controllably and precisely. The pores on the cell membrane provide direct pathways for the entry and exit of substances, and can also cause cell death, which means reasonable utilization of cell membrane perforation is able to assist intracellular delivery, eliminate diseased or cancerous cells, and bring about other benefits. This review classifies the patterns of cell membrane perforation based on the mechanisms into 1) physical patterns, 2) biological patterns, and 3) chemical patterns, introduces the characterization methods and then summarizes the functions according to the characteristics of reversible and irreversible pores, with the aim of providing a comprehensive summary of the knowledge related to cell membrane perforation and enlightening broad applications in biomedical science.
Collapse
Affiliation(s)
- Xinran Zhu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ulrich Lächelt
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Rongqin Huang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
5
|
Chen Y, Wang J, Huang Y, Wu J, Wang Y, Chen A, Guo Q, Zhang Y, Zhang S, Wang L, Zou X, Li X. An oncolytic system produces oxygen selectively in pancreatic tumor cells to alleviate hypoxia and improve immune activation. Pharmacol Res 2024; 199:107053. [PMID: 38176529 DOI: 10.1016/j.phrs.2023.107053] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
INTRODUCTION Hypoxia is one of the important reasons for the poor therapeutic efficacy of current pancreatic cancer treatment, and the dense stroma of pancreatic cancer restricts the diffusion of oxygen within the tumor. METHODS A responsive oxygen-self-supplying adv-miRT-CAT-KR (adv-MCK) cascade reaction system to improve hypoxia in pancreatic cancer is constructed. We utilized various experiments at multiple levels (cells, organoids, in vivo) to investigate its effect on pancreatic cancer and analyzed the role of immune microenvironment changes in it through high-throughput sequencing. RESULTS The adv-MCK system is an oncolytic adenovirus system expressing three special components of genes. The microRNA (miRNA) targets (miRTs) enable adv-MCK to selectively replicate in pancreatic cancer cells. Catalase catalyzes the overexpressed hydrogen peroxide in pancreatic cancer cells to generate endogenous oxygen, which is catalyzed by killerRed to generate singlet oxygen (1O2) and further to enhance the oncolytic effect. Meanwhile, the adv-MCK system can specifically improve hypoxia in pancreatic cancer, exert antitumor effects in combination with photodynamic therapy, and activate antitumor immunity, especially by increasing the level of γδ T cells in the tumor microenvironment. CONCLUSION The responsive oxygen-self-supplying adv-MCK cascade reaction system combined with photodynamic therapy can improve the hypoxic microenvironment of pancreatic cancer and enhance antitumor immunity, which provides a promising alternative treatment strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Yu Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jialun Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Ying Huang
- Department of Pain, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jianzhuang Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yue Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Aotian Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Qiyuan Guo
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210008, China
| | - Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Xihan Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
6
|
Liu HY, Li X, Wang ZG, Liu SL. Virus-mimicking nanosystems: from design to biomedical applications. Chem Soc Rev 2023; 52:8481-8499. [PMID: 37929845 DOI: 10.1039/d3cs00138e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Nanomedicine, as an interdisciplinary discipline involving the development and application of nanoscale materials and technologies, is rapidly developing under the impetus of bionanotechnology and has attracted a great deal of attention from researchers. Especially, with the global outbreak of COVID-19, the in-depth investigation of the infection mechanism of the viruses has made the study of virus-mimicking nanosystems (VMNs) a popular research topic. In this review, we initiate with a brief historical perspective on the emergence and development of VMNs for providing a comprehensive view of the field. Next, we present emerging design principles and functionalization strategies for fabricating VMNs in light of viral infection mechanisms. Then, we describe recent advances in VMNs in biology, with a major emphasis on representative examples. Finally, we summarize the opportunities and challenges that exist in this field, hoping to provide new insights and inspiration to develop VMNs for disease diagnosis and treatment and to attract the interest of more researchers from different fields.
Collapse
Affiliation(s)
- Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.
| | - Xiao Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| |
Collapse
|
7
|
Wu L, Li J, Wang Y, Zhao X, He Y, Mao H, Tang W, Liu R, Luo K, Gu Z. Engineered Hierarchical Microdevices Enable Pre-Programmed Controlled Release for Postsurgical and Unresectable Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305529. [PMID: 37549042 DOI: 10.1002/adma.202305529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/24/2023] [Indexed: 08/09/2023]
Abstract
Drug treatment is required for both resectable and unresectable cancers to strive for any meaningful improvement in patient outcomes. However, the clinical benefit of receiving conventional systemic administrations is often less than satisfactory. Drug delivery systems are preferable substitutes but still fail to meet diverse clinical demands due to the difficulty in programming drug release profiles. Herein, a microfabrication concept, termed "Hierarchical Multiple Polymers Immobilization" (HMPI), is introduced and biodegradable-polymer-based hierarchical microdevices (HMDs) that can pre-program any desired controlled release profiles are engineered. Based on the first-line medication of pancreatic and breast cancer, controlled release of single gemcitabine and the doxorubicin/paclitaxel combination in situ for multiple courses is implemented, respectively. Preclinical models of postsurgical pancreatic, postsurgical breast, and unresectable breast cancer are established, and the designed HMDs are demonstrated as well-tolerable and effective treatments for inhibiting tumor growth, recurrence, and metastasis. The proposed HMPI strategy allows the creation of tailorable and high-resolution hierarchical microstructures for pre-programming controlled release according to clinical medication schedules, which may provide promising alternative treatments for postsurgical and unresectable tumor control.
Collapse
Affiliation(s)
- Lihuang Wu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, 211816, China
| | - Junhua Li
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, 211816, China
| | - Yuqi Wang
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, 211816, China
| | - Xinyue Zhao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, 211816, China
| | - Yiyan He
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, 211816, China
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, 211816, China
- NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, 210009, China
| | - Wenbo Tang
- Faculty of Hepatopancreatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Rong Liu
- Faculty of Hepatopancreatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, 211816, China
- Faculty of Hepatopancreatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Li Y, Deng K, Shen C, Liang X, Zeng Z, Liu L, Xu X. Enantiomeric Virus-Inspired Oncolytic Particles for Efficient Antitumor Immunotherapy. ACS NANO 2023; 17:17320-17331. [PMID: 37506386 DOI: 10.1021/acsnano.3c05288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Synthesizing biomimetic systems with stereospecific architectures and advanced bioactivity remains an enormous challenge in modern science. To fundamentally eliminate biosafety issues of natural oncolytic viruses, the development of synthetic virus-inspired particles with high oncolytic activity is urgently needed for clinical antitumor treatments. Here, we describe the design and synthesis of enantiomeric virus-inspired particles for efficient oncolytic therapy from homochiral building blocks to stereospecific supramolecular constructions. The L-virus-inspired oncolytic particles (L-VOPs) and D-VOPs possess similar biomimetic nanostructures but mirror-imaged enantiomeric forms. It is important that both L-VOPs and D-VOPs successfully mimic the pharmacological activity of oncolytic viruses, including direct tumor lysis and antitumor immune activation. D-VOPs provide quite better oncolytic efficacy than that of clinical-grade oncolytic agents (LTX-315, IC50 = 53.00 μg mL-1) with more than 5-fold decrease in IC50 value (10.93 μg mL-1) and close to 100% tumor suppression (98.79%) against 4T1 tumor-bearing mice, attributed to the chirality-dependent tumor recognition, interaction, antidegradation, and immunotherapy. This work provides a strategy for the synthesis of stereospecific biomimetic material systems as well as develops an advanced candidate for biomimetic oncolytic agents without biosafety risks.
Collapse
Affiliation(s)
- Yachao Li
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Kefurong Deng
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Cheng Shen
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xiaoyu Liang
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zenan Zeng
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Liguo Liu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xianghui Xu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Chen J, Zhang Y. Hyperbranched Polymers: Recent Advances in Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:2222. [PMID: 37765191 PMCID: PMC10536223 DOI: 10.3390/pharmaceutics15092222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperbranched polymers are a class of three-dimensional dendritic polymers with highly branched architectures. Their unique structural features endow them with promising physical and chemical properties, such as abundant surface functional groups, intramolecular cavities, and low viscosity. Therefore, hyperbranched-polymer-constructed cargo delivery carriers have drawn increasing interest and are being utilized in many biomedical applications. When applied for photodynamic therapy, photosensitizers are encapsulated in or covalently incorporated into hyperbranched polymers to improve their solubility, stability, and targeting efficiency and promote the therapeutic efficacy. This review will focus on the state-of-the-art studies concerning recent progress in hyperbranched-polymer-fabricated phototherapeutic nanomaterials with emphases on the building-block structures, synthetic strategies, and their combination with the codelivered diagnostics and synergistic therapeutics. We expect to bring our demonstration to the field to increase the understanding of the structure-property relationships and promote the further development of advanced photodynamic-therapy nanosystems.
Collapse
Affiliation(s)
| | - Yichuan Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
10
|
Hazra RS, Khan MRH, Kale N, Tanha T, Khandare J, Ganai S, Quadir M. Bioinspired Materials for Wearable Devices and Point-of-Care Testing of Cancer. ACS Biomater Sci Eng 2023; 9:2103-2128. [PMID: 35679474 PMCID: PMC9732150 DOI: 10.1021/acsbiomaterials.1c01208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wearable, point-of-care diagnostics, and biosensors are on the verge of bringing transformative changes in detection, management, and treatment of cancer. Bioinspired materials with new forms and functions have frequently been used, in both translational and commercial spaces, to fabricate such diagnostic platforms. Engineered from organic or inorganic molecules, bioinspired systems are naturally equipped with biorecognition and stimuli-sensitive properties. Mechanisms of action of bioinspired materials are deeply connected with thermodynamically or kinetically controlled self-assembly at the molecular and supramolecular levels. Thus, integration of bioinspired materials into wearable devices, either as triggers or sensors, brings about unique device properties usable for detection, capture, or rapid readout for an analyte of interest. In this review, we present the basic principles and mechanisms of action of diagnostic devices engineered from bioinspired materials, describe current advances, and discuss future trends of the field, particularly in the context of cancer.
Collapse
Affiliation(s)
- Raj Shankar Hazra
- Materials and Nanotechnology Program, North Dakota State University, Fargo, ND 58108, United States
| | - Md Rakib Hasan Khan
- Biomedical Engineering Program, North Dakota State University, Fargo, ND 58108, United States
| | - Narendra Kale
- Actorius Innovations and Research Pvt. Ltd., Pune, 411057 India
| | - Tabassum Tanha
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND 58108, United States
| | - Jayant Khandare
- Actorius Innovations and Research Pvt. Ltd., Pune, 411057 India
- School of Pharmacy, Dr. Vishwananth Karad MIT World Peace University, Kothrud, Pune 411038, India
- School of Consciousness, MIT WPU, Kothrud, Pune 411038, India
| | - Sabha Ganai
- Division of Surgical Oncology, Sanford Research, Fargo, North Dakota 58122, United States
- Complex General Surgical Oncology, University of North Dakota, Grand Forks, ND 58202, United States
| | - Mohiuddin Quadir
- Materials and Nanotechnology Program, North Dakota State University, Fargo, ND 58108, United States
- Biomedical Engineering Program, North Dakota State University, Fargo, ND 58108, United States
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58108, United States
| |
Collapse
|
11
|
Singh AK, Awasthi R, Malviya R. Bioinspired microrobots: Opportunities and challenges in targeted cancer therapy. J Control Release 2023; 354:439-452. [PMID: 36669531 DOI: 10.1016/j.jconrel.2023.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
Chemotherapy is still the most effective technique to treat many forms of cancer. However, it also carries a high risk of side effects. Numerous nanomedicines have been developed to avoid unintended consequences and significant negative effects of conventional therapies. Achieving targeted drug delivery also has several challenges. In this context, the development of microrobots is receiving considerable attention of formulation scientists and clinicians to overcome such challenges. Due to their mobility, microrobots can infiltrate tissues and reach tumor sites more quickly. Different types of microrobots, like custom-made moving bacteria, microengines powered by small bubbles, and hybrid spermbots, can be designed with complex features that are best for precise targeting of a wide range of cancers. In this review, we mainly focus on the idea of how microrobots can quickly target cancer cells and discuss specific advantages of microrobots. A brief summary of the microrobots' drug loading and release behavior is provided in this manuscript. This manuscript will assist clinicians and other medical professionals in diagnosing and treating cancer without surgery.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, University of Petroleum and Energy Studies (UPES), Energy Acres, P.O. Bidholi, Via-Prem Nagar, Dehradun 248 007, Uttarakhand, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
12
|
Chen S, Wang Z, Liu L, Li Y, Ni X, Yuan H, Wang C. Redox homeostasis modulation using theranostic AIE nanoparticles results in positive-feedback drug accumulation and enhanced drug penetration to combat drug-resistant cancer. Mater Today Bio 2022; 16:100396. [PMID: 36060105 PMCID: PMC9434132 DOI: 10.1016/j.mtbio.2022.100396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Drug-resistant cancers usually have multiple barriers to compromise the effect of therapies, of which multidrug-resistance (MDR) phenotype as the intracellular barrier and dense tumor matrix as the extracellular barrier, significantly contribute to the poor anticancer performance of current drug delivery systems (DDS). Here in this study, we fabricated a novel aggregation-induced emission (AIE)-active polymer capable of self-assembling into ultrasmall nanoparticles (∼20 nm) with D-alpha Tocopheryl Polyethylene Glycol Succinate (TPGS), for dual-encapsulating of doxorubicin (Dox) and sulforaphane (SFN) (AT/Dox/SFN). It revealed that redox homeostasis modulation of MDR cells (MCF-7/Adr) using AT/Dox/SFN can trigger mitochondria damage and ATP deficiency, which reverse the MDR phenotype of MCF-7/Adr cells to afford enhanced cellular uptake of both drug and DDS in a positive-feedback manner. The enhanced cellular drug accumulation further initiates the “neighboring effect” for improved drug penetration. Using this strategy, the growth of in vivo MCF-7/Adr tumors can be effectively inhibited at a low dosage (1/5) of doxorubicin (Dox) as compared to free Dox. In summary, we offer a new approach to overcome both the intracellular and extracellular barriers of drug-resistant cancers and elucidate the potential action mechanisms, which are beneficial for better cancer management. Redox homeostasis modulation in MDR cancer cell results in positive-feedback drug accumulation and enhanced drug penetration. Mitochondria damage and neighboring effect is responsible for MDR reversal and enhanced drug penetration, respectively. AT/Dox/SFN effectively inhibits in vivo MCF-7/Adr tumors at a low dosage (1/5) of doxorubicin (Dox) as compared to free Dox.
Collapse
Affiliation(s)
- Shaoqing Chen
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China
| | - Ziyu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, China
| | - Li Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Yuting Li
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Xinye Ni
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China
- Corresponding author. Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu, China.
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, China
- Corresponding author.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
- Corresponding author.
| |
Collapse
|
13
|
Zhao X, Wang Y, Jiang W, Wang Q, Li J, Wen Z, Li A, Zhang K, Zhang Z, Shi J, Liu J. Herpesvirus-Mimicking DNAzyme-Loaded Nanoparticles as a Mitochondrial DNA Stress Inducer to Activate Innate Immunity for Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204585. [PMID: 35869026 DOI: 10.1002/adma.202204585] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Virus-based immunotherapy is a promising approach to treat tumor. Closely mimicking the structure and sequential infection processes of natural viruses is highly desirable for effective tumor immunotherapy but remains challenging. Here, inspired by the robust innate immunity induced by herpesvirus, a herpesvirus-mimicking nanoparticle (named Vir-ZM@TD) is engineered for tumor therapy by mimicking the structure and infection processes of herpesvirus. In this biomimetic system, DNAzyme-loaded manganese-doped zeolitic imidazolate framework-90 (ZIF-90) nanoparticles (ZM@TD) mimic the virus nucleocapsid containing the genome; the erythrocyte membrane mimics the viral envelope; and two functional peptides, RGD and HA2 peptides, resemble the surface glycoprotein spikes of herpesvirus. Vir-ZM@TD can both effectively evade rapid clearance in the blood circulation and closely mimic the serial infection processes of herpesvirus, including specific tumor targeting, membrane fusion-mediated endosomal escape, and TFAM (transcription factor A, mitochondrial) deficiency-triggered mitochondrial DNA stress, as well as the release of manganese ions (Mn2+ ) from organelles into the cytosol, ultimately effectively priming cGAS-STING pathway-mediated innate immunity with 68% complete regression of primary tumors and extending by 32 days the median survival time of 4T1-tumor-bearing mice.
Collapse
Affiliation(s)
- Xiu Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yiyang Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenxiao Jiang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiongwei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhiyang Wen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Airong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Science and Technology, Department of Henan Province, Zhengzhou, 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
14
|
Wang ZH, Chu M, Yin N, Huang W, Liu W, Zhang Z, Liu J, Shi J. Biological chemotaxis-guided self-thermophoretic nanoplatform augments colorectal cancer therapy through autonomous mucus penetration. SCIENCE ADVANCES 2022; 8:eabn3917. [PMID: 35767627 PMCID: PMC9242589 DOI: 10.1126/sciadv.abn3917] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/10/2022] [Indexed: 05/28/2023]
Abstract
Oral drug delivery systems have great potential to treat colorectal cancer (CRC). However, the drug delivery efficiency is restricted by limited CRC-related intestine positioning and dense mucus barrier. Here, we present a biological chemotaxis-guided self-thermophoretic nanoplatform that facilitates precise intestinal positioning and autonomous mucus penetration. The nanoplatform introduces asymmetric platinum-sprayed mesoporous silica to achieve autonomous movement in intestinal mucus. Furthermore, inspired by the intense interaction between pathogenic microbes and CRC, the nanoplatform is camouflaged by Staphylococcus aureus membrane to precisely anchor in CRC-related intestine. Owing to 4.3-fold higher biological chemotactic anchoring of CRC-related intestine and 14.6-fold higher autonomous mucus penetration performance, the nanoplatform vastly improves the oral bioavailability of cisplatin, leading to a tumor inhibition rate of 99.1% on orthotopic CRC-bearing mice. Together, the exquisitely designed nanoplatform to overcome multiple physiological barriers provides a new horizon for the development of oral drug delivery systems.
Collapse
Affiliation(s)
- Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
| | - Mengyu Chu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Na Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Wanting Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
| |
Collapse
|
15
|
Meng X, Lu Z, Lv Q, Jiang Y, Zhang L, Wang Z. Tumor metabolism destruction via metformin-based glycolysis inhibition and glucose oxidase-mediated glucose deprivation for enhanced cancer therapy. Acta Biomater 2022; 145:222-234. [PMID: 35460908 DOI: 10.1016/j.actbio.2022.04.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/17/2022] [Accepted: 04/12/2022] [Indexed: 01/06/2023]
Abstract
Cancer cells rely on glycolysis to support a high proliferation rate. Metformin (Met) is a promising drug for tumor treatment that targets hexokinase 2 (HK2) to block the glycolytic process, thereby further disrupting the metabolism of cancer cells. Herein, an intelligent nanomedicine based on glucose deprivation and glycolysis inhibition is creatively constructed for enhanced cancer synergistic treatment. In brief, Met and glucose oxidase (GOx) was encapsulated into histidine/zeolitic imidazolate framework-8 (His/ZIF-8), which was followed by coating with Arg-Gly-Asp (RGD) peptides to obtain the desired nanomedicine (Met/GOx@His/ZIF-8∼RGD). This smart nanomedicine presents the controllable Met and GOx release behavior in an acidic responsive manner. The liberated Met blocks the glycolysis process via suppressing the activity of HK2 and impairing ATP production, which activates the AMP-activated protein kinase (AMPK) pathway and p53 pathway and damages the Warburg effect, eventually leading to cells apoptosis. And the GOx boosts the glucose shortage for starvation therapy by depleting accumulated glucose. According to in vitro and in vivo assays, the combination of glycolysis inhibition and starvation therapy demonstrates efficient cancer cells growth suppression and superior antitumor properties compared to the Met based or GOx-mediated monotherapy. This work provides an advanced therapeutic strategy via disrupting cellular metabolism against cancer. STATEMENT OF SIGNIFICANCE: The obtained nanomedicine (Met/GOx@His/ZIF-8∼RGD) presents the controllable Met and glucose oxidase (GOx) release behavior in an acidic responsive manner. The liberated Met blocks the glycolysis process via suppressing the activity of HK2 and impairing ATP production, which activates the AMP-activated protein kinase (AMPK) pathway and p53 pathway and damages the Warburg effect, eventually leading to cells apoptosis. And the GOx boosts the glucose shortage for starvation therapy by depleting accumulated glucose. The combination of glycolysis inhibition and starvation therapy demonstrate the efficient suppression of cancer cells growth and the superior antitumor properties when compared to the Met based or GOx-mediated monotherapy.
Collapse
|
16
|
Wu H, Li W, Hao M, Wang Y, Xue L, Ju C, Zhang C. An EPR-Independent extravasation Strategy: Deformable leukocytes as vehicles for improved solid tumor therapy. Adv Drug Deliv Rev 2022; 187:114380. [PMID: 35662610 DOI: 10.1016/j.addr.2022.114380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023]
Abstract
Effective delivery of therapeutic modality throughout the tumorous nidus plays a crucial role in successful solid tumor treatment. However, conventional nanomedicines based on enhanced permeability and retention (EPR) effect have yielded limited delivery/therapeutic efficiency, due mainly to the heterogeneity of the solid tumor. Leukocytes, which could intrinsically migrate across the vessel wall and crawl through tissue interstitium in a self-deformable manner, have currently emerged as an alternative drug delivery vehicle. In this review, we start with the intrinsic properties of leukocytes (e.g., extravasation and crawling inside tumor), focusing on unveiling the conceptual rationality of leveraging leukocytes as EPR-independent delivery vehicles. Then we discussed various cargoes-loading/unloading strategies for leukocyte-based vehicles as well as their promising applications. This review aims to serve as an up-to-date compilation, which might provide inspiration for scientists in the field of drug delivery.
Collapse
|
17
|
Xu X, Li T, Jin K. Bioinspired and Biomimetic Nanomedicines for Targeted Cancer Therapy. Pharmaceutics 2022; 14:1109. [PMID: 35631695 PMCID: PMC9147382 DOI: 10.3390/pharmaceutics14051109] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Undesirable side effects and multidrug resistance are the major obstacles in conventional chemotherapy towards cancers. Nanomedicines provide alternative strategies for tumor-targeted therapy due to their inherent properties, such as nanoscale size and tunable surface features. However, the applications of nanomedicines are hampered in vivo due to intrinsic disadvantages, such as poor abilities to cross biological barriers and unexpected off-target effects. Fortunately, biomimetic nanomedicines are emerging as promising therapeutics to maximize anti-tumor efficacy with minimal adverse effects due to their good biocompatibility and high accumulation abilities. These bioengineered agents incorporate both the physicochemical properties of diverse functional materials and the advantages of biological materials to achieve desired purposes, such as prolonged circulation time, specific targeting of tumor cells, and immune modulation. Among biological materials, mammalian cells (such as red blood cells, macrophages, monocytes, and neutrophils) and pathogens (such as viruses, bacteria, and fungi) are the functional components most often used to confer synthetic nanoparticles with the complex functionalities necessary for effective nano-biointeractions. In this review, we focus on recent advances in the development of bioinspired and biomimetic nanomedicines (such as mammalian cell-based drug delivery systems and pathogen-based nanoparticles) for targeted cancer therapy. We also discuss the biological influences and limitations of synthetic materials on the therapeutic effects and targeted efficacies of various nanomedicines.
Collapse
Affiliation(s)
- Xiaoqiu Xu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; (X.X.); (T.L.)
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tong Li
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; (X.X.); (T.L.)
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ke Jin
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; (X.X.); (T.L.)
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Oncolytic peptide nanomachine circumvents chemo resistance of renal cell carcinoma. Biomaterials 2022; 284:121488. [DOI: 10.1016/j.biomaterials.2022.121488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
|
19
|
Tian Z, Zhao J, Zhao S, Li H, Guo Z, Liang Z, Li J, Qu Y, Chen D, Liu L. Phytic acid-modified CeO 2 as Ca 2+ inhibitor for a security reversal of tumor drug resistance. NANO RESEARCH 2022; 15:4334-4343. [PMID: 35126877 PMCID: PMC8800414 DOI: 10.1007/s12274-022-4069-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 05/05/2023]
Abstract
Ca2+ plays critical roles in the development of diseases, whereas existing various Ca regulation methods have been greatly restricted in their clinical applications due to their high toxicity and inefficiency. To solve this issue, with the help of Ca overexpressed tumor drug resistance model, the phytic acid (PA)-modified CeO2 nano-inhibitors have been rationally designed as an unprecedentedly safe and efficient Ca2+ inhibitor to successfully reverse tumor drug resistance through Ca2+ negative regulation strategy. Using doxorubicin (Dox) as a model chemotherapeutic drug, the Ca2+ nano-inhibitors efficiently deprived intracellular excessive free Ca2+, suppressed P-glycoprotein (P-gp) expression and significantly enhanced intracellular drug accumulation in Dox-resistant tumor cells. This Ca2+ negative regulation strategy improved the intratumoral Dox concentration by a factor of 12.4 and nearly eradicated tumors without obvious adverse effects. Besides, nanocerias as pH-regulated nanozyme greatly alleviated the adverse effects of chemotherapeutic drug on normal cells/organs and substantially improved survivals of mice. We anticipate that this safe and effective Ca2+ negative regulation strategy has potentials to conquer the pitfalls of traditional Ca inhibitors, improve therapeutic efficacy of common chemotherapeutic drugs and serves as a facile and effective treatment platform of other Ca2+ associated diseases. Electronic Supplementary Material Supplementary material (further details of the XRD pattern of CeO2, TEM images, XPS spectra, cellular uptake study, cytotoxicity data, apoptosis study, biodistribution, and biosecurity of nanocerias in vivo, etc.) is available in the online version of this article at 10.1007/s12274-022-4069-0.
Collapse
Affiliation(s)
- Zhimin Tian
- Department Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Junlong Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, 710032 China
| | - Shoujie Zhao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710038 China
| | - Huicheng Li
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fourth Military Medical University, Xi’an, 710032 China
| | - Zhixiong Guo
- Department Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Zechen Liang
- Department Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Jiayuan Li
- Department Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Yongquan Qu
- Department Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Lei Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, 400042 China
| |
Collapse
|
20
|
Liao Z, Tu L, Li X, Liang XJ, Huo S. Virus-inspired nanosystems for drug delivery. NANOSCALE 2021; 13:18912-18924. [PMID: 34757354 DOI: 10.1039/d1nr05872j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With over millions of years of evolution, viruses can infect cells efficiently by utilizing their unique structures. Similarly, the drug delivery process is designed to imitate the viral infection stages for maximizing the therapeutic effect. From drug administration to therapeutic effect, nanocarriers must evade the host's immune system, break through multiple barriers, enter the cell, and release their payload by endosomal escape or nuclear targeting. Inspired by the virus infection process, a number of virus-like nanosystems have been designed and constructed for drug delivery. This review aims to present a comprehensive summary of the current understanding of the drug delivery process inspired by the viral infection stages. The most recent construction of virus-inspired nanosystems (VINs) for drug delivery is sorted, emphasizing their novelty and design principles, as well as highlighting the mechanism of these nanosystems for overcoming each biological barrier during drug delivery. A perspective on the VINs for therapeutic applications is provided in the end.
Collapse
Affiliation(s)
- Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Li Tu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xuejian Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xing-Jie Liang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
21
|
Zheng X, Pan D, Chen X, Wu L, Chen M, Wang W, Zhang H, Gong Q, Gu Z, Luo K. Self-Stabilized Supramolecular Assemblies Constructed from PEGylated Dendritic Peptide Conjugate for Augmenting Tumor Retention and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102741. [PMID: 34623034 PMCID: PMC8596125 DOI: 10.1002/advs.202102741] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/22/2021] [Indexed: 02/05/2023]
Abstract
Supramolecular self-assemblies of dendritic peptides with well-organized nanostructures have great potential as multifunctional biomaterials, yet the complex self-assembly mechanism hampers their wide exploration. Herein, a self-stabilized supramolecular assembly (SSA) constructed from a PEGylated dendritic peptide conjugate (PEG-dendritic peptide-pyropheophorbide a, PDPP), for augmenting tumor retention and therapy, is reported. The supramolecular self-assembly process of PDPP is concentration-dependent with multiple morphologies. By tailoring the concentration of PDPP, the supramolecular self-assembly is driven by noncovalent interactions to form a variety of SSAs (unimolecular micelles, oligomeric aggregates, and multi-aggregates) with different sizes from nanometer to micrometer. SSAs at 100 nm with a spherical shape possess extremely high stability to prolong blood circulation about 4.8-fold higher than pyropheophorbide a (Ppa), and enhance tumor retention about eight-fold higher than Ppa on day 5 after injection, which leads to greatly boosting the in vivo photodynamic therapeutic efficiency. RNA-seq demonstrates that these effects of SSAs are related to the inhibition of MET-PI3K-Akt pathway. Overall, the supramolecular self-assembly mechanism for the synthetic PEGylated dendritic peptide conjugate sheds new light on the development of supramolecular assemblies for tumor therapy.
Collapse
Affiliation(s)
- Xiuli Zheng
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
- National Engineering Research Center for BiomaterialsSichuan UniversityChengdu610064China
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
| | - Xiaoting Chen
- Animal Experimental Center of West China HospitalCore Facility of West China HospitalSichuan UniversityChengdu610041China
| | - Lei Wu
- Animal Experimental Center of West China HospitalCore Facility of West China HospitalSichuan UniversityChengdu610041China
| | - Miao Chen
- West China School of MedicineWest China College of StomatologySichuan UniversityChengdu610041China
| | - Wenjia Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
| | - Hu Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
- Amgen Bioprocessing CentreKeck Graduate InstituteClaremontCA91711USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceResearch Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
- National Engineering Research Center for BiomaterialsSichuan UniversityChengdu610064China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengdu610041China
- National Engineering Research Center for BiomaterialsSichuan UniversityChengdu610064China
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceResearch Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
| |
Collapse
|
22
|
Shi Y, Feng X, Lin L, Wang J, Chi J, Wu B, Zhou G, Yu F, Xu Q, Liu D, Quan G, Lu C, Pan X, Cai J, Wu C. Virus-inspired surface-nanoengineered antimicrobial liposome: A potential system to simultaneously achieve high activity and selectivity. Bioact Mater 2021; 6:3207-3217. [PMID: 33723524 PMCID: PMC7947718 DOI: 10.1016/j.bioactmat.2021.02.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/11/2021] [Accepted: 02/28/2021] [Indexed: 01/06/2023] Open
Abstract
Enveloped viruses such as SARS-CoV-2 frequently have a highly infectious nature and are considered effective natural delivery systems exhibiting high efficiency and specificity. Since simultaneously enhancing the activity and selectivity of lipopeptides is a seemingly unsolvable problem for conventional chemistry and pharmaceutical approaches, we present a biomimetic strategy to construct lipopeptide-based mimics of viral architectures and infections to enhance their antimicrobial efficacy while avoiding side effects. Herein, a surface-nanoengineered antimicrobial liposome (SNAL) is developed with the morphological features of enveloped viruses, including a moderate size range, lipid-based membrane structure, and highly lipopeptide-enriched bilayer surface. The SNAL possesses virus-like infection to bacterial cells, which can mediate high-efficiency and high-selectivity bacteria binding, rapidly attack and invade bacteria via plasma membrane fusion pathway, and induce a local "burst" release of lipopeptide to produce irreversible damage of cell membrane. Remarkably, viral mimics are effective against multiple pathogens with low minimum inhibitory concentrations (1.6-6.3 μg mL-1), high bactericidal efficiency of >99% within 2 h, >10-fold enhanced selectivity over free lipopeptide, 99.8% reduction in skin MRSA load after a single treatment, and negligible toxicity. This bioinspired design has significant potential to enhance the therapeutic efficacy of lipopeptides and may create new opportunities for designing next-generation antimicrobials.
Collapse
Affiliation(s)
- Yin Shi
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 511443, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Xiaoqian Feng
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Liming Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Jing Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Jiaying Chi
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Biyuan Wu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Guilin Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Feiyuan Yu
- Medical College, Shantou University, Shantou, Guangdong, 15041, China
| | - Qian Xu
- Medical College, Shantou University, Shantou, Guangdong, 15041, China
| | - Daojun Liu
- Medical College, Shantou University, Shantou, Guangdong, 15041, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 511443, China
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, United States
| | - Xin Pan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, United States
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 511443, China
| |
Collapse
|
23
|
An Y, Zhang W, Liu T, Wang B, Cao H. The intratumoural microbiota in cancer: new insights from inside. Biochim Biophys Acta Rev Cancer 2021; 1876:188626. [PMID: 34520804 DOI: 10.1016/j.bbcan.2021.188626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
The human body harbors a vast array of microbiota that modulates host pathophysiological processes and modifies the risk of diseases including cancer. With the advent of metagenomic sequencing studies, the intratumoural microbiota has been found as a component of the tumor microenvironment, imperceptibly affecting the tumor progression and response to current antitumor treatments. The underlying carcinogenic mechanisms of intratumoural microbiota, mainly including inducing DNA damages, activating oncogenic signaling pathways and suppressing the immune response, differ significantly in varied organs and are not fully understood. Some native or genetically engineered microbial species can specifically accumulate and replicate within tumors to initiate antitumor immunity, which will be conducive to pursue precise cancer therapies. In this review, we summarized the community characteristics and therapeutic potential of intratumoural microbiota across diverse tumor types. It may provide new insights for a better understanding of tumor biology and hint at the significance of manipulating intratumoural microbiota.
Collapse
Affiliation(s)
- Yaping An
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
24
|
Cheng F, Pan Q, Gao W, Pu Y, Luo K, He B. Reversing Chemotherapy Resistance by a Synergy between Lysosomal pH-Activated Mitochondrial Drug Delivery and Erlotinib-Mediated Drug Efflux Inhibition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29257-29268. [PMID: 34130450 DOI: 10.1021/acsami.1c03196] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mitochondrial drug delivery has attracted increasing attention in various mitochondrial dysfunction-associated disorders such as cancer owing to the important role of energy production. Herein, we report a lysosomal pH-activated mitochondrial-targeting polymer nanoparticle to overcome drug resistance by a synergy between mitochondrial delivery of doxorubicin (DOX, an anticancer drug) and erlotinib-mediated inhibition of drug efflux. The obtained nanoparticles, DE-NPs could maintain negative charge and have long blood circulation while undergoing charge reversal at lysosomal pH after internalization by cancer cells. Thereafter, the acidity-activated polycationic and hydrophobic polypeptide domains boost lysosomal escape and mitochondrial-targeting drug delivery, leading to mitochondrial dysfunction, ATP suppression, and cell apoptosis. Moreover, the suppressed ATP supply and erlotinib enabled dual inhibition of drug efflux by DOX-resistant MCF-7/ADR cells, leading to significantly augmented intracellular DOX accumulation and a synergistic anticancer effect with a 17-fold decrease of IC50 relative to DOX. In vivo antitumor study demonstrates that DE-NPs efficiently suppressed the tumor burden in MCF-7/ADR tumor-bearing mice and led to negligible toxicity. This work establishes that a combination of mitochondrial drug delivery and drug efflux inhibition could be a promising strategy for combating multidrug resistance.
Collapse
Affiliation(s)
- Furong Cheng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Center for Translational Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
- Department of Pharmaceutics, College of Pharmacy, Virginia Commonwealth University, Richmond 23219, Virginia, United States
| | - Qingqing Pan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Kui Luo
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
25
|
Wang Y, Meng HM, Li Z. Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy. NANOSCALE 2021; 13:8751-8772. [PMID: 33973616 DOI: 10.1039/d1nr00323b] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of robust materials for treating diseases through non-invasive photothermal therapy (PTT) has attracted increasing attention in recent years. Among various types of nanomaterials, inorganic nanomaterials with strong absorption in the near-infrared (NIR) window can be employed as high-efficiency photothermal agents to treat cancer and bacterial infections. In addition, inorganic nanomaterials can be easily combined with other drugs or chemical reagents to construct multifunctional nanomaterials to cascade stimulation responses, enhance therapeutic effects, and perform precise medical treatments. In this review, focusing on the latest developments of inorganic nanomaterials in photothermal therapy, we firstly introduced the light-to-heat conversion mechanism of inorganic nanomaterials. Secondly, we summarized the application of common inorganic nanomaterials, such as metallic nanoparticles, transition metal oxide nanoparticles and two dimensional (2D) nanosheets. In addition, the strategy of developing multifunctional nano-platforms with excellent biocompatibility as well as good targeted capability was also expounded. Finally, challenges and new perspectives for designing effective inorganic nanomaterial-based nanosystems for photothermal assisted therapy were also discussed.
Collapse
Affiliation(s)
- Yufei Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Hong-Min Meng
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
26
|
Sun X, Yang P, Wang S, Xing H. Multifunctional zinc phthalocyanine‐phenolic resin (
ZnPc‐PFR
)@
MSN
nanocomposite based fluorescent imaging, photothermal therapy, and
pH
‐sensitive drug release. J Appl Polym Sci 2021. [DOI: 10.1002/app.50854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiangfei Sun
- School of Chemical Engineering Anhui University of Science and Technology Huainan Anhui China
| | - Ping Yang
- School of Chemical Engineering Anhui University of Science and Technology Huainan Anhui China
| | - Shaohua Wang
- School of Chemical Engineering Anhui University of Science and Technology Huainan Anhui China
| | - Honglong Xing
- School of Chemical Engineering Anhui University of Science and Technology Huainan Anhui China
| |
Collapse
|
27
|
Li N, Duan Z, Wang L, Guo C, Zhang H, Gu Z, Gong Q, Luo K. An Amphiphilic PEGylated Peptide Dendron-Gemcitabine Prodrug-Based Nanoagent for Cancer Therapy. Macromol Rapid Commun 2021; 42:e2100111. [PMID: 33871122 DOI: 10.1002/marc.202100111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Indexed: 02/05/2023]
Abstract
An amphiphilic peptide dendrimer conjugated with gemcitabine (GEM), PEGylated dendron-Gly-Phe-Leu-Gly-GEM (PEGylated dendron-GFLG-GEM), is developed as a nano-prodrug for breast cancer therapy. The self-assembled behavior is observed under a transmission electron microscopy and dynamic light scattering. The negatively charged surface and hydrodynamic size of the amphiphilic nanosized prodrug supported that the prodrug can maintain the stability of GEM during circulation and accumulate in the tumor tissue. Drug release assays are conducted to monitor the release of GEM from this nanodrug delivery system in response to the tumor microenvironment, and these assays confirm that GEM released from the nanocarrier is identical to free GEM. The GEM prodrug can prevent proliferation of tumor cells. The therapeutic effect against breast cancer is systematically investigated using an in vivo animal model. Immunohistochemical results are aligned with the significantly enhanced anticancer efficacy of GEM released from the prodrug. This self-assembled amphiphilic drug delivery nanocarrier may broaden the application for GEM and other anticancer agents for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Ning Li
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China.,School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhenyu Duan
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China
| | - Lili Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Chunhua Guo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China.,Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Zhongwei Gu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China
| | - Qiyong Gong
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China
| | - Kui Luo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China
| |
Collapse
|
28
|
Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Chemotherapy typically involves the use of specific chemodrugs to inhibit the proliferation of cancer cells, but the frequent emergence of a variety of multidrug-resistant cancer cells poses a tremendous threat to our combat against cancer. The fundamental causes of multidrug resistance (MDR) have been studied for decades, and can be generally classified into two types: one is associated with the activation of diverse drug efflux pumps, which are responsible for translocating intracellular drug molecules out of the cells; the other is linked with some non-efflux pump-related mechanisms, such as antiapoptotic defense, enhanced DNA repair ability, and powerful antioxidant systems. To overcome MDR, intense efforts have been made to develop synergistic therapeutic strategies by introducing MDR inhibitors or combining chemotherapy with other therapeutic modalities, such as phototherapy, gene therapy, and gas therapy, in the hope that the drug-resistant cells can be sensitized toward chemotherapeutics. In particular, nanotechnology-based drug delivery platforms have shown the potential to integrate multiple therapeutic agents into one system. In this review, the focus was on the recent development of nanostrategies aiming to enhance the efficiency of chemotherapy and overcome the MDR of cancer in a synergistic manner. Different combinatorial strategies are introduced in detail and the advantages as well as underlying mechanisms of why these strategies can counteract MDR are discussed. This review is expected to shed new light on the design of advanced nanomedicines from the angle of materials and to deepen our understanding of MDR for the development of more effective anticancer strategies. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
29
|
Wu H, Zhong D, Zhang Z, Wu Y, Li Y, Mao H, Luo K, Kong D, Gong Q, Gu Z. A Bacteria-Inspired Morphology Genetic Biomedical Material: Self-Propelled Artificial Microbots for Metastatic Triple Negative Breast Cancer Treatment. ACS NANO 2021; 15:4845-4860. [PMID: 33625212 DOI: 10.1021/acsnano.0c09594] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Morphology genetic biomedical materials (MGBMs), referring to fabricating materials by learning from the genetic morphologies and strategies of natural species, hold great potential for biomedical applications. Inspired by the cargo-carrying-bacterial therapy (microbots) for cancer treatment, a MGBM (artificial microbots, AMBs) was constructed. Rather than the inherent bacterial properties (cancerous chemotaxis, tumor invasion, cytotoxicity), AMBs also possessed ingenious nitric oxide (NO) generation strategy. Mimicking the bacterial construction, the hyaluronic acid (HA) polysaccharide was induced as a coating capsule of AMBs to achieve long circulation in blood and specific tissue preference (tumor tropism). Covered under the capsule-like polysaccharide was the combinatorial agent, the self-assembly constructed by the amphiphilic dendrons with abundant l-arginine residues peripherally (as endogenous NO donor) and hydrophobic chemotherapeutic drugs at the core stacking on the surface of SWNTs (the photothermal agent) for a robust chemo-photothermal therapy (chemo-PTT) and the elicited immune therapy. Subsequently, the classic inducible nitric oxide synthase (iNOS) pathway aroused by immune response was revolutionarily utilized to oxidize the l-arginine substrates for NO production, the process for which could also be promoted by the high reactive oxygen species level generated by chemo-PTT. The NO generated by AMBs was intended to regulate vasodilation and cause a dramatic invasion (as the microbots) to disperse the therapeutic agents throughout the solid tumor for a much more enhanced curative effect, which we defined as "self-propulsion". The self-propelled AMBs exhibiting impressive primary tumor ablation, as well as the distant metastasis regression to conquer the metastatic triple negative breast cancer, provided pioneering potential therapeutic opportunities, and enlightened broad prospects in biomedical application.
Collapse
Affiliation(s)
- Huayu Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dan Zhong
- Huaxi MR Research Center (HMRRC) Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University, Chengdu 610041, P. R. China
| | - Zhijun Zhang
- Huaxi MR Research Center (HMRRC) Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University, Chengdu 610041, P. R. China
| | - Yahui Wu
- Huaxi MR Research Center (HMRRC) Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University, Chengdu 610041, P. R. China
| | - Yunkun Li
- Huaxi MR Research Center (HMRRC) Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University, Chengdu 610041, P. R. China
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC) Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University, Chengdu 610041, P. R. China
| | - Deling Kong
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, P.R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University, Chengdu 610041, P. R. China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC) Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital Sichuan University, Chengdu 610041, P. R. China
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
30
|
Wu H, Xing H, Wu MC, Shen F, Chen Y, Yang T. Extracellular-vesicles delivered tumor-specific sequential nanocatalysts can be used for MRI-informed nanocatalytic Therapy of hepatocellular carcinoma. Am J Cancer Res 2021; 11:64-78. [PMID: 33391461 PMCID: PMC7681081 DOI: 10.7150/thno.46124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Conventional therapeutic strategies for advanced hepatocellular carcinoma (HCC) remains a great challenge, therefore the alternative therapeutic modality for specific and efficient HCC suppression is urgently needed. Methods: In this work, HCC-derived extracellular vesicles (EVs) were applied as surface nanocarrier for sequential nanocatalysts GOD-ESIONs@EVs (GE@EVs) of tumor-specific and cascade nanocatalytic therapy against HCC. By enhancing the intracellular endocytosis through arginine-glycine-aspartic acid (RGD)-targeting effect and membrane fusion, sequential nanocatalysts led to more efficient treatment in the HCC tumor region in a shorter period of time. Results: Through glucose consumption as catalyzed by the loaded glucose oxidase (GOD) to overproduce hydrogen peroxide (H2O2), highly toxic hydroxyl radicals were generated by Fenton-like reaction as catalyzed by ESIONs, which was achieved under the mildly acidic tumor microenvironment, enabling the stimuli of the apoptosis and necrosis of HCC cells. This strategy demonstrated the high active-targeting capability of GE@EVs into HCC, achieving highly efficient tumor suppression both in vitro and in vivo. In addition, the as-synthesized nanoreactor could act as a desirable nanoscale contrast agent for magnetic resonance imaging, which exhibited desirable imaging capability during the sequential nanocatalytic treatment. Conclusion: This application of surface-engineering EVs not only proves the high-performance catalytic therapeutic modality of GE@EVs for HCC, but also broadens the versatile bio-applications of EVs.
Collapse
|
31
|
Wang S, Yang P, Sun X, Xing H, Shi J. Facile synthesis of novel fluorescent phenol formaldehyde resin nanospheres for drug release. J Appl Polym Sci 2020. [DOI: 10.1002/app.50416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shaohua Wang
- School of Chemical Engineering Anhui University of Science and Technology Huainan P. R. China
| | - Ping Yang
- School of Chemical Engineering Anhui University of Science and Technology Huainan P. R. China
- Institute of Environment‐friendly Materials and Occupational Health Anhui University of Science and Technology Wuhu P. R. China
| | - Xiangfei Sun
- School of Chemical Engineering Anhui University of Science and Technology Huainan P. R. China
| | - Honglong Xing
- School of Chemical Engineering Anhui University of Science and Technology Huainan P. R. China
| | - Jianjun Shi
- School of Chemical Engineering Anhui University of Science and Technology Huainan P. R. China
- Institute of Environment‐friendly Materials and Occupational Health Anhui University of Science and Technology Wuhu P. R. China
| |
Collapse
|
32
|
Gao X, Ding J, Long Q, Zhan C. Virus-mimetic systems for cancer diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1692. [PMID: 33354937 DOI: 10.1002/wnan.1692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023]
Abstract
Over past decades, various strategies have been developed to enhance the delivery efficiency of therapeutics and imaging agents to tumor tissues. However, the therapeutic outcome of tumors to date have not been significantly improved, which can be partly attributed to the weak targeting ability, fast elimination, and low stability of conventional delivery systems. Viruses are the most efficient agents for gene transfer, serving as a valuable source of inspiration for designing nanoparticle-based delivery systems. Based on the properties of viruses, including well-defined geometry, precise composition, easy modification, stable construction, and specific infection, researchers attempt to design biocompatible delivery vectors by mimicking virus assembly and using the vector system to selectively concentrate drugs or imaging probes in tumors with mitigated toxicity and improved efficacy. In this review, we introduce common viruses features and provide an overview of various virus-mimetic strategies for cancer therapy and diagnosis. The challenges faced by virus-mimetic systems are also discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Xihui Gao
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Junqiang Ding
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai, China
| | - Qianqian Long
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Changyou Zhan
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Zhang X, Wu Y, Li Z, Wang W, Wu Y, Pan D, Gu Z, Sheng R, Tomás H, Zhang H, Rodrigues J, Gong Q, Luo K. Glycodendron/pyropheophorbide-a (Ppa)-functionalized hyaluronic acid as a nanosystem for tumor photodynamic therapy. Carbohydr Polym 2020; 247:116749. [PMID: 32829865 DOI: 10.1016/j.carbpol.2020.116749] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023]
Abstract
To enhance the drug delivery efficiency of hyaluronic acid (HA), we designed and prepared glycodendron and pyropheophorbide-a (Ppa)-functionalized HA (HA-Ppa-Dendron) as a nanosystem for cancer photodynamic therapy. Linear Ppa-modified HA (HA-Ppa) was also prepared as a control. Cellular uptake of both polymers by MDA-MB-231 cells led to mitochondrial dysfunction and generation of reactive oxygen species under the irradiation of a laser. Compared to the linear polymer, HA-Ppa-Dendron had higher molecular weight, a more compact nanoscale particle size, and a dendritic structure, resulting in a much longer blood circulation time and higher tumor accumulation. HA-Ppa-Dendron outperformed HA-Ppa in inhibiting cell growth, with 60 % of tumors was eradicated under laser irradiation. Tumor growth inhibition (TGI) up to 99.2 % was achieved from HA-Ppa-Dendron, which was much higher than that of HA-Ppa (50.6 %). Therefore, glycodendron-functionalized HAs by integration of HA and dendritic polymers may act as efficient anti-cancer nanomedicine.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; College of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yahui Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenjia Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaping Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruilong Sheng
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Portugal
| | - Helena Tomás
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Portugal
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, CA 91711, USA
| | - João Rodrigues
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Portugal
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
34
|
Zhong R, Wang R, Hou X, Song L, Zhang Y. Polydopamine-doped virus-like structured nanoparticles for photoacoustic imaging guided synergistic chemo-/photothermal therapy. RSC Adv 2020; 10:18016-18024. [PMID: 35517193 PMCID: PMC9059141 DOI: 10.1039/d0ra02915g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022] Open
Abstract
The therapeutic diagnosis effect of cancer commonly depends on the cellular uptake efficiency of nanomaterials. However, the morphology of nanomaterials significantly affects cellular uptake capability. Herein, we designed a polydopamine-doped virus-like structured nanoparticle (GNR@HPMO@PVMSN) composed of a gold nanorod (GNR) core, hollow periodic mesoporous organosilica (HPMO) shell and polydopamine-doped virus-like mesoporous silica nanoparticle (PVMSN) outer shell. Compared with conventional gold nanorod@hollow periodic mesoporous organosilica core–shell nanoparticles (GNR@HPMO), GNR@HPMO@PVMSN with its virus-like structure was proved to enhance the efficiency of cellular uptake. GNR@HPMO@PVMSN with the virtues of high photothermal conversion efficiency and good photoacoustic imaging (PAI) ability was expected to be a promising nanotheranostic agent for imaging guided cancer treatment. The experiments in vitro and in vivo proved that GNR@HPMO@PVMSN had good biocompatibility as well as photothermal conversion ability. In addition, DOX loading and pH-/NIR-response DOX release abilities of GNR@HPMO@PVMSN were also verified in vitro. Therefore, the GNR@HPMO@PVMSN offers a promising strategy for PAI directed synergistic chemo-/photothermal therapy, which improves the therapeutic effect of the nanomaterial on tumors. This work explores the effects of rough surfaces on cellular uptake and provides a versatile theranostic platform for biomedical applications. The therapeutic diagnosis effect of cancer commonly depends on the cellular uptake efficiency of nanomaterials.![]()
Collapse
Affiliation(s)
- Rong Zhong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Ruoping Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Xuemei Hou
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Liang Song
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| |
Collapse
|
35
|
Li Z, Shan X, Chen Z, Gao N, Zeng W, Zeng X, Mei L. Applications of Surface Modification Technologies in Nanomedicine for Deep Tumor Penetration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2002589. [PMID: 33437580 PMCID: PMC7788636 DOI: 10.1002/advs.202002589] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/03/2020] [Indexed: 05/04/2023]
Abstract
The impermeable barrier of solid tumors due to the complexity of their components limits the treatment effect of nanomedicine and hinders its clinical translation. Several methods are available to increase the penetrability of nanomedicine, yet they are too complex to be effective, operational, or practical. Surface modification employs the characteristics of direct contact between multiphase surfaces to achieve the most direct and efficient penetration of solid tumors. Furthermore, their simple operation makes their use feasible. In this review, the latest surface modification strategies for the penetration of nanomedicine into solid tumors are summarized and classified into "bulldozer strategies" and "mouse strategies." Additionally, the evaluation methods, existing problems, and the development prospects of these technologies are discussed.
Collapse
Affiliation(s)
- Zimu Li
- Institute of PharmaceuticsSchool of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Xiaoting Shan
- Institute of PharmaceuticsSchool of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Zhidong Chen
- Institute of PharmaceuticsSchool of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Nansha Gao
- Institute of PharmaceuticsSchool of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Wenfeng Zeng
- Institute of PharmaceuticsSchool of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Xiaowei Zeng
- Institute of PharmaceuticsSchool of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
| | - Lin Mei
- Institute of PharmaceuticsSchool of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhen518107China
- Tianjin Key Laboratory of Biomedical MaterialsKey Laboratory of Biomaterials and Nanotechnology for Cancer ImmunotherapyInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| |
Collapse
|