1
|
Li S, Zhang H, Zhong J, Zhang B, Zhang K, Zhang Y, Li L, Yang Y, Wu Y, Hoogenboom R. X-ray-Induced Photodegradation of Hydrogels by the Incorporation of X-ray-Activated Long Persistent Luminescent Nanoparticles. J Am Chem Soc 2025. [PMID: 40323691 DOI: 10.1021/jacs.4c14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The development of on-demand degradable hydrogels remains an important challenge. Even though photodegradable hydrogels offer spatiotemporal control over degradation, it is difficult to use ultraviolet, visible, or near-infrared light as a tool for noninvasive triggering in vivo due to the poor tissue-penetration capacity. In contrast, X-ray irradiation can penetrate deep tissue and has virtually no penetration limitations for biological soft tissues. In this study, we propose an X-ray-photodegradation cascade system for hydrogel degradation by incorporating X-ray-activated persistent luminescence nanoparticles (X-PLNPs) into photodegradable hydrogels. A photodegradable 9,10-dialkoxyanthracene-based cross-linker was synthesized and used to prepare photodegradable hydrogels, of which the degradation behavior can be triggered by visible green light. Next, Tb3+-doped β-NaLuF4 was introduced as an X-PLNP that can convert X-rays into visible light centered at 544 nm. The afterglow can even be detected for 4 × 103 s after switching off the X-ray irradiation. The X-ray-induced green light emission was demonstrated to trigger photodegradation of the hydrogel. This proof-of-concept system for X-ray irradiation-induced on-demand hydrogel degradation was used to demonstrate X-ray-sensitive drug delivery inside a chicken breast as the in vitro tissue model. As this X-ray-induced cascade degradation of hydrogels can penetrate deep tissues, it is a promising platform for future in vivo applications requiring on-demand triggered hydrogel degradation, such as drug delivery or removal of hydrogel patches, hydrogel adhesives, or hydrogel tissue engineering scaffolds. It should, however, be noted that the hydrogel's X-ray and photoresponsiveness should be further improved to enable future in vivo use.
Collapse
Affiliation(s)
- Shanshan Li
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Hailei Zhang
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Jiaying Zhong
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Bo Zhang
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Kaiming Zhang
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, 281-S4, 9000 Gent, Belgium
| | - Yuangong Zhang
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Leipeng Li
- College of Physics Science and Technology, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Yanmin Yang
- College of Physics Science and Technology, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Yonggang Wu
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, 281-S4, 9000 Gent, Belgium
| |
Collapse
|
2
|
Yadav B, Mondal I, Kaur M, N S V, Kulkarni GU. Stretchable hierarchical metal wire networks for neuromorphic emulation of nociception and anti-nociception. MATERIALS HORIZONS 2025; 12:531-542. [PMID: 39494756 DOI: 10.1039/d4mh01208a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Among biomimetic technologies, the incorporation of sensory hardware holds exceptional utility in human-machine interfacing. In this context, devices receptive to nociception and emulating antinociception gain significance as part of pain management. Here we report, a stretchable two-terminal resistive neuromorphic device consisting of a hierarchical Ag microwire network formed using a crack templating protocol. The device demonstrates sensitivity to strain, where the application of strain induces the formation of gaps across active elements, rendering the device electrically open. Following activation by voltage pulses, the device exhibits potentiated states with finite retentions arising from filamentary growth across these gaps due to field migration. Remarkably, the strain-induced functioning alongside controllable gaps enables achieving user-controlled neuromorphic properties, desired for self-adaptive intelligent systems. Interestingly, in the neuromorphic potentiated state, the response to strain is enhanced by ∼106 due to higher sensitivities associated with nanofilaments. The device emulates basic neuromorphic functionalities such as threshold switching, and short-term (STP) and long-term potentiations (LTP). Furthermore, the sensitivity has been exploited in mimicking nociception through strain-induced changes in the potentiated state. Interestingly, repetition of the strain stimulus leads to endurance making the device restore its conductance, thereby emulating adaptation and habituation representing the antinociceptive behavior.
Collapse
Affiliation(s)
- Bhupesh Yadav
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
| | - Indrajit Mondal
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
| | - Manpreet Kaur
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
| | - Vidhyadhiraja N S
- Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Giridhar U Kulkarni
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
| |
Collapse
|
3
|
Graham AJ, Partipilo G, Dundas CM, Miniel Mahfoud IE, Halwachs KN, Holwerda AJ, Simmons TR, FitzSimons TM, Coleman SM, Rinehart R, Chiu D, Tyndall AE, Sajbel KC, Rosales AM, Keitz BK. Transcriptional regulation of living materials via extracellular electron transfer. Nat Chem Biol 2024; 20:1329-1340. [PMID: 38783133 DOI: 10.1038/s41589-024-01628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Engineered living materials combine the advantages of biological and synthetic systems by leveraging genetic and metabolic programming to control material-wide properties. Here, we demonstrate that extracellular electron transfer (EET), a microbial respiration process, can serve as a tunable bridge between live cell metabolism and synthetic material properties. In this system, EET flux from Shewanella oneidensis to a copper catalyst controls hydrogel cross-linking via two distinct chemistries to form living synthetic polymer networks. We first demonstrate that synthetic biology-inspired design rules derived from fluorescence parameterization can be applied toward EET-based regulation of polymer network mechanics. We then program transcriptional Boolean logic gates to govern EET gene expression, which enables design of computational polymer networks that mechanically respond to combinations of molecular inputs. Finally, we control fibroblast morphology using EET as a bridge for programmed material properties. Our results demonstrate how rational genetic circuit design can emulate physiological behavior in engineered living materials.
Collapse
Affiliation(s)
- Austin J Graham
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Gina Partipilo
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Christopher M Dundas
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Ismar E Miniel Mahfoud
- Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, TX, USA
| | - Kathleen N Halwachs
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Alexis J Holwerda
- Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, TX, USA
| | - Trevor R Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Thomas M FitzSimons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Sarah M Coleman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Rebecca Rinehart
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Darian Chiu
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Avery E Tyndall
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Kenneth C Sajbel
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Adrianne M Rosales
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Benjamin K Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
4
|
Liu X, Tan H, Stråka E, Hu X, Chen M, van Dijken S, Scacchi A, Sammalkorpi M, Ikkala O, Peng B. Trainable bioinspired magnetic sensitivity adaptation using ferromagnetic colloidal assemblies. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101923. [PMID: 38680545 PMCID: PMC11043831 DOI: 10.1016/j.xcrp.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024]
Abstract
Nature has already suggested bioinspired functions. Beyond them, adaptive and trainable functions could be the inspiration for novel responsive soft matter beyond the state-of-the-art classic static bioinspired, stimulus-responsive, and shape-memory materials. Here, we describe magnetic assembly/disassembly of electrically conducting soft ferromagnetic nickel colloidal particles into surface topographical pillars for bistable electrical trainable memories. They allow magnetic sensing with adaptable and rescalable sensitivity ranges, enabled by bistable memories and kinetic concepts inspired by biological sensory adaptations. Based on the soft ferromagnetism of the nanogranular composition and the resulting rough particle surfaces prepared via a solvothermal synthesis, triggerable structural memory is achieved by the magnetic field-driven particle assembly and disassembly, promoted by interparticle jamming. Electrical conversion from current to frequency for electrical spikes facilitates rescalable and trainable frequency-based sensitivity on magnetic fields. This work suggests an avenue for designing trainable and adaptable life-inspired materials, for example, for soft robotics and interactive autonomous devices.
Collapse
Affiliation(s)
- Xianhu Liu
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Hongwei Tan
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Emil Stråka
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Xichen Hu
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Min Chen
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China
| | - Sebastiaan van Dijken
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Alberto Scacchi
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Bo Peng
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Wang W, Wang Y, Yin F, Niu H, Shin YK, Li Y, Kim ES, Kim NY. Tailoring Classical Conditioning Behavior in TiO 2 Nanowires: ZnO QDs-Based Optoelectronic Memristors for Neuromorphic Hardware. NANO-MICRO LETTERS 2024; 16:133. [PMID: 38411720 PMCID: PMC10899558 DOI: 10.1007/s40820-024-01338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/28/2023] [Indexed: 02/28/2024]
Abstract
Neuromorphic hardware equipped with associative learning capabilities presents fascinating applications in the next generation of artificial intelligence. However, research into synaptic devices exhibiting complex associative learning behaviors is still nascent. Here, an optoelectronic memristor based on Ag/TiO2 Nanowires: ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors. Effective implementation of synaptic behaviors, including long and short-term plasticity, and learning-forgetting-relearning behaviors, were achieved in the device through the application of light and electrical stimuli. Leveraging the optoelectronic co-modulated characteristics, a simulation of neuromorphic computing was conducted, resulting in a handwriting digit recognition accuracy of 88.9%. Furthermore, a 3 × 7 memristor array was constructed, confirming its application in artificial visual memory. Most importantly, complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli, respectively. After training through associative pairs, reflexes could be triggered solely using light stimuli. Comprehensively, under specific optoelectronic signal applications, the four features of classical conditioning, namely acquisition, extinction, recovery, and generalization, were elegantly emulated. This work provides an optoelectronic memristor with associative behavior capabilities, offering a pathway for advancing brain-machine interfaces, autonomous robots, and machine self-learning in the future.
Collapse
Affiliation(s)
- Wenxiao Wang
- School of Information Science and Engineering, University of Jinan, Jinan, 250022, People's Republic of China
- RFIC Centre, NDAC Centre, Kwangwoon University, Nowon-gu, Seoul, 139-701, South Korea
- Department of Electronics Engineering, Kwangwoon University, Nowon-Gu, Seoul, 139-701, South Korea
| | - Yaqi Wang
- School of Information Science and Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Feifei Yin
- RFIC Centre, NDAC Centre, Kwangwoon University, Nowon-gu, Seoul, 139-701, South Korea
- Department of Electronics Engineering, Kwangwoon University, Nowon-Gu, Seoul, 139-701, South Korea
| | - Hongsen Niu
- RFIC Centre, NDAC Centre, Kwangwoon University, Nowon-gu, Seoul, 139-701, South Korea
- Department of Electronics Engineering, Kwangwoon University, Nowon-Gu, Seoul, 139-701, South Korea
| | - Young-Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yang Li
- School of Information Science and Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
- School of Microelectronics, Shandong University, Jinan, 250101, People's Republic of China.
| | - Eun-Seong Kim
- RFIC Centre, NDAC Centre, Kwangwoon University, Nowon-gu, Seoul, 139-701, South Korea.
- Department of Electronics Engineering, Kwangwoon University, Nowon-Gu, Seoul, 139-701, South Korea.
| | - Nam-Young Kim
- RFIC Centre, NDAC Centre, Kwangwoon University, Nowon-gu, Seoul, 139-701, South Korea.
- Department of Electronics Engineering, Kwangwoon University, Nowon-Gu, Seoul, 139-701, South Korea.
| |
Collapse
|
6
|
Hu S, Fang Y, Liang C, Turunen M, Ikkala O, Zhang H. Thermally trainable dual network hydrogels. Nat Commun 2023; 14:3717. [PMID: 37349296 DOI: 10.1038/s41467-023-39446-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Inspired by biological systems, trainable responsive materials have received burgeoning research interests for future adaptive and intelligent material systems. However, the trainable materials to date typically cannot perform active work, and the training allows only one direction of functionality change. Here, we demonstrate thermally trainable hydrogel systems consisting of two thermoresponsive polymers, where the volumetric response of the system upon phase transitions enhances or decreases through a training process above certain threshold temperature. Positive or negative training of the thermally induced deformations can be achieved, depending on the network design. Importantly, softening, stiffening, or toughening of the hydrogel can be achieved by the training process. We demonstrate trainable hydrogel actuators capable of performing increased active work or implementing an initially impossible task. The reported dual network hydrogels provide a new training strategy that can be leveraged for bio-inspired soft systems such as adaptive artificial muscles or soft robotics.
Collapse
Affiliation(s)
- Shanming Hu
- Department of Applied Physics, Aalto University, P.O. Box 15100, Espoo, FI 02150, Finland
| | - Yuhuang Fang
- Department of Applied Physics, Aalto University, P.O. Box 15100, Espoo, FI 02150, Finland
| | - Chen Liang
- Department of Applied Physics, Aalto University, P.O. Box 15100, Espoo, FI 02150, Finland
| | - Matti Turunen
- Department of Applied Physics, Aalto University, P.O. Box 15100, Espoo, FI 02150, Finland
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, P.O. Box 15100, Espoo, FI 02150, Finland.
| | - Hang Zhang
- Department of Applied Physics, Aalto University, P.O. Box 15100, Espoo, FI 02150, Finland.
| |
Collapse
|
7
|
Kämäräinen T, Kadota K, Tse JY, Uchiyama H, Oguchi T, Arima-Osonoi H, Tozuka Y. Tuning the Phytoglycogen Size and Aggregate Structure with Solvent Quality: Influence of Water-Ethanol Mixtures Revealed by X-ray and Light Scattering Techniques. Biomacromolecules 2023; 24:225-237. [PMID: 36484419 DOI: 10.1021/acs.biomac.2c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phytoglycogen (PG) is a hyperbranched polysaccharide with promising properties for biomedical and pharmaceutical applications. Herein, we explore the size and structure of sweet corn PG nanoparticles and their aggregation in water-ethanol mixtures up to the ethanol mole fraction xEtOH = 0.364 in dilute concentrations using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) measurements. Between 0 ≤ xEtOH ≤ 0.129, the conformation of PG contracts gradually decreasing up to ca. 80% in hydrodynamic volume, when measured shortly after ethanol addition. For equilibrated PG dispersions, SAXS suggests a lower PG volume decrease between 19 and 67% at the corresponding xEtOH range; however, the inflection point of the DLS volume contraction coincides with the onset of reduced colloidal stability observed with SAXS. Up to xEtOH = 0.201, the water-ethanol mixtures yield labile fractal and globular aggregates, as evidenced by their partial breakup under mild ultrasonic treatment, demonstrated by the decrease in their hydrodynamic size. Between 0.235 ≤ xEtOH ≤ 0.364, PG nanoparticles form larger, more cohesive globular aggregates that are less affected by ultrasonic shear forces.
Collapse
Affiliation(s)
- Tero Kämäräinen
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka569-1094, Japan
| | - Jun Y Tse
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka569-1094, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka569-1094, Japan
| | - Toshio Oguchi
- Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi409-3898, Japan
| | - Hiroshi Arima-Osonoi
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki319-1106, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka569-1094, Japan
| |
Collapse
|
8
|
Liu X, Tan H, Rigoni C, Hartikainen T, Asghar N, van Dijken S, Timonen JVI, Peng B, Ikkala O. Magnetic field-driven particle assembly and jamming for bistable memory and response plasticity. SCIENCE ADVANCES 2022; 8:eadc9394. [PMID: 36367936 PMCID: PMC9651856 DOI: 10.1126/sciadv.adc9394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Unlike classic synthetic stimulus-responsive and shape-memory materials, which remain limited to fixed responses, the responses of living systems dynamically adapt based on the repetition, intensity, and history of stimuli. Such plasticity is ubiquitous in biology, which is profoundly linked to memory and learning. Concepts thereof are searched for rudimentary forms of "intelligent materials." Here, we show plasticity of electroconductivity in soft ferromagnetic nickel colloidal supraparticles with spiny surfaces, assembling/disassembling to granular conducting micropillars between two electrodes driven by magnetic field B. Colloidal jamming leads to conduction hysteresis and bistable memory upon increasing and subsequently decreasing B. Abrupt B changes induce larger conduction changes than gradual B-changes. Periodic B pulsing drives to frequency-dependent facilitation or suppression of conductivity compared to exposing the same constant field. The concepts allow remotely controlled switching plasticity, illustrated by a rudimentary device. More generally, we foresee adaptive functional materials inspired by response plasticity and learning.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Peng
- Corresponding author. (B.P.); (O.I.)
| | | |
Collapse
|
9
|
Pu H, Xu L. Molecularly Imprinted Nanoparticles Synthesized by Electrochemically Mediated Atom Transfer Radical Precipitation Polymerization. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hang Pu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing 400715 P. R. China
| | - Lan Xu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
10
|
Lanovaz MJ. Some Characteristics and Arguments in Favor of a Science of Machine Behavior Analysis. Perspect Behav Sci 2022; 45:399-419. [PMID: 35378843 PMCID: PMC8967563 DOI: 10.1007/s40614-022-00332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Researchers and practitioners recognize four domains of behavior analysis: radical behaviorism, the experimental analysis of behavior, applied behavior analysis, and the practice of behavior analysis. Given the omnipresence of technology in every sphere of our lives, the purpose of this conceptual article is to describe and argue in favor of a fifth domain: machine behavior analysis. Machine behavior analysis is a science that examines how machines interact with and produce relevant changes in their external environment by relying on replicability, behavioral terminology, and the philosophical assumptions of behavior analysis (e.g., selectionism, determinism, parsimony) to study artificial behavior. Arguments in favor of a science of machine behavior include the omnipresence and impact of machines on human behavior, the inability of engineering alone to explain and control machine behavior, and the need to organize a verbal community of scientists around this common issue. Regardless of whether behavior analysts agree or disagree with this proposal, I argue that the field needs a debate on the topic. As such, the current article aims to encourage and contribute to this debate.
Collapse
|
11
|
Abstract
The fields of micro- and nanomechanics are strongly interconnected with the development of micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) devices, their fabrication and applications. This article highlights the biomimetic concept of designing new nanodevices for advanced materials and sensing applications.
Collapse
|
12
|
Perrot A, Moulin E, Giuseppone N. Extraction of mechanical work from stimuli-responsive molecular systems and materials. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Martella D, Nocentini S, Parmeggiani C, Wiersma DS. Photonic artificial muscles: from micro robots to tissue engineering. Faraday Discuss 2021; 223:216-232. [PMID: 32716468 DOI: 10.1039/d0fd00032a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Light responsive shape-changing polymers are able to mimic the function of biological muscles accomplishing mechanical work in response to selected stimuli. A variety of manufacturing techniques and chemical processes can be employed to shape these materials to different length scales, from centimeter fibers and films to 3D printed micrometric objects trying to replicate biological functions and operations. Controlled deformations shown to mimick basic animal operations such as walking, swimming or grabbing objects, while also controlling the refractive index and the geometry of devices, opens up the potential to implement tunable optical properties. Another possibility is that of combining artificial polymers with cells or biological tissue (such as intact cardiac trabeculae) with the aim to improve tissue formation in vitro or to support the mechanical function of damaged biological muscles. Such versatility is afforded by chemistry. New customized liquid crystalline monomers are presented here that modulate material properties for different applications. The role of synthetic material composition is highlighted as we demonstrate how using apparently similar molecular formulations, that liquid crystalline polymers can be adapted to different technological and medical challenges.
Collapse
Affiliation(s)
- Daniele Martella
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy. and Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Sara Nocentini
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy. and Istituto Nazionale di Ricerca Metrologica INRiM, Strada delle Cacce 91, 10135 Turin, Italy
| | - Camilla Parmeggiani
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy. and Istituto Nazionale di Ricerca Metrologica INRiM, Strada delle Cacce 91, 10135 Turin, Italy and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Diederik S Wiersma
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy. and Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy and Istituto Nazionale di Ricerca Metrologica INRiM, Strada delle Cacce 91, 10135 Turin, Italy
| |
Collapse
|
14
|
Lv P, Yang X, Bisoyi HK, Zeng H, Zhang X, Chen Y, Xue P, Shi S, Priimagi A, Wang L, Feng W, Li Q. Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics. MATERIALS HORIZONS 2021; 8:2475-2484. [PMID: 34870302 DOI: 10.1039/d1mh00623a] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sophisticated soft matter engineering has been endorsed as an emerging paradigm for developing untethered soft robots with built-in electronic functions and biomimetic adaptation capacities. However, the integration of flexible electronic components into soft robotic actuators is challenging due to strain mismatch and material incompatibilities. Herein, we report a general strategy to integrate electrically conductive liquid metals (LMs) and shape-morphing liquid crystal networks (LCNs) towards multifunctional and programmable soft robotics. A unique colloidal LM ink with superior adhesion and photothermal conversion efficiency was judiciously designed and fabricated by ultrasonicating LMs and miniature carboxylated gold nanorods (MiniGNR-COOH) in an aqueous suspension of biological bacterial cellulose. The designed nanocellulose-based colloidal LM ink is used for shape-deformable and electrically conductive LM-LCN soft robots that can be electro- and photo-thermally actuated. As proof-of-concept demonstrations, we present a light-fueled soft oscillator, an inchworm-inspired soft crawler and programmable robotic Shadow Play exhibiting multifunctional controllability. The strategy disclosed here could open up a new technological arena for advanced multifunctional soft materials with potential utility in bioinspired soft machines, integrated soft electronics, human-computer interaction and beyond.
Collapse
Affiliation(s)
- Pengfei Lv
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Xiao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
| | - Hao Zeng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Pan Xue
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Shukuan Shi
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin 300350, P. R. China
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
15
|
Rivera-Tarazona LK, Campbell ZT, Ware TH. Stimuli-responsive engineered living materials. SOFT MATTER 2021; 17:785-809. [PMID: 33410841 DOI: 10.1039/d0sm01905d] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Stimuli-responsive materials are able to undergo controllable changes in materials properties in response to external cues. Increasing efforts have been directed towards building materials that mimic the responsive nature of biological systems. Nevertheless, limitations remain surrounding the way these synthetic materials interact and respond to their environment. In particular, it is difficult to synthesize synthetic materials that respond with specificity to poorly differentiated (bio)chemical and weak physical stimuli. The emerging area of engineered living materials (ELMs) includes composites that combine living cells and synthetic materials. ELMs have yielded promising advances in the creation of stimuli-responsive materials that respond with diverse outputs in response to a broad array of biochemical and physical stimuli. This review describes advances made in the genetic engineering of the living component and the processing-property relationships of stimuli-responsive ELMs. Finally, the implementation of stimuli-responsive ELMs as environmental sensors, biomedical sensors, drug delivery vehicles, and soft robots is discussed.
Collapse
Affiliation(s)
- Laura K Rivera-Tarazona
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77843, USA.
| | | | | |
Collapse
|
16
|
Xue P, Bisoyi HK, Chen Y, Zeng H, Yang J, Yang X, Lv P, Zhang X, Priimagi A, Wang L, Xu X, Li Q. Near‐Infrared Light‐Driven Shape‐Morphing of Programmable Anisotropic Hydrogels Enabled by MXene Nanosheets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pan Xue
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| | - Yuanhao Chen
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Hao Zeng
- Smart Photonic Materials Faculty of Engineering and Natural Sciences Tampere University P.O. Box 541 33101 Tampere Finland
| | - Jiajia Yang
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Xiao Yang
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Pengfei Lv
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Xinmu Zhang
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Arri Priimagi
- Smart Photonic Materials Faculty of Engineering and Natural Sciences Tampere University P.O. Box 541 33101 Tampere Finland
| | - Ling Wang
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Xinhua Xu
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
17
|
Xue P, Bisoyi HK, Chen Y, Zeng H, Yang J, Yang X, Lv P, Zhang X, Priimagi A, Wang L, Xu X, Li Q. Near‐Infrared Light‐Driven Shape‐Morphing of Programmable Anisotropic Hydrogels Enabled by MXene Nanosheets. Angew Chem Int Ed Engl 2021; 60:3390-3396. [DOI: 10.1002/anie.202014533] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/25/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Pan Xue
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| | - Yuanhao Chen
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Hao Zeng
- Smart Photonic Materials Faculty of Engineering and Natural Sciences Tampere University P.O. Box 541 33101 Tampere Finland
| | - Jiajia Yang
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Xiao Yang
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Pengfei Lv
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Xinmu Zhang
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Arri Priimagi
- Smart Photonic Materials Faculty of Engineering and Natural Sciences Tampere University P.O. Box 541 33101 Tampere Finland
| | - Ling Wang
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Xinhua Xu
- School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
18
|
Weißenborn E, Droste J, Hardt M, Schlattmann D, Tennagen C, Honnigfort C, Schönhoff M, Hansen MR, Braunschweig B. Light-induced switching of polymer-surfactant interactions enables controlled polymer thermoresponsive behaviour. Chem Commun (Camb) 2021; 57:5826-5829. [PMID: 34002193 DOI: 10.1039/d1cc02054d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxypropyl cellulose (HPC) and arylazopyrazole (AAP) mixtures can be remotely controlled by light and temperature. We show that the hydrophobic interactions between HPC polymers with AAP surfactants can be drastically changed by changing the surfactants configuration through E/Z photo-isomerization. E-AAP interacts strongly with HPC which causes a dramatic increase of the critical temperature Tc of the polymers' phase transition and a loss of the coil-to-globule transition, while the hydrophobic interactions of HPC with Z-AAP are drastically reduced. As a result, E/Z photo-isomerization of AAP in mixtures with HPC offers remote control of the polymers phase transition, size and solution viscosity in an unprecedented way, and allows for new directions in colloid science.
Collapse
Affiliation(s)
- Eric Weißenborn
- Institute of Physical Chemistry, University Münster, Corrensstraße 28-30, Münster 48149, Germany.
| | - Jörn Droste
- Institute of Physical Chemistry, University Münster, Corrensstraße 28-30, Münster 48149, Germany.
| | - Michael Hardt
- Institute of Physical Chemistry, University Münster, Corrensstraße 28-30, Münster 48149, Germany.
| | - Daniel Schlattmann
- Institute of Physical Chemistry, University Münster, Corrensstraße 28-30, Münster 48149, Germany.
| | - Celine Tennagen
- Institute of Physical Chemistry, University Münster, Corrensstraße 28-30, Münster 48149, Germany.
| | - Christian Honnigfort
- Institute of Physical Chemistry, University Münster, Corrensstraße 28-30, Münster 48149, Germany.
| | - Monika Schönhoff
- Institute of Physical Chemistry, University Münster, Corrensstraße 28-30, Münster 48149, Germany.
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, University Münster, Corrensstraße 28-30, Münster 48149, Germany.
| | - Björn Braunschweig
- Institute of Physical Chemistry, University Münster, Corrensstraße 28-30, Münster 48149, Germany.
| |
Collapse
|