1
|
Waidi YO. Recent Advances in 4D-Printed Shape Memory Actuators. Macromol Rapid Commun 2025; 46:e2401141. [PMID: 40014667 DOI: 10.1002/marc.202401141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/23/2025] [Indexed: 03/01/2025]
Abstract
4D printing, which combines the design freedom of 3D printing with the responsiveness of smart materials, is revolutionizing the creation of active structures. These structures can change shape in response to external stimuli, paving the way for advancements in robotics, biomedicine, and beyond. However, a comprehensive review article highlighting recent advancements in 4D printed shape memory actuators (SMAAs) is lacking. This review explores the exciting potential of 4D printing for intelligent SMAAs. It examines the concept of shape memory and the materials used, like shape-memory polymers (SMPs), shape-memory alloys (SMAs), and shape-memory polymer composites (SMPCs). It then dives into compatible 3D printing techniques and design principles for achieving programmed shape changes. Different categories of 4D printed SMAAs are explored, showcasing their potential applications in diverse fields. The review concludes by discussing challenges and future directions, emphasizing the massive potential of 4D printing for creating the next generation of actuators, making it a valuable resource for researchers in the field.
Collapse
Affiliation(s)
- Yusuf Olatunji Waidi
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
2
|
Chen H, Chen Z, Liu Z, Xiong J, Yan Q, Fei T, Zhao X, Xue F, Zheng H, Lian H, Chen Y, Xu L, Peng Q, He X. From Coils to Crawls: A Snake-Inspired Soft Robot for Multimodal Locomotion and Grasping. NANO-MICRO LETTERS 2025; 17:243. [PMID: 40304871 PMCID: PMC12043558 DOI: 10.1007/s40820-025-01762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
Currently, numerous biomimetic robots inspired by natural biological systems have been developed. However, creating soft robots with versatile locomotion modes remains a significant challenge. Snakes, as invertebrate reptiles, exhibit diverse and powerful locomotion abilities, including prey constriction, sidewinding, accordion locomotion, and winding climbing, making them a focus of robotics research. In this study, we present a snake-inspired soft robot with an initial coiling structure, fabricated using MXene-cellulose nanofiber ink printed on pre-expanded polyethylene film through direct ink writing technology. The controllable fabrication of initial coiling structure soft robot (ICSBot) has been achieved through theoretical calculations and finite element analysis to predict and analyze the initial structure of ICSBot, and programmable ICSBot has been designed and fabricated. This robot functions as a coiling gripper capable of grasping objects with complex shapes under near infrared light stimulation. Additionally, it demonstrates multi-modal crawling locomotion in various environments, including confined spaces, unstructured terrains, and both inside and outside tubes. These results offer a novel strategy for designing and fabricating coiling-structured soft robots and highlight their potential applications in smart and multifunctional robotics.
Collapse
Affiliation(s)
- He Chen
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Zhong Chen
- Dongfang Electric Academy of Science and Technology Co. Ltd, Chengdu, 611731, People's Republic of China.
| | - Zonglin Liu
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Jinhua Xiong
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Qian Yan
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Teng Fei
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Xu Zhao
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Fuhua Xue
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Haowen Zheng
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Huanxin Lian
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Yunxiang Chen
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Liangliang Xu
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Qingyu Peng
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China.
- Suzhou Research Institute of HIT, Suzhou, 215104, People's Republic of China.
| | - Xiaodong He
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China.
| |
Collapse
|
3
|
Hou Y, Huang J, Ma H, Li Q, Xiang Z, Qian J, Li G, Tai Y, Xia R, Zhu S. Autonomous 3D Self-Sensing Hybrid Membrane Actuator for Interactive Communicating. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40302372 DOI: 10.1021/acsami.5c04053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The advancement of intelligent soft actuators is progressively emphasizing the incorporation of environmental sensing capability to actuation, thereby enhancing the adaptability and interactivity of artificial systems. In the current situation where the sensing and actuation functions of soft actuators are generally separated, this work proposes an autonomous three-dimensional (3D) noncontact sensory actuator (NSA), based on the coupling of ″dielectric polarization-electrothermal conversion-thermal actuation″ triple effects. Specifically, the NSA hybrid membrane is composed of multiple interpenetrating networks, including a boron nitride nanosheet (BNNS) dielectric network for electrostatic field sensing and polarization, a silver nanowires (AgNWs) percolation network for dielectric enhancement and electrothermal conversion, and thermally contracted shape memory fiber (SMF) and thermally expanded polydimethylsiloxane (PDMS) networks for directional actuation. Based on the principle of electrostatic field and dielectric polarization, the SMF/BNNS composite (SMF-BN) fibrous membrane can logically sense the noncontact 3D motion, static/dynamic state of external objects, and distinguish material categories. Subsequently, the output sensing potential facilitates the built-in AgNWs nanonetwork heater to trigger electrothermal actuation of NSA. Lastly, as a biomimetic tongue, the autonomous noncontact "sensing-decision-actuating" of NSA is verified by seamless energy conversion in the process of sensing "prey" approaching and capturing. The proposed sensory actuator would facilitate multimodal integration for future wearable and human-machine-environment interaction technologies.
Collapse
Affiliation(s)
- Yuanyuan Hou
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiaxin Huang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hao Ma
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qingsong Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zerong Xiang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiasheng Qian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yanlong Tai
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ru Xia
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Shanshan Zhu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
4
|
Zhang JR, Li A, Li XL, Chang Z, Han DD, Zhang YL. Bioinspired Sensor and Actuator Hybrid Pixel Array for Moisture/Temperature Mapping, Electrothermal Display and Programmable Deformation. NANO LETTERS 2025; 25:4586-4595. [PMID: 40047276 DOI: 10.1021/acs.nanolett.5c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Natural soft organisms with sophisticated perception and deformation abilities provide inspiration for developing flexible electronics. However, the development of flexible sensing and actuating hybrid systems remains a challenge. Herein, we report a bioinspired sensor and actuator hybrid pixel array (SA-HPA) that enables moisture/temperature mapping, electrothermal display, and programmable electrothermal deformation. The SA-HPA is fabricated by femtosecond laser patterning of Cu electrodes/circuits, controllable deposition of graphene, selective encapsulation, and liquid crystal elastomer integration. The versatile SA-HPA can work as a sensor array for temperature and moisture recognition, and the interference between them can be overcome by the selective encapsulation of adjacent pixels. Additionally, SA-HPAs can also serve as electrothermal pixels for programmable infrared display and actuation. As a proof-of-concept, a soft robotic system that enables active temperature and humidity sensing was demonstrated. We deem that the SA-HPA may provide a new paradigm for developing soft electronics.
Collapse
Affiliation(s)
- Jia-Rui Zhang
- State Key Laboratory of Integrated Optoelectronics, JLU Region, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ang Li
- State Key Laboratory of Integrated Optoelectronics, JLU Region, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xi-Lin Li
- State Key Laboratory of Integrated Optoelectronics, JLU Region, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhiyong Chang
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130012, China
| | - Dong-Dong Han
- State Key Laboratory of Integrated Optoelectronics, JLU Region, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yong-Lai Zhang
- State Key Laboratory of Integrated Optoelectronics, JLU Region, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
5
|
He J, Huang P, Li B, Xing Y, Wu Z, Lee TC, Liu L. Untethered Soft Robots Based on 1D and 2D Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413648. [PMID: 39838723 DOI: 10.1002/adma.202413648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/05/2025] [Indexed: 01/23/2025]
Abstract
Biological structures exhibit autonomous and intelligent behaviors, such as movement, perception, and responses to environmental changes, through dynamic interactions with their surroundings. Inspired by natural organisms, future soft robots are also advancing toward autonomy, sustainability, and interactivity. This review summarizes the latest achievements in untethered soft robots based on 1D and 2D nanomaterials. First, the performance of soft actuators designed with different structures is compared. Then, the development of basic locomotion forms, including crawling, jumping, swimming, rolling, gripping, and multimodal, mimicking biological motion mechanisms under dynamic stimuli, is discussed. Subsequently, various self-sustained movements based on imbalance mechanisms under static stimuli are introduced, including light tracking, self-oscillating, self-crawling, self-rolling, and flying. Following that, the progress in soft actuators integrated with additional functionalities such as sensing, energy harvesting, and storage is summarized. Finally, the challenges faced in this field and the prospects for future development are discussed.
Collapse
Affiliation(s)
- Jingwen He
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Peng Huang
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Bingjue Li
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| | - Tung-Chun Lee
- Institute for Materials Discovery, University College London (UCL), London, WC1H 0AJ, UK
- Department of Chemistry, University College London (UCL), London, WC1H 0AJ, UK
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
- Suzhou Research Institute, Southeast University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
6
|
Cui S, Han D, Chen G, Liu S, Xu Y, Yu Y, Peng L. Toward Stretchable Flexible Integrated Sensor Systems. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11397-11414. [PMID: 39644227 DOI: 10.1021/acsami.4c12429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Skin-like flexible sensors hold great potential as the next generation of intelligent electronic devices owing to their broad applications in environmental monitoring, human-machine interfaces, the Internet of Things, and artificial intelligence. Flexible electronics inspired by human skin play a vital role in continuous and real-time health monitoring. This review summarizes recent progress in skin-mountable electronics developed by designing flexible electrodes and substrates into different structures, including serpentine, microcrack, wrinkle, and kirigami. Furthermore, this review briefly discusses advances in wearable integrated sensor systems that mimic the flexibility of human skin, as well as multisensing functions. In the future, innovations in stretchable integrated sensor systems will be crucial to develop next-generation intelligent skin-based sensors for practical applications such as medical diagnosis, treatment, and environment monitoring.
Collapse
Affiliation(s)
- Songya Cui
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Dongxue Han
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Guang Chen
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Shuting Liu
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Yuhong Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yufeng Yu
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Liang Peng
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|
7
|
Bai C, Kang J, Wang YQ. Kirigami-Inspired Light-Responsive Conical Spiral Actuators with Large Contraction Ratio Using Liquid Crystal Elastomer Fiber. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39997606 DOI: 10.1021/acsami.4c20234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Liquid crystal elastomers (LCEs) are among the key smart materials driving soft robotics and LCE fibers have garnered significant attention for their rapid response characteristics. A convenient and fast method for programming orientations of liquid crystal molecules is a focal issue in LCE applications. Inspired by the Kirigami technique, here, we propose a novel method for fabricating LCE fibers based on customizable cutting paths and secondary photo-cross-linking. While most existing LCE actuators exhibit contraction ratios of around 30 to 40%, our conical spiral actuator, fabricated from LCE-carbon nanotube (CNT) fiber using the proposed method, demonstrates a significantly higher contraction ratio, reaching up to 80%. The contraction ratio can be controlled by adjusting the cutting path parameters and we elucidate the mechanism linking liquid crystal orientation to the distribution of contraction ratio. Additionally, the conical spiral deformation of the actuator can be manipulated with light radiation, enabling versatile functionalities such as catching, twisting, and gripping. We hope that the novel LCE fiber fabrication method presented provides new insights for programming and preparing LCE fibers, offering a valuable reference for the application of smart soft materials.
Collapse
Affiliation(s)
- Cunping Bai
- Key Laboratory of Structural Dynamics of Liaoning Province, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jingtian Kang
- Key Laboratory of Structural Dynamics of Liaoning Province, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yan Qing Wang
- Key Laboratory of Structural Dynamics of Liaoning Province, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
8
|
Chen Q, Furrer R, Jamilpanah L, Chumakov A, Bulut Y, Harder C, Müller-Buschbaum P, Roth SV, Braun A. Responsive Magnetic Polymer Nanocomposites through Thermal-Induced Structural Reorganization. ACS NANO 2025; 19:6165-6179. [PMID: 39912791 PMCID: PMC11841046 DOI: 10.1021/acsnano.4c14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Polymer nanocomposites (PNCs), which feature a hybrid network of soft polymers filled with nanoparticles, hold promise for application in soft robots due to their tunable physiochemical properties. Under certain environmental conditions, PNCs undergo stimuli-responsive structural rearrangement and transform the energy of the ambient environment into diverse uses, for example, repairing the injuries and reconfiguring the shapes of the materials. We develop PNCs with the ability of thermal-responsive restructuring by the stepwise assembly of functional components, including magnetite nanoparticles, silylated cellulose, and polydimethylsiloxane. We investigate the dynamic changes of the nano- and submicron structure of the magnetic PNCs upon the stimulation of heating based on a combined analytical approach: using dynamic mechanical analysis to interpret the viscoelastic properties of the PNC and in situ small-angle X-ray scattering to quantify the clustering of NPs. Based on these results, we formulate a structural model for the heating-induced evolution of the nano- to submicrometer assemblies in the magnetic PNC. Moreover, thermal-induced restructuring of magnetic PNCs leads to additional favorable functions, such as the abilities of healing, welding, reprocessing, and responses to photo and magneto stimuli. Our design provides a versatile means to develop responsive PNCs for applications in soft robots, sensors, and actuators.
Collapse
Affiliation(s)
- Qing Chen
- Spallation
Neutron Source Science Center, 523803 Dongguan, China
- Institute
of High Energy Physics, Chinese Academy of Science, 100049 Beijing, China
- Laboratory
for High Performance Ceramics, Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Roman Furrer
- Transport
at Nanoscale Interfaces Laboratory, Empa,
Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Loghman Jamilpanah
- Laboratory
for High Performance Ceramics, Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Magnetic
and Functional Thin Films Laboratory, Empa,
Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | | | - Yusuf Bulut
- Deutsches
Elektronen-Synchrotron, 22607 Hamburg, Germany
- TUM
School of Natural Sciences, Department of Physics, Chair for Functional
Materials, Technical University of Munich, 85748 Garching, Germany
| | | | - Peter Müller-Buschbaum
- TUM
School of Natural Sciences, Department of Physics, Chair for Functional
Materials, Technical University of Munich, 85748 Garching, Germany
| | - Stephan V. Roth
- Deutsches
Elektronen-Synchrotron, 22607 Hamburg, Germany
- Department
of Fiber and Polymer Technology, KTH Royal
Institute of Technology, 10044 Stockholm, Sweden
| | - Artur Braun
- Laboratory
for High Performance Ceramics, Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
9
|
Zhu H, Li T, Fu L, Bai J, Li S, Bai Y, Deng S, Yuan S, Liu Q, Ma Y, Peng L, Xu J, Ma N, Cheng G, Ding J, Zhang T. A Proprioceptive Janus Fiber with Controllable Multistage Segments for Bionic Soft Robots. ACS NANO 2024; 18:32023-32037. [PMID: 39499810 DOI: 10.1021/acsnano.4c10117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Smart fibers capable of integrating the multifunctionality of actuation and self-sensation into a single proprioceptive device have significant applications in soft robots and biomedicine. Especially, the achievement of self-sensing the movement patterns of different actuating segments in one fiber is still a great challenge. Herein, in this study, a fiber with the controllable Janus architecture is successfully proposed via an artful centrifugation-driven hierarchical gradient self-assembly strategy, which couples two functional components of piezoresistive carbon nanotubes and magnetic NdFeB nanoparticles into the upper and lower layers of this flexible fibrous framework with the porous sponge structure partially, respectively. As predicted, the final product exhibits the as-anticipated bionic proprioceptive behaviors of programmable actuating deformation and highly selective response to bending, stretching, and pressure with high washable stability and mechanical performances. More importantly, assisted by the different three-dimensional printing molds, the superlong Janus fibers with various controllable lengths of the reversed but sequential multistage segments can be fabricated, offering the hybrid magnetic actuation and proprioceptive sensation existing at arbitrary nodes. Therefore, several kinds of soft organism-inspired Janus fiber-derived soft robots with the arbitrarily controlled segmental characters were assembled as the proof-of-concept, which can not only realize a snake or inchworm-inspired successive contracting-stretching deformation and a sperm-inspired self-rotating crawling motion but also self-sense the signals of each segment themselves in real time and then be used to navigate an object to target position in a liquid-filled confined tube. It is believed that this work promotes the further development of proprioceptive soft robots.
Collapse
Affiliation(s)
- Hao Zhu
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tie Li
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
- Jiangxi Institute of Nanotechnology, Nanchang 330200, China
| | - Lei Fu
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Ju Bai
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Shengzhao Li
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Yuanyuan Bai
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Shihao Deng
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Shen Yuan
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Qianzuo Liu
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yunping Ma
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lu Peng
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Jingyi Xu
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Nan Ma
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianning Ding
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ting Zhang
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| |
Collapse
|
10
|
Cheng Y, Zhu S, Ma H, Zhang S, Wei K, Wu S, Tang Y, Liu P, Luo T, Liu G, Yang R. Multimodal Locomotion and Dynamic Interaction of Hydrogel Microdisks at the Air-Water Interface under Magnetic and Light Stimuli. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61633-61644. [PMID: 39498969 DOI: 10.1021/acsami.4c12151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The potential applications of hydrogel microrobots in biomedicine and environmental exploration have sparked significant interest in understanding their behavior under multiphysical fields. This study explores the multimodal locomotion and dynamic interaction of hydrogel microrobots at the air-water interface under magnetic and light stimuli. A pair of hydrogel microrobots at the air-water interface exhibits a transition from cooperative, combined rotation to interactive behavior, involving both rotation and revolution under the influence of a rotating magnetic field (RMF), and a shift from attraction to separation under near-infrared (NIR) light, demonstrating the dynamic modulation of their behaviors in response to different stimuli. Notably, the behavioral patterns of multiple hydrogel microrobots under multiphysical fields indicate that NIR light can enhance interactive motion behaviors under RMFs and extend the range of motion trajectories. Dynamic models for each condition are established and analyzed based on dynamic equilibrium, and their behavior can be modulated by parameters such as magnetic particle concentration, magnetic field frequency, and NIR light intensity. This work introduces a novel strategy for regulating and controlling the dynamic behaviors of hydrogel microrobots, offering new insights into their multiphysical field locomotion.
Collapse
Affiliation(s)
- Yifan Cheng
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Shilu Zhu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Hui Ma
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Shengting Zhang
- The First Clinical College, Anhui Medical University, Hefei, Anhui 230026, China
| | - Kun Wei
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Shiyu Wu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Yongkang Tang
- The First Clinical College, Anhui Medical University, Hefei, Anhui 230026, China
| | - Ping Liu
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Tingting Luo
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Guangli Liu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
11
|
Cao Y, Xu B, Li B, Fu H. Advanced Design of Soft Robots with Artificial Intelligence. NANO-MICRO LETTERS 2024; 16:214. [PMID: 38869734 PMCID: PMC11176285 DOI: 10.1007/s40820-024-01423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024]
Abstract
A comprehensive review focused on the whole systems of the soft robotics with artificial intelligence, which can feel, think, react and interact with humans, is presented. The design strategies concerning about various aspects of the soft robotics, like component materials, device structures, prepared technologies, integrated method, and potential applications, are summarized. A broad outlook on the future considerations for the soft robots is proposed. In recent years, breakthrough has been made in the field of artificial intelligence (AI), which has also revolutionized the industry of robotics. Soft robots featured with high-level safety, less weight, lower power consumption have always been one of the research hotspots. Recently, multifunctional sensors for perception of soft robotics have been rapidly developed, while more algorithms and models of machine learning with high accuracy have been optimized and proposed. Designs of soft robots with AI have also been advanced ranging from multimodal sensing, human–machine interaction to effective actuation in robotic systems. Nonetheless, comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare. Here, the new development is systematically reviewed in the field of soft robots with AI. First, background and mechanisms of soft robotic systems are briefed, after which development focused on how to endow the soft robots with AI, including the aspects of feeling, thought and reaction, is illustrated. Next, applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement. Design thoughts for future intelligent soft robotics are pointed out. Finally, some perspectives are put forward.
Collapse
Affiliation(s)
- Ying Cao
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, People's Republic of China
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, People's Republic of China.
| | - Bin Li
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hong Fu
- Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong, 999077, People's Republic of China.
| |
Collapse
|
12
|
Tian PJ, Han XH, Qi QY, Zhao X. An Azulene-Based Crystalline Porous Covalent Organic Framework for Efficient Photothermal Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307635. [PMID: 38105336 DOI: 10.1002/smll.202307635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Indexed: 12/19/2023]
Abstract
The designed synthesis of a crystalline azulene-based covalent organic framework (COF-Azu-TP) is presented and its photothermal property is investigated. Azulene, a distinctive 5-7 fused ring non-benzenoid aromatic compound with a large intramolecular dipole moment and unique photophysical characteristics, is introduced as the key feature in COF-Azu-TP. The incorporation of azulene moiety imparts COF-Azu-TP with broad-spectrum light absorption capability and interlayer dipole interactions, which makes COF-Azu-TP a highly efficient photothermal conversion material. Its polyurethane (PU) composite exhibits a solar-to-vapor conversion efficiency (97.2%) and displays a water evaporation rate (1.43 kg m-2 h-1) under one sun irradiation, even at a very low dosage of COF-Azu-TP (2.2 wt%). Furthermore, COF-Azu-TP is utilized as a filler in a polylactic acid (PLA)/polycaprolactone (PCL) composited shape memory material, enabling rapid shape recovery under laser stimulation. A comparison study with a naphthalene-based COF isomer further emphasizes the crucial role of azulene in enhancing photothermal conversion efficiency. This study demonstrates the significance of incorporating specific building blocks into COFs for the development of functional porous materials with enhanced properties, paving the way for future applications in diverse fields.
Collapse
Affiliation(s)
- Peng-Ju Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiang-Hao Han
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xin Zhao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
13
|
Chen Z, Zhao X, Gao B, Xu L, Chen H, Liu Z, Li P, Yan Q, Zheng H, Xue F, Xiong J, Ding R, Fei T, Tang Z, Peng Q, Hu Y, He X. Biobased Inks Based on Cuttlefish Ink and Cellulose Nanofibers for Biodegradable Patterned Soft Actuators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22547-22557. [PMID: 38628112 DOI: 10.1021/acsami.4c02775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Soft actuators with stimuli-responsive and reversible deformations have shown great promise in soft robotics. However, some challenges remain in existing actuators, such as the materials involved derived from nonrenewable resources, complex and nonscalable preparation methods, and incapability of complex and programmable deformation. Here, a biobased ink based on cuttlefish ink nanoparticles (CINPs) and cellulose nanofibers (CNFs) was developed, allowing for the preparation of biodegradable patterned actuators by direct ink writing technology. The hybrid CNF/CINP ink displays good rheological properties, allowing it to be accurately printed on a variety of flexible substrates. A bilayer actuator was developed by printing an ink layer on a biodegradable poly(lactic acid) film using extrusion-based 3D printing technology, which exhibits reversible and large bending behavior under the stimuli of humidity and light. Furthermore, programmable and reversible folding and coiling deformations in response to stimuli have been achieved by adjusting the ink patterns. This work offers a fast, scalable, and cost-effective strategy for the development of biodegradable patterned actuators with programmable shape-morphing.
Collapse
Affiliation(s)
- Zhong Chen
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Xu Zhao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Bo Gao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Liangliang Xu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - He Chen
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Zonglin Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Pengyang Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Qian Yan
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Haowen Zheng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Fuhua Xue
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jinhua Xiong
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Renjie Ding
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Teng Fei
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Zhigong Tang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Qingyu Peng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Ying Hu
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
14
|
Wang H, Li X, Wang X, Qin Y, Pan Y, Guo X. Somatosensory Electro-Thermal Actuator through the Laser-Induced Graphene Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310612. [PMID: 38087883 DOI: 10.1002/smll.202310612] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Indexed: 05/25/2024]
Abstract
The biological system realizes the unity of action and perception through the muscle tissue and nervous system. Correspondingly, artificial soft actuators realize the unity of sensing and actuating functions in a single functional material, which will have tremendous potential for developing intelligent and bionic soft robotics. This paper reports the design of a laser-induced graphene (LIG) electrothermal actuator with self-sensing capability. LIG, a functional material formed by a one-step direct-write lasing procedure under ambient air, is used as electrothermal conversion materials and piezoresistive sensing materials. By transferring LIG to a flexible silicone substrate, the design ability of the LIG-based actuator unit is enriched, along with an effectively improved sensing sensitivity. Through the integration of different types of well-designed LIG-based actuator units, the transformations from multidimensional precursors to 2D and 3D structures are realized. According to the piezoresistive effect of the LIG units during the deformation process, the visual synchronous deformation state feedback of the LIG-based actuator is proposed. The multimodal crawling soft robotics and the switchable electromagnetic shielding cloak serve as the demonstrations of the self-sensing LIG-based actuator, showing the advantage of the design in remote control of the soft robot without relying on the assistance of visual devices.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuyang Li
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoyue Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yong Qin
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Pan
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaogang Guo
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
15
|
Gao Y, Wang X, Chen Y. Light-driven soft microrobots based on hydrogels and LCEs: development and prospects. RSC Adv 2024; 14:14278-14288. [PMID: 38694551 PMCID: PMC11062240 DOI: 10.1039/d4ra00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
In the daily life of mankind, microrobots can respond to stimulations received and perform different functions, which can be used to complete repetitive or dangerous tasks. Magnetic driving works well in robots that are tens or hundreds of microns in size, but there are big challenges in driving microrobots that are just a few microns in size. Therefore, it is impossible to guarantee the precise drive of microrobots to perform tasks. Acoustic driven micro-nano robot can achieve non-invasive and on-demand movement, and the drive has good biological compatibility, but the drive mode has low resolution and requires expensive experimental equipment. Light-driven robots move by converting light energy into other forms of energy. Light is a renewable, powerful energy source that can be used to transmit energy. Due to the gradual maturity of beam modulation and optical microscope technology, the application of light-driven microrobots has gradually become widespread. Light as a kind of electromagnetic wave, we can change the energy of light by controlling the wavelength and intensity of light. Therefore, the light-driven robot has the advantages of programmable, wireless, high resolution and accurate spatio-temporal control. According to the types of robots, light-driven robots are subdivided into three categories, namely light-driven soft microrobots, photochemical microrobots and 3D printed hard polymer microrobots. In this paper, the driving materials, driving mechanisms and application scenarios of light-driven soft microrobots are reviewed, and their advantages and limitations are discussed. Finally, we prospected the field, pointed out the challenges faced by light-driven soft micro robots and proposed corresponding solutions.
Collapse
Affiliation(s)
- Yingnan Gao
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| | - Xiaowen Wang
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| | - Yibao Chen
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| |
Collapse
|
16
|
Feng H, Zhou P, Peng Q, Weng M. Soft multi-layer actuators integrated with the functions of electrical energy harvest and storage. Chemistry 2024; 30:e202303378. [PMID: 38009845 DOI: 10.1002/chem.202303378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Soft multi-layer actuators are smart, lightweight, and flexible, which can be used in a wide range of fields such as artificial muscles, advanced medical devices, and wearable devices. The research on the actuation property of the soft actuators has made significant progress, paving the way for the controllable motions of the actuators. However, compared with the intelligence and adaptability of life in nature, these actuators still have the problem of insufficient intelligence. The phenomenon is reflected in a lack of continuous supply of energy. Therefore, it has become a development trend to combine functions such as energy harvesting, storage, and conversion with actuators to build intelligent actuators. This concept presents a synopsis of the advancements made in soft actuators that have been coupled with the capabilities of electrical energy harvesting and storage. The design concepts and typical applications of this soft smart actuators are introduced in detail. Finally, the future research directions and applications of smart actuators are prospected from our perspective.
Collapse
Affiliation(s)
- Haihang Feng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Peidi Zhou
- Institute of Smart Marine and Engineering, Fujian Provincial Key Laboratory of Marine Smart Equipment, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Qinglu Peng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Mingcen Weng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| |
Collapse
|
17
|
Yang H, Ding S, Wang J, Sun S, Swaminathan R, Ng SWL, Pan X, Ho GW. Computational design of ultra-robust strain sensors for soft robot perception and autonomy. Nat Commun 2024; 15:1636. [PMID: 38388467 PMCID: PMC10883982 DOI: 10.1038/s41467-024-45786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Compliant strain sensors are crucial for soft robots' perception and autonomy. However, their deformable bodies and dynamic actuation pose challenges in predictive sensor manufacturing and long-term robustness. This necessitates accurate sensor modelling and well-controlled sensor structural changes under strain. Here, we present a computational sensor design featuring a programmed crack array within micro-crumples strategy. By controlling the user-defined structure, the sensing performance becomes highly tunable and can be accurately modelled by physical models. Moreover, they maintain robust responsiveness under various demanding conditions including noise interruptions (50% strain), intermittent cyclic loadings (100,000 cycles), and dynamic frequencies (0-23 Hz), satisfying soft robots of diverse scaling from macro to micro. Finally, machine intelligence is applied to a sensor-integrated origami robot, enabling robotic trajectory prediction (<4% error) and topographical altitude awareness (<10% error). This strategy holds promise for advancing soft robotic capabilities in exploration, rescue operations, and swarming behaviors in complex environments.
Collapse
Affiliation(s)
- Haitao Yang
- Institute of Flexible Electronics (IFE) & Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Shuo Ding
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- Department of Biomedical Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Jiahao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Shuo Sun
- Department of Mechanical Engineering, National University of Singapore, Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Ruphan Swaminathan
- Department of Computer Science, Columbia University, New York, NY, 10027, USA
| | - Serene Wen Ling Ng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Xinglong Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
| |
Collapse
|
18
|
Li D, Zhou J, Zhao Z, Huang X, Li H, Qu Q, Zhou C, Yao K, Liu Y, Wu M, Su J, Shi R, Huang Y, Wang J, Zhang Z, Liu Y, Gao Z, Park W, Jia H, Guo X, Zhang J, Chirarattananon P, Chang L, Xie Z, Yu X. Battery-free, wireless, and electricity-driven soft swimmer for water quality and virus monitoring. SCIENCE ADVANCES 2024; 10:eadk6301. [PMID: 38198552 PMCID: PMC10780888 DOI: 10.1126/sciadv.adk6301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Miniaturized mobile electronic system is an effective candidate for in situ exploration of confined spaces. However, realizing such system still faces challenges in powering issue, untethered mobility, wireless data acquisition, sensing versatility, and integration in small scales. Here, we report a battery-free, wireless, and miniaturized soft electromagnetic swimmer (SES) electronic system that achieves multiple monitoring capability in confined water environments. Through radio frequency powering, the battery-free SES system demonstrates untethered motions in confined spaces with considerable moving speed under resonance. This system adopts soft electronic technologies to integrate thin multifunctional bio/chemical sensors and wireless data acquisition module, and performs real-time water quality and virus contamination detection with demonstrated promising limits of detection and high sensitivity. All sensing data are transmitted synchronously and displayed on a smartphone graphical user interface via near-field communication. Overall, this wireless smart system demonstrates broad potential for confined space exploration, ranging from pathogen detection to pollution investigation.
Collapse
Affiliation(s)
- Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Zichen Zhao
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qing’ao Qu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Changfei Zhou
- School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yanting Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Mengge Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Jingyou Su
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Rui Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Jingjing Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Zongwen Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhan Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Wooyoung Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Huiling Jia
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Xu Guo
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jiachen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Pakpong Chirarattananon
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
19
|
Liu H, Chu H, Yuan H, Li D, Deng W, Fu Z, Liu R, Liu Y, Han Y, Wang Y, Zhao Y, Cui X, Tian Y. Bioinspired Multifunctional Self-Sensing Actuated Gradient Hydrogel for Soft-Hard Robot Remote Interaction. NANO-MICRO LETTERS 2024; 16:69. [PMID: 38175419 PMCID: PMC10766940 DOI: 10.1007/s40820-023-01287-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sensing actuated gradient hydrogel that combines ultrafast actuation and high sensitivity for remote interaction with robotic hand. The gradient network structure, achieved through a wettability difference method involving the rapid precipitation of MoO2 nanosheets, introduces hydrophilic disparities between two sides within hydrogel. This distinctive approach bestows the hydrogel with ultrafast thermo-responsive actuation (21° s-1) and enhanced photothermal efficiency (increase by 3.7 °C s-1 under 808 nm near-infrared). Moreover, the local cross-linking of sodium alginate with Ca2+ endows the hydrogel with programmable deformability and information display capabilities. Additionally, the hydrogel exhibits high sensitivity (gauge factor 3.94 within a wide strain range of 600%), fast response times (140 ms) and good cycling stability. Leveraging these exceptional properties, we incorporate the hydrogel into various soft actuators, including soft gripper, artificial iris, and bioinspired jellyfish, as well as wearable electronics capable of precise human motion and physiological signal detection. Furthermore, through the synergistic combination of remarkable actuation and sensitivity, we realize a self-sensing touch bioinspired tongue. Notably, by employing quantitative analysis of actuation-sensing, we realize remote interaction between soft-hard robot via the Internet of Things. The multifunctional self-sensing actuated gradient hydrogel presented in this study provides a new insight for advanced somatosensory materials, self-feedback intelligent soft robots and human-machine interactions.
Collapse
Affiliation(s)
- He Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China
| | - Haoxiang Chu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China
| | - Hailiang Yuan
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China
| | - Deliang Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China
| | - Weisi Deng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China
| | - Zhiwei Fu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China
| | - Ruonan Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China
| | - Yiying Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China
| | - Yixuan Han
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China
| | - Yanpeng Wang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China
| | - Yue Zhao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China.
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528300, People's Republic of China.
| |
Collapse
|
20
|
Li J, Deng J, Zhang S, Chen W, Zhao J, Liu Y. Developments and Challenges of Miniature Piezoelectric Robots: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305128. [PMID: 37888844 PMCID: PMC10754097 DOI: 10.1002/advs.202305128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Indexed: 10/28/2023]
Abstract
Miniature robots have been widely studied and applied in the fields of search and rescue, reconnaissance, micromanipulation, and even the interior of the human body benefiting from their highlight features of small size, light weight, and agile movement. With the development of new smart materials, many functional actuating elements have been proposed to construct miniature robots. Compared with other actuating elements, piezoelectric actuating elements have the advantages of compact structure, high power density, fast response, high resolution, and no electromagnetic interference, which make them greatly suitable for actuating miniature robots, and capture the attentions and favor of numerous scholars. In this paper, a comprehensive review of recent developments in miniature piezoelectric robots (MPRs) is provided. The MPRs are classified and summarized in detail from three aspects of operating environment, structure of piezoelectric actuating element, and working principle. In addition, new manufacturing methods and piezoelectric materials in MPRs, as well as the application situations, are sorted out and outlined. Finally, the challenges and future trends of MPRs are evaluated and discussed. It is hoped that this review will be of great assistance for determining appropriate designs and guiding future developments of MPRs, and provide a destination board to the researchers interested in MPRs.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Jie Deng
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Shijing Zhang
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Weishan Chen
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Jie Zhao
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Yingxiang Liu
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| |
Collapse
|
21
|
Yang K, Lin J, Fu C, Guo J, Zhou J, Jiao F, Guo Q, Zhou P, Weng M. Multifunctional actuators integrated with the function of self-powered temperature sensing made with Ti 3C 2T x-bamboo nanofiber composites. NANOSCALE 2023; 15:18842-18857. [PMID: 37966128 DOI: 10.1039/d3nr03885h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
In recent years, multifunctional actuators have received increasing attention and development. In particular, researchers have conducted extensive research on intelligent actuators with integrated sensing functions. Temperature is an important parameter for the deformation of bilayer thermal actuators. By obtaining the temperature information of a bilayer thermal actuator, the deformation amplitude and its state can be judged. Thus, there is an urgent need to develop a type of intelligent actuator with a self-powered temperature sensing function. Herein, Ti3C2Tx-based composites modified with bamboo nanofibers have been proposed and applied to intelligent actuators integrated with a self-powered temperature sensing function. By utilizing the coefficients of thermal expansion between Ti3C2Tx-bamboo nanofiber composites and a polyimide film, a bilayer photo/electro-driven thermal actuator is designed which shows a bending curvature as large as 1.9 cm-1. In addition, Ti3C2Tx-bamboo nanofiber composites have a Seebeck coefficient of -9.15 μV K-1, and are N-type thermoelectric materials and can be used as the component of self-powered temperature sensors. Finally, a series of practical applications were designed, including a light-driven floating actuator (with a moving speed of 5 mm s-1), biomimetic sunflowers, bionic tentacles, and a multifunctional gripper integrated with a self-powered temperature sensing function. In particular, the multifunctional grippers can output voltage signals carrying their temperature information without external complex power sources, demonstrating their potential for remote monitoring. The above results demonstrate that Ti3C2Tx-bamboo nanofiber composites have extensive practical applications in fields such as self-powered sensors, flexible thermoelectric generators, and soft actuators.
Collapse
Affiliation(s)
- Kaihuai Yang
- School of Mechanical and Intelligent Manufacturing, Fujian Chuanzheng Communications College, Fuzhou, Fujian 350007, China.
| | - Junjie Lin
- School of Mechanical and Intelligent Manufacturing, Fujian Chuanzheng Communications College, Fuzhou, Fujian 350007, China.
| | - Congchun Fu
- School of Mechanical and Intelligent Manufacturing, Fujian Chuanzheng Communications College, Fuzhou, Fujian 350007, China.
| | - Jing Guo
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Jiahao Zhou
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Fengliang Jiao
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Qiaohang Guo
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Peidi Zhou
- Institute of Smart Marine and Engineering, Fujian University of Technology, Fuzhou, Fujian, 350118, China.
| | - Mingcen Weng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| |
Collapse
|
22
|
Sun T, Feng B, Huo J, Xiao Y, Wang W, Peng J, Li Z, Du C, Wang W, Zou G, Liu L. Artificial Intelligence Meets Flexible Sensors: Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses. NANO-MICRO LETTERS 2023; 16:14. [PMID: 37955844 PMCID: PMC10643743 DOI: 10.1007/s40820-023-01235-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/24/2023] [Indexed: 11/14/2023]
Abstract
The recent wave of the artificial intelligence (AI) revolution has aroused unprecedented interest in the intelligentialize of human society. As an essential component that bridges the physical world and digital signals, flexible sensors are evolving from a single sensing element to a smarter system, which is capable of highly efficient acquisition, analysis, and even perception of vast, multifaceted data. While challenging from a manual perspective, the development of intelligent flexible sensing has been remarkably facilitated owing to the rapid advances of brain-inspired AI innovations from both the algorithm (machine learning) and the framework (artificial synapses) level. This review presents the recent progress of the emerging AI-driven, intelligent flexible sensing systems. The basic concept of machine learning and artificial synapses are introduced. The new enabling features induced by the fusion of AI and flexible sensing are comprehensively reviewed, which significantly advances the applications such as flexible sensory systems, soft/humanoid robotics, and human activity monitoring. As two of the most profound innovations in the twenty-first century, the deep incorporation of flexible sensing and AI technology holds tremendous potential for creating a smarter world for human beings.
Collapse
Affiliation(s)
- Tianming Sun
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
- College of Materials Science and Engineering, Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Bin Feng
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jinpeng Huo
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yu Xiao
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wengan Wang
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jin Peng
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zehua Li
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chengjie Du
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wenxian Wang
- College of Materials Science and Engineering, Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| | - Guisheng Zou
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Lei Liu
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
23
|
Zhu L, Tian L, Jiang S, Han L, Liang Y, Li Q, Chen S. Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling. Chem Soc Rev 2023; 52:7389-7460. [PMID: 37743823 DOI: 10.1039/d3cs00500c] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Photothermal regulation concerning solar harvesting and repelling has recently attracted significant interest due to the fast-growing research focus in the areas of solar heating for evaporation, photocatalysis, motion, and electricity generation, as well as passive cooling for cooling textiles and smart buildings. The parallel development of photothermal regulation strategies through both material and system designs has further improved the overall solar utilization efficiency for heating/cooling. In this review, we will review the latest progress in photothermal regulation, including solar heating and passive cooling, and their manipulating strategies. The underlying mechanisms and criteria of highly efficient photothermal regulation in terms of optical absorption/reflection, thermal conversion, transfer, and emission properties corresponding to the extensive catalog of nanostructured materials are discussed. The rational material and structural designs with spectral selectivity for improving the photothermal regulation performance are then highlighted. We finally present the recent significant developments of applications of photothermal regulation in clean energy and environmental areas and give a brief perspective on the current challenges and future development of controlled solar energy utilization.
Collapse
Affiliation(s)
- Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Liang Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Siyi Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Lihua Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Yunzheng Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| |
Collapse
|
24
|
Wang X, Xue P, Ma S, Gong Y, Xu X. Polydopamine-Modified MXene-Integrated Poly( N-isopropylacrylamide) to Construct Ultrafast Photoresponsive Bilayer Hydrogel Actuators with Smart Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49689-49700. [PMID: 37823839 DOI: 10.1021/acsami.3c12203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In nature, living organisms, such as octopuses, cabrito, and frogs, have already evolved admirable adhesive abilities for better movement and predation in response to the surroundings. Inspired by biological structures, researchers have made enormous efforts in developing actuators that can respond to external stimuli, while such adhesive property is very desired, yet there is still limited research in responsive hydrogel actuators. Here, a bilayer actuator with high stretchability and robust interface bonding is presented, which has a smart adhesion and thermoreception function. The system consists of an adhesive passive layer copolymerized of amphoteric ([2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl), SBMA) and acrylic acid (AA), and an active layer hydrogel composed of poly(N-isopropylacrylamide) (PNIPAm) containing polydopamine-modified MXene (P-MXene) and calcium chloride (CaCl2). The coordination of carboxylate and Ca2+ at the interface of the two layers enhances the interfacial bonding from 14 to 30 N m-1, which facilitates withstanding large strain and preventing stratification. The resulting hydrogel actuator can bend approximately 360° in a mere 10 s, exhibiting excellent photothermal effect, a large angle bending deformation, and ultrafast photoresponsive ability. As a proof of concept, the photothermal actuators are programmed to present various shapes and grab objects. Importantly, the hydrogel actuator exhibits remarkable adhesion capabilities toward diverse substrates, with a maximum peel force of up to 280 N m-1. Relying on their own adhesion and the photoresponse properties, these flexible adhesion actuators show outstanding gripping capability, enabling them to grip and release objects of different shapes and weights. More interestingly, the hydrogel exhibits a smart adjustable adhesion capability at different temperatures, which enables it as a gripper to recognize temperature signals through real-time different feedback actions based on its own adhesion. This study presents innovative insights into biomimetic hydrogel actuators, providing new opportunities for developing intelligent soft robots with multiple functions.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Pan Xue
- Xi'an Rare Metal Materials Institute Co. Ltd, 96 Weiyang Road, Xi'an 710016, China
| | - Shaoshuai Ma
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yanan Gong
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xinhua Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
25
|
Li X, Wu Z, Li B, Xing Y, Huang P, Liu L. Selaginella lepidophylla-Inspired Multi-Stimulus Cooperative Control MXene-Based Flexible Actuator. Soft Robot 2023; 10:861-872. [PMID: 37335927 DOI: 10.1089/soro.2022.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Predictable bending deformation, high cycle stability, and multimode complex motion have always been the goals pursued in the field of flexible robots. In this study, inspired by the delicate structure and humidity response characteristics of Selaginella lepidophylla, a new multilevel assisted assembly strategy was developed to construct MXene-CoFe2O4 (MXCFO) flexible actuators with different concentration gradients, to achieve predictable bending deformation and multi-stimulus cooperative control of the actuators, revealing the intrinsic link between the gradient change and the bending deformation ability of the actuator. The thickness of the actuator shows uniformity compared with the common layer-by-layer assembly strategy. And, the bionic gradient structured actuator shows high cycle stability, and it maintains excellent interlayer bonding after bending 100 times. The flexible robots designed based on the predictable bending deformation and the multi-stimulus cooperative response characteristics of the actuator initially realize conceptual models of humidity monitoring, climbing, grasping, cargo transportation, and drug delivery. The designed bionic gradient structure and unbound multi-stimulus cooperative control strategy may show great potential in the design and development of robots in the future.
Collapse
Affiliation(s)
- Xiang Li
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Ze Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Bingjue Li
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Youqiang Xing
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Peng Huang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Lei Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
26
|
Jiang J, Zhao Y. Liquid Crystalline Elastomer for Separate or Collective Sensing and Actuation Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301932. [PMID: 37162491 DOI: 10.1002/smll.202301932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Indexed: 05/11/2023]
Abstract
A porous liquid crystalline elastomer actuator filled with an ionic liquid (PLCE-IL) is shown to exhibit the functions of two classes of materials: electrically responsive, deformable materials for sensing and soft active materials for stimuli-triggered actuation. On one hand, upon the order-disorder phase transition of aligned mesogens, PLCE-IL behaves like a typical actuator capable of reversible shape change and can be used to assemble light-fuelled soft robot. On the other hand, at temperatures below the phase transition, PLCE-IL is an elastomer that can sustain and sense large deformations of various modes as well as environmental condition changes by reporting the corresponding electrical resistance variation. The two distinguished functions can also be used collectively with PLCE-IL integrated in one device. This intelligent feature is demonstrated with an artificial arm. When the arm is manually powered to fold and unfold, the PLCE-IL strip serves as a deformation sensor; while when the manual power is not available, the role of the PLCE-IL strip is switched to an actuator that enables light-driven folding and unfolding of the arm. This study shows that electrically responsive LCEs are a potential materials platform that offers possibilities for merging deformable electronic and actuation applications.
Collapse
Affiliation(s)
- Jie Jiang
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Yue Zhao
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| |
Collapse
|
27
|
Zhang Y, Pan C, Liu P, Peng L, Liu Z, Li Y, Wang Q, Wu T, Li Z, Majidi C, Jiang L. Coaxially printed magnetic mechanical electrical hybrid structures with actuation and sensing functionalities. Nat Commun 2023; 14:4428. [PMID: 37481621 PMCID: PMC10363174 DOI: 10.1038/s41467-023-40109-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Abstract
Soft electromagnetic devices have great potential in soft robotics and biomedical applications. However, existing soft-magneto-electrical devices would have limited hybrid functions and suffer from damaging stress concentrations, delamination or material leakage. Here, we report a hybrid magnetic-mechanical-electrical (MME) core-sheath fiber to overcome these challenges. Assisted by the coaxial printing method, the MME fiber can be printed into complex 2D/3D MME structures with integrated magnetoactive and conductive properties, further enabling hybrid functions including programmable magnetization, somatosensory, and magnetic actuation along with simultaneous wireless energy transfer. To demonstrate the great potential of MME devices, precise and minimally invasive electro-ablation was performed with a flexible MME catheter with magnetic control, hybrid actuation-sensing was performed by a durable somatosensory MME gripper, and hybrid wireless energy transmission and magnetic actuation were demonstrated by an untethered soft MME robot. Our work thus provides a material design strategy for soft electromagnetic devices with unexplored hybrid functions.
Collapse
Affiliation(s)
- Yuanxi Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Chengfeng Pan
- The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Pengfei Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Lelun Peng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Zhouming Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Yuanyuan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Qingyuan Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Tong Wu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Zhe Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Carmel Majidi
- Soft Machines Lab, Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| |
Collapse
|
28
|
Zhang L, Zhao S, Zhou X, Jing X, Zhou Y, Wang Y, Zhu Y, Liu X, Zhao Z, Zhang D, Feng L, Chen H. A Magnetic-Driven Multi-motion Robot with Position/Orientation Sensing Capability. RESEARCH (WASHINGTON, D.C.) 2023; 6:0177. [PMID: 39882544 PMCID: PMC11778601 DOI: 10.34133/research.0177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/29/2023] [Indexed: 01/31/2025]
Abstract
Miniature magnetic-driven robots with multimode motions and high-precision pose sensing capacity (position and orientation) are greatly demanded in in situ manipulation in narrow opaque enclosed spaces. Various magnetic robots have been carried out, whereas their deformations normally remain in single mode, and the lack of the robot's real-time status leads to its beyond-sight remagnetization and manipulation being impossible. The function integration of pose sensing and multimode motion is still of challenge. Here, a multimotion thin-film robot is created in a novel multilayer structure with a magnetic-driven layer covered by a heating-sensing conductive layer. Such a heating-sensing layer not only can segmentally and on-demand heat the magnetic-driven layer for in situ magnetization reprogramming and multimode motions but also can precisely detect the robot's pose (position and orientation) from its electrical-resistance effect by creating a small deformation under preset magnetic fields. Under the integration of reprogramming and sensing, necessary multimode motions, i.e., swimming, rolling, crawling, and obstacle-crossing, are achieved under a reprogramming field BRepr of 10 mT, and high-precision poses sensing with an accuracy of ± 3 mm in position and ± 2.5° in orientation is obtained even under a low magnetic strength of BSens of 5 mT, which combined help realize accurate out-of-sight manipulations in the enclosed space environment. Finally, a gastroscope robot for stomach drug delivery has been demonstrated for more gastrointestinal medical treatments.
Collapse
Affiliation(s)
- Liwen Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Song Zhao
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Xinzhao Zhou
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Xueshan Jing
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Yu Zhou
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Yan Wang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Yantong Zhu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Xiaolin Liu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Zehui Zhao
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
29
|
Song B, Zhang J, Zhou J, Qin A, Lam JWY, Tang BZ. Facile conversion of water to functional molecules and cross-linked polymeric films with efficient clusteroluminescence. Nat Commun 2023; 14:3115. [PMID: 37253717 DOI: 10.1038/s41467-023-38769-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023] Open
Abstract
Exploring approaches to utilize abundant water to synthesize functional molecules and polymers with efficient clusteroluminescence properties is highly significant but has yet to be reported. Herein, a chemistry of water and alkyne is developed. The synthesized products are proven as nonaromatic clusteroluminogens that could emit visible light. Their emission colors and luminescent efficiency could be adjusted by manipulating through-space interaction using different starting materials. Besides, the free-standing polymeric films with much high photoluminescence quantum yields (up to 45.7%) are in situ generated via a water-involved interfacial polymerization. The interfacial polymerization-enhanced emission of the polymeric films is observed, where the emission red-shifts and efficiency increases when the polymerization time is prolonged. The synthesized polymeric film is also verified as a Janus film. It exhibits a vapor-triggered reversible mechanical response which could be applied as a smart actuator. Thus, this work develops a method to synthesize clusteroluminogens using water, builds a clear structure-property relationship of clusteroluminogens, and provides a strategy to in situ construct functional water-based polymeric films.
Collapse
Affiliation(s)
- Bo Song
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong, China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, 510640, Guangzhou, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong, China.
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong, China.
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, 510640, Guangzhou, China.
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
30
|
Hong Q, Yang H, Fang Y, Li W, Zhu C, Wang Z, Liang S, Cao X, Zhou Z, Shen Y, Liu S, Zhang Y. Adaptable graphitic C 6N 6-based copper single-atom catalyst for intelligent biosensing. Nat Commun 2023; 14:2780. [PMID: 37188673 DOI: 10.1038/s41467-023-38459-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Self-adaptability is highly envisioned for artificial devices such as robots with chemical noses. For this goal, seeking catalysts with multiple and modulable reaction pathways is promising but generally hampered by inconsistent reaction conditions and negative internal interferences. Herein, we report an adaptable graphitic C6N6-based copper single-atom catalyst. It drives the basic oxidation of peroxidase substrates by a bound copper-oxo pathway, and undertakes a second gain reaction triggered by light via a free hydroxyl radical pathway. Such multiformity of reactive oxygen-related intermediates for the same oxidation reaction makes the reaction conditions capable to be the same. Moreover, the unique topological structure of CuSAC6N6 along with the specialized donor-π-acceptor linker promotes intramolecular charge separation and migration, thus inhibiting negative interferences of the above two reaction pathways. As a result, a sound basic activity and a superb gain of up to 3.6 times under household lights are observed, superior to that of the controls, including peroxidase-like catalysts, photocatalysts, or their mixtures. CuSAC6N6 is further applied to a glucose biosensor, which can intelligently switch sensitivity and linear detection range in vitro.
Collapse
Affiliation(s)
- Qing Hong
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Hong Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yanfeng Fang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Wang Li
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Caixia Zhu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhuang Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Sicheng Liang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xuwen Cao
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhixin Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yanfei Shen
- Medical School, Southeast University, Nanjing, 210009, China.
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
31
|
Zeng X, Xia X, Fan J, Sun R, Zeng X. How chemical cross-linking and entanglements in polybutadiene elastomers cope with tearing. Phys Chem Chem Phys 2023; 25:14463-14470. [PMID: 37184830 DOI: 10.1039/d3cp01398g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
New applications of elastomers, such as flexible electronics and soft robotics, have brought great attention to tear resistance since elastomers are prone to shear failure. Most elastomers contain chemical cross-links and entanglements. The effects of both on their mechanical properties have been intensively studied, while how they cope with tearing remains elusive. Here, in polybutadiene elastomers, we find that the energy release rate of tearing (Gtearing), often employed as a measure of tear resistance, is influenced synergistically by chemical cross-linking and entanglements, while its threshold (G0) is only related to the chemical cross-linking. At a low tear speed, the polybutadiene elastomers with low cross-linking density have Gtearing up to 4 times higher than their G0 compared to highly cross-linked ones. Different from conventional reinforcement due to volume dissipation of a polymer network, enhancement of Gtearing significantly depends on the degree of cross-linking. The enhancement of Gtearing at low cross-linking degrees may be related to a novel mechanism, the friction-strengthening phenomenon, which was possibly caused by the pull-out of the chains at a high degree of orientation.
Collapse
Affiliation(s)
- Xiangliang Zeng
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, China.
| | - Xinnian Xia
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, China.
| | - JianFeng Fan
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Xiaoliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
32
|
Wang J, Ren Y, Li W, Wu L, Deng Y, Fang X. Intelligent Multifunctional Sensing Systems based on Ordered Macro-Microporous Metal Organic Framework and Its Derivatives. SMALL METHODS 2023:e2201687. [PMID: 37116102 DOI: 10.1002/smtd.202201687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Compared with nanomaterials-based sensors with single function, the development of multifunctional sensors shows high potential in comprehensive monitoring of personal health and environment, intelligent human-machine interfaces, and realistic imitation of human skin in prosthetics. Ordered macro-microporous metal-organic frameworks (MOFs)-enabled flexible and stretchable electronics are promising candidates for integrated multifunctional sensing systems. Herein, a three-dimensional ordered macro-microporous zeolite imidazolate framework-8 (3DOM ZIF-8) for humidity sensing and the derived ZnO within a hierarchically ordered macroporous-mesoporous-microporous carbon matrix (ZnO@HOMC) for gas sensor is constructed. Benefit from hierarchically ordered macroporous-mesoporous-microporous structure, the active site is fully exposed, and the charge transfer is accelerated. As a result, the multifunctional sensing systems show ultrafast response and recovery speed (10 s and 34 s), high sensitivity (Rair /Rgas = 38.6@50 ppm) to acetone, rapid humidity response speed (0.23 s) within changing humidity (RH 21%-99%), excellent stability and repeatability. Furthermore, in order to realize real-time monitoring of gas concentrations and humidity on mobile devices, an intelligent and portable sensor module is fabricated and wirelessly connected to a smartphone to effectively detect acetone concentration and humidity. This sensing technology shows fascinating applications in personal health, fitness tracking, electronic skins, artificial nervous systems, and human-machine interactions.
Collapse
Affiliation(s)
- Jing Wang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Institute of Brain Intelligence Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Yuan Ren
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University, Shanghai, 200433, P. R. China
- School of Materials Science and Engineering and Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, P. R. China
| | - Wei Li
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Institute of Brain Intelligence Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Limin Wu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Institute of Brain Intelligence Science and Technology, Fudan University, Shanghai, 200433, P. R. China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University, Shanghai, 200433, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Institute of Brain Intelligence Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
33
|
Hui X, Luo J, Wang R, Sun H. Multiresponsive Microactuator for Ultrafast Submillimeter Robots. ACS NANO 2023; 17:6589-6600. [PMID: 36976705 DOI: 10.1021/acsnano.2c12203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Untethered submillimeter microrobots have significant application prospects in environment monitoring, reconnaissance, and biomedicine. However, they are practically limited to their slow movement. Here, an electrical/optical-actuated microactuator is reported and developed into several untethered ultrafast submillimeter robots. Composed of multilayer nanofilms with exquisitely designed patterns and high surface-to-volume ratios, the microrobot exhibits flexible, precise, and rapid response under voltages and lasers, resulting in controllable and ultrafast inchworm-type movement. The proposed design and microfabrication approach allows various improved and distinctive 3D microrobots simultaneously. The motion speed is highly related to the laser frequency and reaches 2.96 mm/s (3.66 body length/s) on the polished wafer surface. Excellent movement adaptability of the robot is also verified on other rough substrates. Moreover, directional locomotion can be realized simply by the bias of the irradiation of the laser spot, and the maximum angular speed reaches 167.3°/s. Benefiting from the bimorph film structure and symmetrical configuration, the microrobot is able to maintain functionalized after being crashed by a payload 67 000 times heavier than its weight, or at the unexpectedly reversed state. These results provide a strategy for 3D microactuators with precise and rapid response, and microrobots with fast movement for delicate tasks in narrow and restrictive scenarios.
Collapse
Affiliation(s)
- Xusheng Hui
- School of Astronautics, Northwestern Polytechnical University, Shaanxi 710072, China
| | - Jianjun Luo
- School of Astronautics, Northwestern Polytechnical University, Shaanxi 710072, China
| | - Rong Wang
- School of Astronautics, Northwestern Polytechnical University, Shaanxi 710072, China
| | - Hao Sun
- Beijing Advanced Medical Technologies, Ltd. Inc., Beijing 102609, China
| |
Collapse
|
34
|
Zeng X, Xu L, Xia X, Bai X, Zhong C, Fan J, Ren L, Sun R, Zeng X. The Synergy of Hydrogen Bond and Entanglement of Elastomer Captures Unprecedented Flaw Insensitivity Rate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207409. [PMID: 36683211 DOI: 10.1002/smll.202207409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Elastomers are regarded as one of the best candidates for the matrix material of soft electronics, yet they are susceptible to fracture due to the inevitable flaws generated during applications. Introducing microstructures, sacrificial bonds, and sliding cross-linking has been recognized as an effective way to improve the flaw insensitivity rate (Rinsen ). However, these elastomers still prone to failure under tensile loads with the presence of even small flaws. Here, this work reports a polybutadiene elastomer with unprecedented Rinsen via the synergy of hydrogen bond and entanglement. The resulting polybutadiene elastomer exhibits a Rinsen ≈1.075, which is much higher than those of reported elastomers. By molecular chain interaction and molecular chain conformation analysis, this work demonstrates that the synergistic effect of hydrogen bond dissociation and entanglement slip in the polybutadiene elastomers during stretching leads to the high Rinsen . Using polybutadiene elastomer as matrix of thermal interface materials, this work demonstrates effective heat transfer for strain sensor and electronic devices. In addition, cytocompatibility of the elastomers is verified by cell proliferation and live/dead viability assays. The combination of outstanding biocompatible and excellent mechanical properties of the elastomers creates new opportunities for their applications in electronic skin.
Collapse
Affiliation(s)
- Xiangliang Zeng
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, China
| | - Lu Xu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
| | - Xinnian Xia
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, China
| | - Xue Bai
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Cheng Zhong
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianfeng Fan
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Linlin Ren
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaoliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
35
|
Yuan R, Yang N, Li W, Liu Z, Feng F, Zhang Q, Ge L. LBL Noninvasively Peelable Biointerfacial Adhesives for Cutaneo-Inspired pH/Tactility Artificial Receptors. Adv Healthc Mater 2023; 12:e2202296. [PMID: 36377355 DOI: 10.1002/adhm.202202296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Besides barrier functions, skin possesses multiple sentiences to external stimuli (e.g., temperature, force, and humidity) for human-outside interaction. Thus, skincare should be taken very seriously, especially by patients with sensory disorders. However, currently available skin-mimicking devices are always limited by so much insufficient response functions and nontunable interface behaviors so as not to realize precise health monitoring and self-defense against injury. Herein, a bioinspired cutaneous receptor-perceptual system (CRPS) patch is presented, integrating hybrid pH indicators and triboelectric nanogenerators into biointerface film-adhesives that are fabricated through facile layer-by-layer (LBL) self-assembly of amide and Schiff-base linkages between alginate grafted with N-hydroxysuccinimide ester (AN), tannic acid (TA), and polyethylenimine (PEI). This CRPS patch is adhered robustly to the soft-curved skin surface without failure via "molecular suturing," and amino acid enables its benign peel-on-demand from tissue interfaces. Postdamage self-healing brings it without surgical reoperation, avoiding extra cost, pain, as well as infection risks. Significantly, CRPS patches as artificial chemo/mechanoreceptors can remotely visualize skin physiological status by pH-induced chromism using smartphones and prevent skin contact injury by tactility-driven self-powered electrical signals. Overall, the LBL-based strategy to create controllably biointerface-adhesive CRPS patches will usher in a new era of the mobihealth care platform supporting smart diagnosis and self-protection.
Collapse
Affiliation(s)
- Renqiang Yuan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.,Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Ning Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Weikun Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Zonghao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Fang Feng
- Jiangsu Yuyue Medical Equipment & Supply Co. Ltd. Development Zone, Danyang, 212310, P. R. China
| | - Qianli Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, No.1 Kerui Road, Suzhou, 215009, P. R. China
| | - Liqin Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
36
|
Jing Y, Su F, Yu X, Fang H, Wan Y. Advances in artificial muscles: A brief literature and patent review. Front Bioeng Biotechnol 2023; 11:1083857. [PMID: 36741767 PMCID: PMC9893653 DOI: 10.3389/fbioe.2023.1083857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Artificial muscles are an active research area now. Methods: A bibliometric analysis was performed to evaluate the development of artificial muscles based on research papers and patents. A detailed overview of artificial muscles' scientific and technological innovation was presented from aspects of productive countries/regions, institutions, journals, researchers, highly cited papers, and emerging topics. Results: 1,743 papers and 1,925 patents were identified after retrieval in Science Citation Index-Expanded (SCI-E) and Derwent Innovations Index (DII). The results show that China, the United States, and Japan are leading in the scientific and technological innovation of artificial muscles. The University of Wollongong has the most publications and Spinks is the most productive author in artificial muscle research. Smart Materials and Structures is the journal most productive in this field. Materials science, mechanical and automation, and robotics are the three fields related to artificial muscles most. Types of artificial muscles like pneumatic artificial muscles (PAMs) and dielectric elastomer actuator (DEA) are maturing. Shape memory alloy (SMA), carbon nanotubes (CNTs), graphene, and other novel materials have shown promising applications in this field. Conclusion: Along with the development of new materials and processes, researchers are paying more attention to the performance improvement and cost reduction of artificial muscles.
Collapse
Affiliation(s)
- Yuan Jing
- Periodicals Agency, Zhejiang Sci-Tech University, Hangzhou, China,*Correspondence: Yuan Jing,
| | - Fangfang Su
- School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaona Yu
- Periodicals Agency, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hui Fang
- Library, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Library, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
37
|
Missale E, Frasconi M, Pantano MF. Ultrathin organic membranes: Can they sustain the quest for mechanically robust device applications? iScience 2023; 26:105924. [PMID: 36866039 PMCID: PMC9971879 DOI: 10.1016/j.isci.2023.105924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ultrathin polymeric films have recently attracted tremendous interest as functional components of coatings, separation membranes, and sensors, with applications spanning from environment-related processes to soft robotics and wearable devices. In order to support the development of robust devices with advanced performances, it is necessary to achieve a deep comprehension of the mechanical properties of ultrathin polymeric films, which can be significantly affected by confinement effects at the nanoscale. In this review paper, we collect the most recent advances in the development of ultrathin organic membranes with emphasis on the relationship between their structure and mechanical properties. We provide the reader with a critical overview of the main approaches for the preparation of ultrathin polymeric films, the methodologies for the investigation of their mechanical properties, and models to understand the primary effects that impact their mechanical response, followed by a discussion on the current trends for designing mechanically robust organic membranes.
Collapse
Affiliation(s)
- Elena Missale
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Corresponding author
| | - Maria F. Pantano
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
- Corresponding author
| |
Collapse
|
38
|
Zhang S, Ke X, Jiang Q, Chai Z, Wu Z, Ding H. Fabrication and Functionality Integration Technologies for Small-Scale Soft Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200671. [PMID: 35732070 DOI: 10.1002/adma.202200671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Small-scale soft robots are attracting increasing interest for visible and potential applications owing to their safety and tolerance resulting from their intrinsic soft bodies or compliant structures. However, it is not sufficient that the soft bodies merely provide support or system protection. More importantly, to meet the increasing demands of controllable operation and real-time feedback in unstructured/complicated scenarios, these robots are required to perform simplex and multimodal functionalities for sensing, communicating, and interacting with external environments during large or dynamic deformation with the risk of mismatch or delamination. Challenges are encountered during fabrication and integration, including the selection and fabrication of composite/materials and structures, integration of active/passive functional modules with robust interfaces, particularly with highly deformable soft/stretchable bodies. Here, methods and strategies of fabricating structural soft bodies and integrating them with functional modules for developing small-scale soft robots are investigated. Utilizing templating, 3D printing, transfer printing, and swelling, small-scale soft robots can be endowed with several perceptual capabilities corresponding to diverse stimulus, such as light, heat, magnetism, and force. The integration of sensing and functionalities effectively enhances the agility, adaptability, and universality of soft robots when applied in various fields, including smart manufacturing, medical surgery, biomimetics, and other interdisciplinary sciences.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xingxing Ke
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qin Jiang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhiping Chai
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Han Ding
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
39
|
Zhang J, Soon RH, Wei Z, Hu W, Sitti M. Liquid Metal-Elastomer Composites with Dual-Energy Transmission Mode for Multifunctional Miniature Untethered Magnetic Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203730. [PMID: 36065052 PMCID: PMC9631051 DOI: 10.1002/advs.202203730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Miniature untethered robots attract growing interest as they have become more functional and applicable to disruptive biomedical applications recently. Particularly, the soft ones among them exhibit unique merits of compliance, versatility, and agility. With scarce onboard space, these devices mostly harvest energy from environment or physical fields, such as magnetic and acoustic fields and patterned lights. In most cases, one device only utilizes one energy transmission mode (ETM) in powering its activities to achieve programmed tasks, such as locomotion and object manipulation. But real-world tasks demand multifunctional devices that require more energy in various forms. This work reports a liquid metal-elastomer composite with dual-ETM using one magnetic field for miniature untethered multifunctional robots. The first ETM uses the low-frequency (<100 Hz) field component to induce shape-morphing, while the second ETM employs energy transmitted via radio-frequency (20 kHz-300 GHz) induction to power onboard electronics and generate excess heat, enabling new capabilities. These new functions do not disturb the shape-morphing actuated using the first ETM. The reported material enables the integration of electric and thermal functionalities into soft miniature robots, offering a wealth of inspirations for multifunctional miniature robots that leverage developments in electronics to exhibit usefulness beyond self-locomotion.
Collapse
Affiliation(s)
- Jiachen Zhang
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Department of Biomedical EngineeringCity University of Hong KongHong Kong SARChina
| | - Ren Hao Soon
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Zihan Wei
- Department of Biomedical EngineeringCity University of Hong KongHong Kong SARChina
| | - Wenqi Hu
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH ZürichZürich8092Switzerland
- School of Medicine and College of EngineeringKoç UniversityIstanbul34450Turkey
| |
Collapse
|
40
|
Li Y, Wu J, Yang P, Song L, Wang J, Xing Z, Zhao J. Multi-Degree-of-Freedom Robots Powered and Controlled by Microwaves. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203305. [PMID: 35986431 PMCID: PMC9561789 DOI: 10.1002/advs.202203305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Microwaves have become a promising wireless driving strategy due to the advantages of transmissivity through obstacles, fast energy targeting, and selective heating. Although there are some studies on microwave powered artificial muscles based on different structures, the lack of studies on microwave control has limited the development of microwave-driven (MWD) robots. Here, a far-field MWD parallel robot controlled by adjusting energy distribution via changing the polarization direction of microwaves at 2.47 GHz is first reported. The parallel robot is based on three double-layer bending actuators composed of wave-absorbing sheets and bimetallic sheets, and it can implement circular and triangular path at a distance of 0.4 m under 700 W transmitting power. The thermal response rate of the actuator under microwaves is studied, and it is found that the electric-field components can provide a faster thermal response at the optimal length of actuator than magnetic-field components. The work of the parallel robot is demonstrated in an enclosed space composed of microwave-transparent materials. This developed method demonstrates the multi-degree-of-freedom controllability for robots using microwaves and offers potential solutions for some engineering cases, such as pipeline/reactors inspection and medical applications.
Collapse
Affiliation(s)
- Yongze Li
- Department of Mechanical EngineeringHarbin Institute of TechnologyWeihai264209China
| | - Jianyu Wu
- Department of Mechanical EngineeringHarbin Institute of TechnologyWeihai264209China
| | - Peizhuo Yang
- School of Information Science and EngineeringHarbin Institute of TechnologyWeihai264209China
| | - Lizhong Song
- School of Information Science and EngineeringHarbin Institute of TechnologyWeihai264209China
| | - Jun Wang
- School of Information Science and EngineeringHarbin Institute of TechnologyWeihai264209China
| | - Zhiguang Xing
- Department of Mechanical EngineeringHarbin Institute of TechnologyWeihai264209China
| | - Jianwen Zhao
- Department of Mechanical EngineeringHarbin Institute of TechnologyWeihai264209China
| |
Collapse
|
41
|
Liu Z, Zhang R, Yang K, Yue Y, Wang F, Li K, Wang G, Lian J, Xin G. Highly Thermally Conductive Bimorph Structures for Low-Grade Heat Energy Harvester and Energy-Efficient Actuators. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39031-39038. [PMID: 35993541 DOI: 10.1021/acsami.2c08101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low-power electronics are urgently needed for various emerging technologies, e.g., actuators as signal transducers and executors. Collecting energy from ubiquitous low-grade heat sources (T < 100 °C) as an uninterrupted power supply for low-power electronics is highly desirable. However, the majority of energy-harvesting systems are not capable of collecting low-grade heat energy in an efficient and constant manner. Limited by materials and driving mode, fabrications of low-power and energy-efficient actuators are still challenging. Here, highly thermally conductive bimorph structures based on graphene/poly(dimethylsiloxane) (PDMS) structures have been fabricated as low-grade heat energy harvesters and energy-efficient actuators. Regular temperature fluctuations on bimorph structures can be controlled by nonequilibrium heat transfer, leading to stable and self-sustained thermomechanical cycles. By coupling ferroelectric poly(vinylidene fluoride) with bimorph structures, uninterrupted thermomechanoelectrical energy conversion has been achieved from the low-grade heat source. Utilizing the rapid thermal transport capability, multifinger soft grippers are assembled with bimorph actuators, demonstrating fast response, large displacement, and adaptive grip when driven by low-temperature heaters.
Collapse
Affiliation(s)
- Zexin Liu
- Wuhan National High Magnetic Field Center and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong Zhang
- Wuhan National High Magnetic Field Center and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kai Yang
- School of Materials Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue Yue
- Wuhan National High Magnetic Field Center and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanfan Wang
- School of Materials Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kangyong Li
- School of Materials Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gongkai Wang
- School of Material Science and Engineering, Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300130, China
| | - Jie Lian
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110, 8th Street, Troy, New York 12180, United States
| | - Guoqing Xin
- Wuhan National High Magnetic Field Center and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
42
|
Shi Z, Meng L, Shi X, Li H, Zhang J, Sun Q, Liu X, Chen J, Liu S. Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications. NANO-MICRO LETTERS 2022; 14:141. [PMID: 35789444 PMCID: PMC9256895 DOI: 10.1007/s40820-022-00874-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
Various morphological structures in pressure sensors with the resulting advanced sensing properties are reviewed comprehensively. Relevant manufacturing techniques and intelligent applications of pressure sensors are summarized in a complete and interesting way. Future challenges and perspectives of flexible pressure sensors are critically discussed. As an indispensable branch of wearable electronics, flexible pressure sensors are gaining tremendous attention due to their extensive applications in health monitoring, human –machine interaction, artificial intelligence, the internet of things, and other fields. In recent years, highly flexible and wearable pressure sensors have been developed using various materials/structures and transduction mechanisms. Morphological engineering of sensing materials at the nanometer and micrometer scales is crucial to obtaining superior sensor performance. This review focuses on the rapid development of morphological engineering technologies for flexible pressure sensors. We discuss different architectures and morphological designs of sensing materials to achieve high performance, including high sensitivity, broad working range, stable sensing, low hysteresis, high transparency, and directional or selective sensing. Additionally, the general fabrication techniques are summarized, including self-assembly, patterning, and auxiliary synthesis methods. Furthermore, we present the emerging applications of high-performing microengineered pressure sensors in healthcare, smart homes, digital sports, security monitoring, and machine learning-enabled computational sensing platform. Finally, the potential challenges and prospects for the future developments of pressure sensors are discussed comprehensively.
Collapse
Affiliation(s)
- Zhengya Shi
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Lingxian Meng
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xinlei Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, People's Republic of China
| | - Hongpeng Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| | - Juzhong Zhang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Qingqing Sun
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xuying Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Jinzhou Chen
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Shuiren Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
43
|
Yu Z, Wang Y, Zheng J, Sun S, Fu Y, Chen D, Cai W, Wang D, Zhou H, Li D. Fast-Response Bioinspired Near-Infrared Light-Driven Soft Robot Based on Two-Stage Deformation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16649-16657. [PMID: 35360897 DOI: 10.1021/acsami.2c01109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we report a remotely controlled soft robot employing a photoresponsive nanocomposite synthesized from liquid crystal elastomers (LCEs), high elastic form-stable phase change polymer (HEPCP), and multiwalled carbon nanotubes (MWCNTs). Possessing a two-stage deformation upon exposure to near-infrared (NIR) light, the LCE/HEPCP/MWCNT (LHM) nanocomposite allows the soft robot to exhibit an obvious, fast, and reversible shape change with low detection limitations. In addition to the deformation and bending of the LCE molecular chains itself, the HEPCP in the composite material can also be triggered by a reversible solid-liquid transition due to the temperature rise caused by MWCNTs, which further promotes the change of the LCE. In particular, the proposed photodriven LHM soft robot can bend up to 180° in 2 s upon NIR stimulation (320 mW, distance of 5 cm) and generate recoverable, dramatic, and sensitive deformation to execute various tasks including walking, twisting, and bending. With the capacity of imitating biological behaviors through remote control, the disruptive innovation developed here offers a promising path toward miniaturized untethered robotic systems.
Collapse
Affiliation(s)
- Zhaohan Yu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Yunming Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Jiaqi Zheng
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Shuang Sun
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Yue Fu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Dan Chen
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Weihao Cai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Dong Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Huamin Zhou
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Dequn Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| |
Collapse
|
44
|
Lin E, Wang Z, Zhao X, Liu Z, Yan D, Jin F, Chen Y, Cheng P, Zhang Z. A Class of Rigid–Flexible Coupling Crystalline Crosslinked Polymers as Vapomechanical Actuators. Angew Chem Int Ed Engl 2022; 61:e202117390. [DOI: 10.1002/anie.202117390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/11/2022]
Affiliation(s)
- En Lin
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Zhifang Wang
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Xiuyu Zhao
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Zhaoyi Liu
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Dong Yan
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Fazheng Jin
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| |
Collapse
|
45
|
Phillips JW, Prominski A, Tian B. Recent advances in materials and applications for bioelectronic and biorobotic systems. VIEW 2022. [DOI: 10.1002/viw.20200157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jacob W. Phillips
- Department of Chemistry The University of Chicago Chicago Illinois USA
| | - Aleksander Prominski
- Department of Chemistry The University of Chicago Chicago Illinois USA
- The James Franck Institute The University of Chicago Chicago Illinois USA
- The Institute for Biophysical Dynamics The University of Chicago Chicago Illinois USA
| | - Bozhi Tian
- Department of Chemistry The University of Chicago Chicago Illinois USA
- The James Franck Institute The University of Chicago Chicago Illinois USA
- The Institute for Biophysical Dynamics The University of Chicago Chicago Illinois USA
| |
Collapse
|
46
|
Wang R, Han L, Wu C, Dong Y, Zhao X. Localizable, Identifiable, and Perceptive Untethered Light-Driven Soft Crawling Robot. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6138-6147. [PMID: 35050581 DOI: 10.1021/acsami.1c20539] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft robots based on bionics have attracted extensive attention in recent years. However, most of previous works focused on the motion of robots that were incapable of communication and perception. In this work, an untethered crawling robot is proposed with integration of motion, communication, and location based entirely on a flexible material, which is capable of being utilized as a sensing platform. The hydrophilic graphene oxide film, capable of photothermal conversion, allows the robot to undergo a large deformation stimulated by near-infrared light. Conductive fabric with low resistivity and high mechanical strength, replacing the traditional rigid circuit, is utilized to complete the communication of the robot. The designed communication module allows an electrical signal to be inductively coupled to the soft robot instead of being generated by batteries or through transmission lines. The perception of the robot is demonstrated by covering sensitive materials. Furthermore, the positioning and identification of the robot are verified by an external coil array. The proposed soft crawling robot provides an innovative strategy for the integration of multifunctional robots and shows great potential in bionic devices, intelligent robots, and advanced sensors.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Lei Han
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Chenggen Wu
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Yupeng Dong
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Xiaoguang Zhao
- Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| |
Collapse
|
47
|
Zhou P, Lin J, Zhang W, Luo Z, Chen L. Pressure-Perceptive Actuators for Tactile Soft Robots and Visual Logic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104270. [PMID: 34913616 PMCID: PMC8844481 DOI: 10.1002/advs.202104270] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/12/2021] [Indexed: 05/25/2023]
Abstract
Soft actuators with sensing capabilities are important in intelligent robots and human-computer interactions. However, present perceptive actuating systems rely on the integration of multiple functional units with complex circuit design. Here, a new-type pressure-perceptive actuator is reported, which integrates functions of sensing, actuating, and decision making at material level without complex combination. The actuator is composed of an actuating unit and a pressure-sensing unit, both of which are fabricated by carbon nanotube (CNT), silk, and polymer composite. On the one hand, the actuating unit can be driven by low voltages (<13 V), owing to a Joule-heating effect. On the other hand, the current passing the pressure-sensing unit can be controlled by tactile pressure. In the integrated actuator, it is able to control the deformation amplitude of actuating unit by applying different pressures on the pressure-sensing unit. A portable tactile-activated gripper is fabricated to operate an object through pressure control, demonstrating its application in tactile soft robots. Finally, three visual logic gates (AND, OR, and NOT) are proposed, which convert "tactile" inputs into "visible" deformation outputs, using the CNT-silk-based material for sensing and actuating in the decision-making process. This study provides a new path for intelligent soft robots and new-generation logic devices.
Collapse
Affiliation(s)
- Peidi Zhou
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| | - Jian Lin
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| | - Wei Zhang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| | - Zhiling Luo
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| | - Luzhuo Chen
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| |
Collapse
|
48
|
Ionic covalent organic framework based electrolyte for fast-response ultra-low voltage electrochemical actuators. Nat Commun 2022; 13:390. [PMID: 35046389 PMCID: PMC8770580 DOI: 10.1038/s41467-022-28023-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/16/2021] [Indexed: 01/01/2023] Open
Abstract
Electrically activated soft actuators with large deformability are important for soft robotics but enhancing durability and efficiency of electrochemical actuators is challenging. Herein, we demonstrate that the actuation performance of an ionic two-dimensional covalent-organic framework based electrochemical actuator is improved through the ordered pore structure of opening up efficient ion transport routes. Specifically, the actuator shows a large peak to peak displacement (9.3 mm, ±0.5 V, 1 Hz), a fast-response time to reach equilibrium-bending (~1 s), a correspondingly high bending strain difference (0.38%), a broad response frequency (0.1–20 Hz) and excellent durability (>99%) after 23,000 cycles. The present study ascertains the functionality of soft electrolyte as bionic artificial actuators while providing ideas for expanding the limits in applications for robots. Electrically activated soft actuators with large deformability are important for soft robotics but enhancing durability and efficiency of electrochemical actuators is challenging. Here the authors demonstrate that the actuation performance of an ionic two-dimensional covalent-organic framework based electrochemical actuator is improved through the ordered pore structure of opening up efficient ion transport routes
Collapse
|
49
|
Lin E, Wang Z, Zhao X, Liu Z, Yan D, Jin F, Chen Y, Cheng P, Zhang Z. A Class of Rigid‐Flexible Coupling Crystalline Crosslinked Polymers as Vapomechanical Actuators. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- En Lin
- Nankai University College of Chemistry CHINA
| | | | - Xiuyu Zhao
- Nankai University College of Chemistry CHINA
| | - Zhaoyi Liu
- Nankai University College of Chemistry CHINA
| | - Dong Yan
- Nankai University College of Chemistry CHINA
| | - Fazheng Jin
- Nankai University College of Chemistry CHINA
| | - Yao Chen
- Nankai University College of Chemistry CHINA
| | - Peng Cheng
- Nankai University College of Chemistry CHINA
| | - Zhenjie Zhang
- Nankai University Chemistry Weijin Road 94# 300071 Tianjin CHINA
| |
Collapse
|
50
|
Del Pozo M, Sol JAHP, Schenning APHJ, Debije MG. 4D Printing of Liquid Crystals: What's Right for Me? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104390. [PMID: 34716625 DOI: 10.1002/adma.202104390] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/20/2021] [Indexed: 05/24/2023]
Abstract
Recent years have seen major advances in the developments of both additive manufacturing concepts and responsive materials. When combined as 4D printing, the process can lead to functional materials and devices for use in health, energy generation, sensing, and soft robots. Among responsive materials, liquid crystals, which can deliver programmed, reversible, rapid responses in both air and underwater, are a prime contender for additive manufacturing, given their ease of use and adaptability to many different applications. In this paper, selected works are compared and analyzed to come to a didactical overview of the liquid crystal-additive manufacturing junction. Reading from front to back gives the reader a comprehensive understanding of the options and challenges in the field, while researchers already experienced in either liquid crystals or additive manufacturing are encouraged to scan through the text to see how they can incorporate additive manufacturing or liquid crystals into their own work. The educational text is closed with proposals for future research in this crossover field.
Collapse
Affiliation(s)
- Marc Del Pozo
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Jeroen A H P Sol
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Albert P H J Schenning
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Michael G Debije
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| |
Collapse
|