1
|
Zhou Y, Liu D, Gui Yang H, Yang S, Hou Y. Preparation Techniques for Perovskite Single Crystal Films: From Nucleation to Growth. Chem Asian J 2024:e202401294. [PMID: 39624991 DOI: 10.1002/asia.202401294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Thickness-controllable perovskite single crystal films exhibit tremendous potential for various optoelectronic applications due to their capacity to leverage the relationship between diffusion length and absorption depth. However, the fabrication processes have suffered from difficulties in large-area production and poor quality with abundant surface defects. While post-treatments, such as passivation and polishing, can provide partial improvement in surface quality, the fundamental solution lies in the direct growth of high-quality single crystal films. In this work, we firstly summarize the basic principles of nucleation and growth phenomenon of crystalline materials. Advanced growth methods of perovskite single crystal films, including solution-based, vapor phase epitaxial growth, and top-down method, are discussed, highlighting their respective advantages and limitations. Finally, we also present future directions and the challenges that lie ahead in perovskite single crystal films.
Collapse
Affiliation(s)
- Yawen Zhou
- East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, 130 Meilong Road, 200237, Shanghai, China
| | - Da Liu
- East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, 130 Meilong Road, 200237, Shanghai, China
| | - Hua Gui Yang
- East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, 130 Meilong Road, 200237, Shanghai, China
| | - Shuang Yang
- East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, 130 Meilong Road, 200237, Shanghai, China
| | - Yu Hou
- East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, 130 Meilong Road, 200237, Shanghai, China
| |
Collapse
|
2
|
Zhang S, Ma K, Yuan B, Yang J, Lu Y, Sun D, Park JY, Wei Z, Mannodi-Kanakkithodi A, Yu Y, Huang L, Pennycook TJ, Dou L. Deterministic Synthesis of a Two-Dimensional MAPbI 3 Nanosheet and Twisted Structure with Moiré Superlattice. J Am Chem Soc 2024; 146:27861-27870. [PMID: 39327910 DOI: 10.1021/jacs.4c10298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The synthesis of extremely thin 2D halide perovskites and the exploration of their interlayer interactions have garnered significant attention in current research. A recent advancement we have made involves the development of a successful technique for generating ultrathin MAPbI3 nanosheets with controlled thickness and an exposed intrinsic surface. This innovative method relies on utilizing the Ruddlesden-Popper (RP) phase perovskite (BA2MAn-1PbnI3n+1) as a template. However, the precise reaction mechanism remains incompletely understood. In this work, we systematically examined the dynamic evolution of the phase conversion process, with a specific focus on the influence of inorganic slab (composed of [PbI6]4- octahedrons) numbers on regulating the thickness and quality of the resulting MAPbI3 nanosheets. Additionally, the atomic structure is directly visualized using the transmission electron microscopy (TEM) method, confirming its exceptional quality. To illustrate interfacial interactions in ultrathin structures, artificial moiré superlattices are constructed through a physical transfer approach, revealing multiple localized high-symmetry stacks within a distinctive square moiré pattern. These findings establish a novel framework for investigating the physics of interfacial interactions in ionic semiconducting crystals.
Collapse
Affiliation(s)
- Shuchen Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Biao Yuan
- Electron Microscopy for Materials Science, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaqi Yang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dewei Sun
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zitang Wei
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Timothy J Pennycook
- Electron Microscopy for Materials Science, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Zhang S, Jin L, Lu Y, Zhang L, Yang J, Zhao Q, Sun D, Thompson JJP, Yuan B, Ma K, Akriti, Park JY, Lee YH, Wei Z, Finkenauer BP, Blach DD, Kumar S, Peng H, Mannodi-Kanakkithodi A, Yu Y, Malic E, Lu G, Dou L, Huang L. Moiré superlattices in twisted two-dimensional halide perovskites. NATURE MATERIALS 2024; 23:1222-1229. [PMID: 38906993 DOI: 10.1038/s41563-024-01921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Moiré superlattices have emerged as a new platform for studying strongly correlated quantum phenomena, but these systems have been largely limited to van der Waals layer two-dimensional materials. Here we introduce moiré superlattices leveraging ultrathin, ligand-free halide perovskites, facilitated by ionic interactions. Square moiré superlattices with varying periodic lengths are clearly visualized through high-resolution transmission electron microscopy. Twist-angle-dependent transient photoluminescence microscopy and electrical characterizations indicate the emergence of localized bright excitons and trapped charge carriers near a twist angle of ~10°. The localized excitons are accompanied by enhanced exciton emission, attributed to an increased oscillator strength by a theoretically predicted flat band. This research showcases the promise of two-dimensional perovskites as unique room-temperature moiré materials.
Collapse
Affiliation(s)
- Shuchen Zhang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Linrui Jin
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Yuan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Linghai Zhang
- School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Jiaqi Yang
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - Qiuchen Zhao
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Dewei Sun
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Biao Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Akriti
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yoon Ho Lee
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Zitang Wei
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Blake P Finkenauer
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Daria D Blach
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Sarath Kumar
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ermin Malic
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, USA
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Zhang L, Wang Y, Chu A, Zhang Z, Liu M, Shen X, Li B, Li X, Yi C, Song R, Liu Y, Zhuang X, Duan X. Facet-selective growth of halide perovskite/2D semiconductor van der Waals heterostructures for improved optical gain and lasing. Nat Commun 2024; 15:5484. [PMID: 38942769 PMCID: PMC11213932 DOI: 10.1038/s41467-024-49364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/03/2024] [Indexed: 06/30/2024] Open
Abstract
The tunable properties of halide perovskite/two dimensional (2D) semiconductor mixed-dimensional van der Waals heterostructures offer high flexibility for innovating optoelectronic and photonic devices. However, the general and robust growth of high-quality monocrystalline halide perovskite/2D semiconductor heterostructures with attractive optical properties has remained challenging. Here, we demonstrate a universal van der Waals heteroepitaxy strategy to synthesize a library of facet-specific single-crystalline halide perovskite/2D semiconductor (multi)heterostructures. The obtained heterostructures can be broadly tailored by selecting the coupling layer of interest, and can include perovskites varying from all-inorganic to organic-inorganic hybrid counterparts, individual transition metal dichalcogenides or 2D heterojunctions. The CsPbI2Br/WSe2 heterostructures demonstrate ultrahigh optical gain coefficient, reduced gain threshold and prolonged gain lifetime, which are attributed to the reduced energetic disorder. Accordingly, the self-organized halide perovskite/2D semiconductor heterostructure lasers show highly reproducible single-mode lasing with largely reduced lasing threshold and improved stability. Our findings provide a high-quality and versatile material platform for probing unique optoelectronic and photonic physics and developing further electrically driven on-chip lasers, nanophotonic devices and electronic-photonic integrated systems.
Collapse
Affiliation(s)
- Liqiang Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Anshi Chu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Zhengwei Zhang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, Hunan, P. R. China
| | - Miaomiao Liu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Xiaohua Shen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Bailing Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Xu Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Chen Yi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Rong Song
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Yingying Liu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Xiujuan Zhuang
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, Hunan, P. R. China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China.
| |
Collapse
|
5
|
Zhong J, Zhou D, Bai Q, Liu C, Fan X, Zhang H, Li C, Jiang R, Zhao P, Yuan J, Li X, Zhan G, Yang H, Liu J, Song X, Zhang J, Huang X, Zhu C, Zhu C, Wang L. Growth of millimeter-sized 2D metal iodide crystals induced by ion-specific preference at water-air interfaces. Nat Commun 2024; 15:3185. [PMID: 38609368 PMCID: PMC11014996 DOI: 10.1038/s41467-024-47241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Conventional liquid-phase methods lack precise control in synthesizing and processing materials with macroscopic sizes and atomic thicknesses. Water interfaces are ubiquitous and unique in catalyzing many chemical reactions. However, investigations on two-dimensional (2D) materials related to water interfaces remain limited. Here we report the growth of millimeter-sized 2D PbI2 single crystals at the water-air interface. The growth mechanism is based on an inherent ion-specific preference, i.e. iodine and lead ions tend to remain at the water-air interface and in bulk water, respectively. The spontaneous accumulation and in-plane arrangement within the 2D crystal of iodide ions at the water-air interface leads to the unique crystallization of PbI2 as well as other metal iodides. In particular, PbI2 crystals can be customized to specific thicknesses and further transformed into millimeter-sized mono- to few-layer perovskites. Additionally, we have developed water-based techniques, including water-soaking, spin-coating, water-etching, and water-flow-assisted transfer to recycle, thin, pattern, and position PbI2, and subsequently, perovskites. Our water-interface mediated synthesis and processing methods represents a significant advancement in achieving simple, cost-effective, and energy-efficient production of functional materials and their integrated devices.
Collapse
Affiliation(s)
- Jingxian Zhong
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Qi Bai
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Chao Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Xinlian Fan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Hehe Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Congzhou Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Ran Jiang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Peiyi Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaxiao Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiaojiao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Hongyu Yang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jing Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xuefen Song
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Junran Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiao Huang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China.
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China.
| |
Collapse
|
6
|
Tang J, Ge F, Chen J, Zhou D, Zhan G, Liu J, Yuan J, Shi X, Zhao P, Fan X, Su Y, Liu Z, He J, Tang J, Zha C, Zhang L, Song X, Wang L. A Droplet Method for Synthesis of Multiclass Ultrathin Metal Halides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301573. [PMID: 37365697 DOI: 10.1002/smll.202301573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/28/2023] [Indexed: 06/28/2023]
Abstract
2D metal halides have attracted increasing research attention in recent years; however, it is still challenging to synthesize them via liquid-phase methods. Here it is demonstrated that a droplet method is simple and efficient for the synthesis of multiclass 2D metal halides, including trivalent (BiI3 , SbI3 ), divalent (SnI2 , GeI2 ), and monovalent (CuI) ones. In particular, 2D SbI3 is first experimentally achieved, of which the thinnest thickness is ≈6 nm. The nucleation and growth of these metal halide nanosheets are mainly determined by the supersaturation of precursor solutions that are dynamically varying during the solution evaporation. After solution drying, the nanosheets can fall on the surface of many different substrates, which further enables the feasible fabrication of related heterostructures and devices. With SbI3 /WSe2 being a good demonstration, the photoluminescence intensity and photo responsivity of WSe2 is obviously enhanced after interfacing with SbI3 . The work opens a new pathway for 2D metal halides toward widespread investigation and applications.
Collapse
Affiliation(s)
- Jin Tang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Feixiang Ge
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jinlian Chen
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jing Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaxiao Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xinyu Shi
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Peiyi Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xinlin Fan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Yu Su
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Zicong Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiahao He
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaqi Tang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chenyang Zha
- Institute of Applied Physics and Materials Engineering (IAPME), Zhuhai UM Science & Technology Research Institute (ZUMRI), University of Macau, Taipa, Macau SAR, 999078, China
| | - Linghai Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xuefen Song
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| |
Collapse
|
7
|
Yuan J, Zhang X, Zhou D, Ge F, Zhong J, Zhao S, Ou Z, Zhan G, Zhang X, Li C, Tang J, Bai Q, Zhang J, Zhu C, Wang T, Ruan L, Zhu C, Song X, Huang W, Wang L. Excessive Iodine Enabled Ultrathin Inorganic Perovskite Growth at the Liquid-Air Interface. Angew Chem Int Ed Engl 2023; 62:e202218546. [PMID: 36853171 DOI: 10.1002/anie.202218546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
The liquid-air interface offers a platform for the in-plane growth of free-standing materials. However, it is rarely used for inorganic perovskites and ultrathin non-layered perovskites. Herein the liquid-air interfacial synthesis of inorganic perovskite nanosheets (Cs3 Bi2 I9 , Cs3 Sb2 I9 ) is achieved simply by drop-casting the precursor solution with only the addition of iodine. The products are inaccessible without iodine addition. The thickness and lateral size of these nanosheets can be adjusted through the iodine concentration. The high volatility of the iodine spontaneously drives precursors that normally stay in the liquid to the liquid-air interface. The iodine also repairs in situ iodine vacancies during perovskite growth, giving enhanced optical and optoelectronic properties. The liquid-air interfacial growth of ultrathin perovskites provides multi-degree-of-freedom for constructing perovskite-based heterostructures and devices at atomic scale.
Collapse
Affiliation(s)
- Jiaxiao Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiaomin Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Feixiang Ge
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jingxian Zhong
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Sihan Zhao
- School of Physical and Mathematical Sciences, Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Zhenwei Ou
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xu Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Congzhou Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jin Tang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Qi Bai
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Junran Zhang
- School of Physical and Mathematical Sciences, Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Ti Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Longfei Ruan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Xuefen Song
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics (KLOFE), Shaanxi Institute of Flexible Electronics (SIFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| |
Collapse
|
8
|
Zhou D, Zhao P, Zhang J, Jiang X, Qin S, Zhang X, Jiang R, Deng Y, Jiang H, Zhan G, Luo Y, Ma H, Wang L. Lithographic Multicolor Patterning on Hybrid Perovskites for Nano-Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205227. [PMID: 36285770 DOI: 10.1002/smll.202205227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Ultrathin hybrid perovskites, with exotic properties and two-dimensional geometry, exhibit great potential in nanoscale optical and optoelectronic devices. However, it is still challenging for them to be compatible with high-resolution patterning technology toward miniaturization and integration applications, as they can be readily damaged by the organic solvents used in standard lithography processes. Here, a flexible three-step method is developed to make high-resolution multicolor patterning on hybrid perovskite, particularly achieved on a single nanosheet. The process includes first synthesis of precursor PbI2 , then e-beam lithography and final conversion to target perovskite. The patterns with linewidth around 150 nm can be achieved, which can be applied in miniature optoelectronic devices and high-resolution displays. As an example, the channel length of perovskite photodetectors can be down to 126 nm. Through deterministic vapor-phase anion exchange, a perovskite nanosheet can not only gradually alter the color of the same pattern in a wide wavelength range, but also display different colors simultaneously. The authors are optimistic that the method can be applied for unlimited perovskite types and device configurations for their high-integrated miniature applications.
Collapse
Affiliation(s)
- Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Peiyi Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Junran Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaohong Jiang
- Key Laboratory of Flexible Electronics, Shanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Sichen Qin
- Key Laboratory of Flexible Electronics, Shanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xu Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Ran Jiang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Yifan Deng
- Key Laboratory of Flexible Electronics, Shanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Hanjun Jiang
- Key Laboratory of Flexible Electronics, Shanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Yan Luo
- Key Laboratory of Flexible Electronics, Shanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Huifang Ma
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
9
|
Castillo-Seoane J, Contreras-Bernal L, Obrero-Perez JM, García-Casas X, Lorenzo-Lázaro F, Aparicio FJ, Lopez-Santos C, Rojas TC, Anta JA, Borrás A, Barranco Á, Sanchez-Valencia JR. Highly Anisotropic Organometal Halide Perovskite Nanowalls Grown by Glancing-Angle Deposition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107739. [PMID: 35077604 DOI: 10.1002/adma.202107739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Polarizers are ubiquitous components in current optoelectronic devices as displays or photographic cameras. Yet, control over light polarization is an unsolved challenge, since the main drawback of the existing display technologies is the significant optical losses. In such a context, organometal halide perovskites (OMHP) can play a decisive role given their flexible synthesis with tunable optical properties such as bandgap and photoluminescence, and excellent light emission with a low non-radiative recombination rate. Therefore, along with their outstanding electrical properties have elevated hybrid perovskites as the material of choice in photovoltaics and optoelectronics. Among the different OMHP nanostructures, nanowires and nanorods have lately arisen as key players in the control of light polarization for lighting or detector applications. Herein, the fabrication of highly aligned and anisotropic methylammonium lead iodide perovskite nanowalls by glancing-angle deposition, which is compatible with most substrates, is presented. Their high alignment degree provides the samples with anisotropic optical properties such as light absorption and photoluminescence. Furthermore, their implementation in photovoltaic devices provides them with a polarization-sensitive response. This facile vacuum-based approach embodies a milestone in the development of last-generation polarization-sensitive perovskite-based optoelectronic devices such as lighting appliances or self-powered photodetectors.
Collapse
Affiliation(s)
- Javier Castillo-Seoane
- Institute of Materials Science of Seville (US-CSIC), Americo Vespucio 49, Seville, 41092, Spain
- Atomic, Nuclear and Molecular Physics Department, Facultad de Física, University of Seville, Avd. Reina Mercedes s/n, Seville, 41012, Spain
| | - Lidia Contreras-Bernal
- Institute of Materials Science of Seville (US-CSIC), Americo Vespucio 49, Seville, 41092, Spain
| | | | - Xabier García-Casas
- Institute of Materials Science of Seville (US-CSIC), Americo Vespucio 49, Seville, 41092, Spain
| | | | - Francisco Javier Aparicio
- Institute of Materials Science of Seville (US-CSIC), Americo Vespucio 49, Seville, 41092, Spain
- Department of Applied Physics I, University of Seville, Virgen de Africa, Seville, 41011, Spain
| | - Carmen Lopez-Santos
- Institute of Materials Science of Seville (US-CSIC), Americo Vespucio 49, Seville, 41092, Spain
- Department of Applied Physics I, University of Seville, Virgen de Africa, Seville, 41011, Spain
| | - Teresa Cristina Rojas
- Institute of Materials Science of Seville (US-CSIC), Americo Vespucio 49, Seville, 41092, Spain
| | - Juan Antonio Anta
- Área de Química Física, Universidad Pablo de Olavide, Seville, 41013, Spain
| | - Ana Borrás
- Institute of Materials Science of Seville (US-CSIC), Americo Vespucio 49, Seville, 41092, Spain
| | - Ángel Barranco
- Institute of Materials Science of Seville (US-CSIC), Americo Vespucio 49, Seville, 41092, Spain
| | - Juan Ramon Sanchez-Valencia
- Institute of Materials Science of Seville (US-CSIC), Americo Vespucio 49, Seville, 41092, Spain
- Atomic, Nuclear and Molecular Physics Department, Facultad de Física, University of Seville, Avd. Reina Mercedes s/n, Seville, 41012, Spain
| |
Collapse
|
10
|
Li L, Yu Y, Li P, Liu J, Liang L, Wang L, Ding Y, Han X, Ji J, Chen S, Li D, Liu P, Zhang S, Zeng M, Fu L. The Universal Growth of Ultrathin Perovskite Single Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108396. [PMID: 35306696 DOI: 10.1002/adma.202108396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Perovskites have engaged significant attention owing to rich species and remarkable physical properties as well as optoelectronic applications. Compared to bulk counterparts, ultrathin perovskites exhibit more available compositions due to the breaking of bulk lattice limitation. Coupled with crystal lattice relaxation and quantum confinement, infinite intriguing properties of ultrathin perovskites deserve to be explored. Developing ultrathin perovskites with alterable composition and structure is a necessity to fully explore this versatile family. Herein, a universal strategy is conceived via constructing oriented solvent microenvironment induced by the interfacial electric field originated from the charge separation between solid and liquid phases, which is conducive to controlling the precursor distribution and makes crystals preferentially nucleate and grow in the preferentially lateral mode. From layered to nonlayered, organic to inorganic, and toxic to low-toxic lead-free perovskite, a full-range synthesis is achieved of ultrathin perovskites. This work opens up opportunities both for ultrathin perovskite exploration through compositional engineering and for device miniaturization in energy conversion applications.
Collapse
Affiliation(s)
- Linyi Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yantao Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Peng Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jinxin Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lihan Liang
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Luyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Ding
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaocang Han
- Department Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiamin Ji
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Shengli Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Dehui Li
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Pan Liu
- Department Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shunping Zhang
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| |
Collapse
|
11
|
Chen Z, Shi Z, Zhang W, Li Z, Zhou ZK. High efficiency and large optical anisotropy in the high-order nonlinear processes of 2D perovskite nanosheets. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:1379-1387. [PMID: 39634615 PMCID: PMC11501272 DOI: 10.1515/nanoph-2021-0789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/18/2022] [Indexed: 12/07/2024]
Abstract
Nonlinear nanophotonic devices have brought about great advances in the fields of nano-optics, quantum science, biomedical engineering, etc. However, in order to push these nanophotonic devices out of laboratory, it is still highly necessary to improve their efficiency. Since obtaining novel nanomaterials with large nonlinearity is of crucial importance for improving the efficiency of nonlinear nanodevices, we propose the two-dimensional (2D) perovskites. Different from most previous studies which focused on the 2D perovskites in large scale (such as the bulk materials or the thick flakes), herein we studied the 2D perovskites nanosheets with thickness of ∼50 nm. The high-order nonlinear processes including multi-photon photoluminescence and third-harmonic generation (THG) have been systematically investigated, and it is found the THG process can have a high conversion efficiency up to ∼8 × 10-6. Also, it is observed that the nonlinear responses of 2D perovskites have large optical anisotropy, i.e., the polarization ratio for the incident polarization dependence of nonlinear response can be as high as ∼0.99, which is an impressive record in the perovskite systems. Our findings reveal the properties of high efficiency and huge optical anisotropy in the nonlinear processes of 2D perovskite nanosheets, shedding light on the design of advanced integrated nonlinear nanodevices in future.
Collapse
Affiliation(s)
- Zehong Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou510275, China
| | - Zhonghong Shi
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou510275, China
| | - Wenbo Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou510275, China
| | - Zixian Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou510275, China
| | - Zhang-Kai Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou510275, China
| |
Collapse
|
12
|
Li Z, Hong E, Zhang X, Deng M, Fang X. Perovskite-Type 2D Materials for High-Performance Photodetectors. J Phys Chem Lett 2022; 13:1215-1225. [PMID: 35089041 DOI: 10.1021/acs.jpclett.1c04225] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodetectors are light sensors in widespread use in image sensing, optical communication, and consumer electronics. In current smart optoelectronic technology, conventional semiconductors have encountered a bottleneck caused by inflexibility and opacity. With the ever-increasing demands for versatile optoelectronic applications, perovskite-type 2D materials demonstrate great potential for advanced photodetectors inspired by molecularly thin 2D materials. Through the reduction of thickness to thin or molecularly thin levels, single-crystalline 2D perovskites can exhibit superior optoelectronic performance characteristics, such as tunable absorption property by chemical design, enhanced carrier separation by remarkable photosensing capability, and improved carrier extraction by versatile band engineering. More importantly, perovskite-type 2D materials exhibit great potential for large-scale monolithic integration to achieve all-in-one sensing-memory-computing optoelectronic devices. In this Perspective, recent progress in 2D perovskite-based photodetectors is presented in detail. The focus is on growth strategies for reducing thickness, thickness-dependent optical and electrical properties, device engineering, heterojunction fabrication, and device performance. Finally, the current challenges and future prospects in this field are presented.
Collapse
Affiliation(s)
- Ziqing Li
- Institute of Optoelectronics, Fudan University, Shanghai 200433, P.R. China
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Enliu Hong
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Xinyu Zhang
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Ming Deng
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Xiaosheng Fang
- Institute of Optoelectronics, Fudan University, Shanghai 200433, P.R. China
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
13
|
Zhang J, Song X, Wang L, Huang W. Ultrathin two-dimensional hybrid perovskites toward flexible electronics and optoelectronics. Natl Sci Rev 2021; 9:nwab129. [PMID: 35591916 PMCID: PMC9113132 DOI: 10.1093/nsr/nwab129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Junran Zhang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, China
| | - Xuefen Song
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, China
| | - Lin Wang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, China
- Frontiers Science Center for Flexible Electronics, Key Laboratory of Flexible Electronics, Shaanxi Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, China
| |
Collapse
|
14
|
Sánchez S, Pfeifer L, Vlachopoulos N, Hagfeldt A. Rapid hybrid perovskite film crystallization from solution. Chem Soc Rev 2021; 50:7108-7131. [PMID: 33969365 DOI: 10.1039/d0cs01272f] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of a solution process to grow perovskite thin films allows to extend the material processability. It is known that the physicochemical properties of the perovskite material can be tuned by altering the solution precursors as well as by controlling the crystal growth of the film. This advancement necessarily implies the need for an understanding of the kinetic phenomena for the thin-film formation. Therefore, in this work we review the state of the art of perovskite hybrid crystal growth, starting from a comprehensive theoretical description towards broad experimental investigations. One part of the study focuses on rapid thermal annealing as a tool to control nucleation and crystal growth. We deduce that controlling crystal growth with high-precision photonic sintering simplifies the experimental framework required to understand perovskite crystallization. These types of synthesis methods open a new empirical parameter space. All this knowledge serves to improve the perovskite synthesis and the thin films' quality, which will result in higher device performances.
Collapse
Affiliation(s)
- Sandy Sánchez
- Laboratory of Photomolecular Sciences, Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland. and Laboratory of Photonics and Interfaces, Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Lukas Pfeifer
- Laboratory of Photonics and Interfaces, Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Nikolaos Vlachopoulos
- Laboratory of Photomolecular Sciences, Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Anders Hagfeldt
- Laboratory of Photomolecular Sciences, Institute of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|