1
|
Hu L, Jiang X, Wang J, Wang H, Zhang Y, Yi X, Han J. Direct Utilization of a HF-Treated Si Photocathode for Efficient Hydrogen Production. NANO LETTERS 2025; 25:6051-6058. [PMID: 40159651 DOI: 10.1021/acs.nanolett.4c06302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Silicon (Si)-based photocathodes are generally considered as ideal materials for photoelectrochemical (PEC) hydrogen production. The fabrication of Si-based photocathodes usually requires hydrofluoric acid (HF) treatment to remove the oxide layer first, and H-dangling bonds can be formed inevitably on the surface of Si at the same time. However, the impacts of Si-H bonds in the PEC reaction are usually ignored. Here we report that the enriched H-dangling bonds at the solid-liquid interface play multiple roles in PEC hydrogen production, which can both efficiently collect photogenerated electrons from Si and accelerate the kinetics of the hydrogen evolution reaction at the interface. Furthermore, the coupling mechanism of H2 production triggered by H-dangling bonds significantly improves the efficiency of the PEC process. This work demonstrates that the HF-treated Si photocathode can be directly used for efficient hydrogen production, which will undoubtedly force a new phase in the study of Si-based photocathodes.
Collapse
Affiliation(s)
- Lang Hu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaohao Jiang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jiamin Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Honggui Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ya Zhang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaodong Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Rani S, Kamal, Muskan, Changotra A, Samanta S. Redox Noninnocent Copper(I) Complex Where Metal Is a Spectator and Ligand Is an Actor in the Glaser Coupling Reaction of Alkynes. Inorg Chem 2024; 63:24517-24531. [PMID: 39610221 DOI: 10.1021/acs.inorgchem.4c03210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
An extended trisazo dipyridyl ligand, L, and its copper(I) complex, [1]+, were synthesized and fully characterized. Complex [1]+ has five coordination geometry satisfied by ligand L. L has a low-lying π* orbital; thus, [1]+ showed very facile multiple ligand-based redox events. Moreover, due to the strong π-acceptor nature of L, the Cu(II)/Cu(I) redox potential of [1]+ was anodic (0.62 V). The redox events of both L and [1]+ were characterized using various spectroscopic studies and density functional theory (DFT) calculations. Taking advantage of the multiple facile ligand-based reductions in [1]+, the Glaser coupling reaction of terminal alkynes was explored. Various kinds of alkynes were found to be effective when using [1]+ as a precatalyst. The mechanism of the reaction was investigated thoroughly by several controlled experiments, isolation, and characterization of the intermediates using various spectroscopic studies as well as by single-crystal X-ray structure determination. These studies showed that the L in [1]+ acted not only in the electron transfer events but also as a locus for binding the substrate, breaking and forming bonds, and, finally, releasing the product. Thus, here, the metal mainly acted as a spectator and ligand L acted as an actor.
Collapse
Affiliation(s)
- Swati Rani
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, Jammu 181221, India
| | - Kamal
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, Jammu 181221, India
| | - Muskan
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Avtar Changotra
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Subhas Samanta
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, Jammu 181221, India
| |
Collapse
|
3
|
Lu Y, Li W, Sun C, Tang Y, Cheng L, Sun H. Copper-Surface-Mediated Synthesis of sp 2 Carbon-Conjugated Covalent Organic Framework Photocathodes for Photoelectrochemical Hydrogen Evolution. Chemistry 2024; 30:e202402930. [PMID: 39269730 DOI: 10.1002/chem.202402930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Sp2-carbon (sp2-c) covalent organic frameworks (COFs), featuring distinctive π-conjugated network structures, facilitate the migration of photo-generated carriers, rendering them exceptionally appealing for applications in photoelectrochemical water splitting. However, owing to the powdery nature of COFs, leaving anchor the sp2-c COFs powder tightly onto a conductive substrate challenging. Here, we propose a method for preparing photoactive substance-conductive substrate integrated photocathodes through copper surface-mediated knoevenagel polycondensation (Cu-SMKP), this approach results in a uniform and stable sp2-c COF film, directly grown on commercial copper foam (COFTh-Cu). The COFTh-Cu demonstrates a high H2-evolution photocurrent density of 56 μA cm-2 at 0.3 V vs. RHE, sustaining stability for 12 h. The as-prepared COFTh-Cu represents a 4.5-fold increase in current density compared to traditional spin-coating methods and outperforms most COF photocathodes without cocatalysts. This innovative copper surface-mediated approach for preparing photocathodes opens up a crucial pathway towards the realization of highly active COF photocathodes.
Collapse
Affiliation(s)
- Yang Lu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Wenyan Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Chenyu Sun
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Lei Cheng
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanjun Sun
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Zhou J, Cheng H, Cheng J, Wang L, Xu H. The Emergence of High-Performance Conjugated Polymer/Inorganic Semiconductor Hybrid Photoelectrodes for Solar-Driven Photoelectrochemical Water Splitting. SMALL METHODS 2024; 8:e2300418. [PMID: 37421184 DOI: 10.1002/smtd.202300418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Indexed: 07/10/2023]
Abstract
Solar-driven photoelectrochemical (PEC) energy conversion holds great potential in converting solar energy into storable and transportable chemicals or fuels, providing a viable route toward a carbon-neutral society. Conjugated polymers are rapidly emerging as a new class of materials for PEC water splitting. They exhibit many intriguing properties including tunable electronic structures through molecular engineering, excellent light harvesting capability with high absorption coefficients, and facile fabrication of large-area thin films via solution processing. Recent advances have indicated that integrating rationally designed conjugated polymers with inorganic semiconductors is a promising strategy for fabricating efficient and stable hybrid photoelectrodes for high-efficiency PEC water splitting. This review introduces the history of developing conjugated polymers for PEC water splitting. Notable examples of utilizing conjugated polymers to broaden the light absorption range, improve stability, and enhance the charge separation efficiency of hybrid photoelectrodes are highlighted. Furthermore, key challenges and future research opportunities for further improvements are also presented. This review provides an up-to-date overview of fabricating stable and high-efficiency PEC devices by integrating conjugated polymers with state-of-the-art semiconductors and would have significant implications for the broad solar-to-chemical energy conversion research.
Collapse
Affiliation(s)
- Jie Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hao Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Wang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hangxun Xu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
5
|
Jin Z, Jin S, Tang X, Tan W, Wang D, Song S, Zhang H, Zeng T. Rational Design of Conjugated Acetylenic Polymers Enables a Two-Electron Water Oxidation Pathway for Enhanced Photosynthetic Hydrogen Peroxide Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305004. [PMID: 37649170 DOI: 10.1002/smll.202305004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Herein, the design of conjugated acetylenic polymers (CAPs) featuring diverse spatial arrangements and intramolecular spacers of diacetylene moieties (─C≡C─C≡C─) for photocatalytic hydrogen peroxide (H2 O2 ) production from water and O2 , without the need for sacrificial agents, is presented. It is shown that the linear configuration of diacetylene moieties within conjugated acetylenic polymers (CAPs) induces a pronounced polarization of electron distribution, which imparts enhanced charge-carrier mobility when compared to CAPs' networks featuring cross-linked arrangements. Moreover, optimizing the intramolecular spacer between diacetylene moieties within the linear structure leads to the exceptional modulation of the band structures, specifically resulting in a downshifted valence band (VB) and rendering the two-electron water oxidation pathway thermodynamically feasible for H2 O2 production. Consequently, the optimized CAPs with a linear configuration (LCAP-2), featuring spatially separated reduction centers (benzene rings) and oxidation centers (diacetylene moieties), exhibit a remarkable H2 O2 yield rate of 920.1 µmol g-1 h-1 , superior than that of the linear LCAP-1 (593.2 µmol g-1 h-1 ) and the cross-linked CCAP (433.4 µmol g-1 h-1 ). The apparent quantum efficiency (AQE) and solar-to-chemical energy conversion (SCC) efficiency of LCAP-2 are calculated to be 9.1% (λ = 420 nm) and 0.59%, respectively, surpassing the performance of most previously reported conjugated polymers.
Collapse
Affiliation(s)
- Zhiquan Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Sijia Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Xiaofeng Tang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Wenxian Tan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Da Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Haiyan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
| | - Tao Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
- Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, Zhejiang, 312000, P. R. China
| |
Collapse
|
6
|
Zeng T, Tang X, Huang Z, Chen H, Jin S, Dong F, He J, Song S, Zhang H. Atomically Dispersed Fe-N 4 Site as a Conductive Bridge Enables Efficient and Stable Activation of Peroxymonosulfate: Active Site Renewal, Anti-Oxidative Capacity, and Pathway Alternation Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20929-20940. [PMID: 37956230 DOI: 10.1021/acs.est.3c06229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Atomically dispersed metal sites anchored on nitrogen-doped carbonaceous substrates (M-NCs) have emerged as promising alternatives to conventional peroxymonosulfate (PMS) activators; however, the exact contribution of each site still remains elusive. Herein, isolated Fe-N4 active site-decorated three-dimensional NC substrates (FeSA-NC) via a micropore confinement strategy are fabricated to initiate PMS oxidation reaction, achieving a specific activity of 5.16 × 103 L·min-1·g-1 for the degradation of bisphenol A (BPA), which outperforms most of the state-of-the-art single-atom (SA) catalysts. Mechanism inquiry reveals enhanced chemisorption and electron transfer between PMS and FeSA-NC, enabling an inner electron shuttle mechanism in which Fe-N4 serves as a conductive bridge. The Fe-N4 sites reduce the energy barrier for the formation of SO5* and H*, thereby transforming the reaction pathway from directly adjacent electron transfer into reactive oxygen species (ROS)-dominated oxidation. Theoretical calculations and dynamic simulations reveal that the Fe-N4 sites induce facilitated desorption of reaction intermediates (PMS*/BPA*), which collectively contribute to the renewal of active sites and eventually enhance the catalytic durability. This work offers a reasonable interpretation for the important role of the Fe-N4 moiety in altering the activation mechanism and enhancing the antioxidative capacity of NC materials, which fundamentally furnishes theoretical support for SA material design.
Collapse
Affiliation(s)
- Tao Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Department of Environment, Zhejiang University of Technology, Zhejiang, Hangzhou 310032, P.R. China
| | - Xiaofeng Tang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Department of Environment, Zhejiang University of Technology, Zhejiang, Hangzhou 310032, P.R. China
| | - Zheqing Huang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Department of Environment, Zhejiang University of Technology, Zhejiang, Hangzhou 310032, P.R. China
| | - Hong Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Department of Environment, Zhejiang University of Technology, Zhejiang, Hangzhou 310032, P.R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Zhejiang, Hangzhou 310024, P.R. China
| | - Sijia Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Department of Environment, Zhejiang University of Technology, Zhejiang, Hangzhou 310032, P.R. China
| | - Feilong Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Department of Environment, Zhejiang University of Technology, Zhejiang, Hangzhou 310032, P.R. China
| | - Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Department of Environment, Zhejiang University of Technology, Zhejiang, Hangzhou 310032, P.R. China
| | - Haiyan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Department of Environment, Zhejiang University of Technology, Zhejiang, Hangzhou 310032, P.R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Zhejiang, Hangzhou 310024, P.R. China
| |
Collapse
|
7
|
Zhang S, Zhao L. Anaerobic photoinduced Cu(0/I)-mediated Glaser coupling in a radical pathway. Nat Commun 2023; 14:6741. [PMID: 37875487 PMCID: PMC10598264 DOI: 10.1038/s41467-023-42602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
The reaction mechanism of the historic copper-catalyzed Glaser coupling has been debated to be based on redox cycles of Cu ions in specific oxidation states or on a radical mechanism based on Cu(0)/Cu(I). Here, the authors demonstrate two coexisting Glaser coupling pathways which can be differentiated by anaerobic/irradiation or aerobic reaction conditions. Without O2, copper(I) acetylides undergo a photo-excited pathway to generate highly reactive alkynyl radicals, which combine together to form a homo-coupling product or individually react with diverse X-H (X = C, N, O, S and P) substrates via hydrogen atom transfer. With O2, copper(I) acetylides are oxidized to become a Cu-acetylide/Cu-O merged Cu(I/II) intermediate for further oxidative coupling. This work not only complements the radical mechanism for Glaser coupling, but also provides a mild way to access highly energetic alkynyl radicals for efficient organic transformations.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Ba K, Li Y, Liu Y, Lin Y, Wang D, Xie T, Li J. Interface designing of efficient Z-scheme Ti-ZnFe 2O 4/In 2O 3 photoanode toward boosting photoelectrochemical water oxidation. J Colloid Interface Sci 2023; 649:492-500. [PMID: 37356150 DOI: 10.1016/j.jcis.2023.06.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Ti-ZnFe2O4 photoanode has attracted extensive attention in photoelectrochemical (PEC) water oxidation due to its narrow band gap and good photostability. However, its low efficiency limits its development. Herein, we designed and constructed direct Z-scheme Ti-ZnFe2O4/In2O3 (Ti-ZFO/In2O3) photoanode. Under the interface electric field, photogenerated holes with stronger oxidation capacity on In2O3 are retained to participate in the water oxidation reaction, and the photocurrent density of Ti-ZFO/In2O3 is much higher than that of pure Ti-ZFO, reaching 2.2 mA/cm2 at 1.23 V vs. RHE. Kelvin Probe, steady-state photovoltage spectroscopy (SPV), transient photovoltage spectroscopy (TPV) and in-situ double beam strategy were used to demonstrate the Z-scheme charge transfer mechanism of Ti-ZFO/In2O3 photoanode. Our work provides an effective scheme and technical means for further understanding the mechanism of interfacial charge transfer.
Collapse
Affiliation(s)
- Kaikai Ba
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yinyin Li
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yunan Liu
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yanhong Lin
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Dejun Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Tengfeng Xie
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Jun Li
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
9
|
Morales-García Á, Viñes F, Sousa C, Illas F. Toward a Rigorous Theoretical Description of Photocatalysis Using Realistic Models. J Phys Chem Lett 2023; 14:3712-3720. [PMID: 37042213 PMCID: PMC10123813 DOI: 10.1021/acs.jpclett.3c00359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
This Perspective aims at providing a road map to computational heterogeneous photocatalysis highlighting the knowledge needed to boost the design of efficient photocatalysts. A plausible computational framework is suggested focusing on static and dynamic properties of the relevant excited states as well of the involved chemistry for the reactions of interest. This road map calls for explicitly exploring the nature of the charge carriers, the excited-state potential energy surface, and its time evolution. Excited-state descriptors are introduced to locate and characterize the electrons and holes generated upon excitation. Nonadiabatic molecular dynamics simulations are proposed as a convenient tool to describe the time evolution of the photogenerated species and their propagation through the crystalline structure of photoactive material, ultimately providing information about the charge carrier lifetime. Finally, it is claimed that a detailed understanding of the mechanisms of heterogeneously photocatalyzed reactions demands the analysis of the excited-state potential energy surface.
Collapse
|
10
|
Wang J, Yan H, Zhao Y, Wu D, Yang H, Yin X, Tan R, Zhang T. Engineering of Graphdiyne-Based Functional Coatings for the Protection of Arbitrary Shapes of Copper Substrates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12305-12314. [PMID: 36802480 DOI: 10.1021/acsami.2c20665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Copper-based materials are very important for many application fields from marine industry to energy management and electronic devices. For most of these applications, the copper objects require long-term contact to a wet and salty environment, which leads to serious corrosion of copper. In this work, we report a thin graphdiyne layer directly grown on arbitrary shapes of copper objects at mild conditions, which could function as a protective coating for the copper substrates in artificial seawater with corrosion inhibition efficiency of ∼99.75%. To further improve the protective performance of the coating, the graphdiyne layer is fluorinated and followed by infusion with a fluorine-containing lubricant (i.e., perfluoropolyether). As a result, a slippery surface is obtained, which shows enhanced corrosion inhibition efficiency of ∼99.99% as well as excellent antibiofouling properties against microorganisms, such as protein and algae. Finally, the coatings are successfully applied in the protection of a commercial copper radiator from long-term attack of artificial seawater without disturbing its thermal conductivity. These results demonstrate the great potential of graphdiyne-based functional coatings for the protection of copper devices in aggressive environments.
Collapse
Affiliation(s)
- Jianing Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
| | - Haokai Yan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuxiang Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaodong Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Runxiang Tan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
11
|
Xu W, Fan N, Xu S, Meng L, Xu B, Zhou M, Tian W, Li L. Interfacial Bi-S bonds modulate band alignment for efficient solar water oxidation. NANOSCALE 2022; 14:14520-14528. [PMID: 36169575 DOI: 10.1039/d2nr04454d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Introducing suitable interfacial chemical bonds into heterojunctions can increase the charge carrier density, propel the charge separation, and facilitate interfacial charge extraction in photoanodes for photoelectrochemical (PEC) water oxidation. However, tuning chemical bonds at heterojunction interfaces and elucidating their influences on band alignment and the associated evolution of PEC performance remain elusive. Herein, Bi-S bonds were introduced into the interface of a CdIn2S4 (CIS)/Bi2WO6 (BWO) heterojunction. In situ irradiated X-ray photoelectron spectroscopy and electron spin resonance signals confirm that the Bi-S bond transforms the band alignment from type II to the direct Z-scheme, significantly enhancing the carrier separation efficiency. Theoretical calculations show that the Bi-S bond not only acts as an atomic-level charge transfer channel, but also changes the migration pathway and distance within the heterojunction. As a result, the optimized CIS/BWO photoanode exhibits a relatively high PEC performance of 4.25 mA cm-2 at 1.23 V vs. RHE (VRHE) and a low onset potential of 0.30 VRHE. This work presents a new avenue to construct comprehensively improved photoanodes by tuning the interfacial structures at the atomic level.
Collapse
Affiliation(s)
- Weiwei Xu
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, P. R. China.
| | - Ningbo Fan
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, P. R. China.
| | - Shiji Xu
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, P. R. China.
| | - Linxing Meng
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, P. R. China.
| | - Bin Xu
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, P. R. China.
| | - Min Zhou
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Wei Tian
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, P. R. China.
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, P. R. China.
| |
Collapse
|
12
|
Dong Q, Ding Q, Yuan R, Yuan Y. AuNPs/CdS QDs/CeO 2 ternary nanocomposite coupled with scrollable three-dimensional DNA walker mediated cycling amplification for sensitive photoelectrochemical miRNA assay. Anal Chim Acta 2022; 1228:340344. [PMID: 36127010 DOI: 10.1016/j.aca.2022.340344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/15/2022]
Abstract
Herein, a novel ternary nanocomposite (AuNPs/CdS QDs/CeO2) with excellent photoelectrochemical (PEC) performance was synthesized as signal probe to construct a near-zero background biosensor for sensitive miRNA-182-5p detection, by integrating with a scrollable three-dimensional (3D) DNA walker mediated cleavage cycling amplification. Impressively, the formation and rolling of scrollable 3D DNA walker triggered by target could realize dynamic, rapid and specific digestion of hairpin DNA on electrode with the aid of Exonuclease III (Exo III), which thus exposed abundant binding sites for assembling stable DNA labeled AuNPs/CdS QDs/CeO2 nanoprobes. Thanks to the formation of type-II heterojunction (between CeO2 and CdS QDs) and Schottky junction (generated by CeO2 and AuNPs), an ideal photoelectric conversion efficiency accompanied with stunningly improved photocurrent was thus acquired for significantly improving the detection sensitivity. It turned out that the detection limit (LOD) of biosensor was ultralow (31 aM). Significantly, the proposed PEC biosensor would exhibit great potential for the composite as a splendid indicator and provide an avenue for constructing the sensing platform with excellent sensitivity and ultralow background.
Collapse
Affiliation(s)
- Qingyuan Dong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Qiao Ding
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
13
|
Lu Y, Zhong H, Li J, Dominic AM, Hu Y, Gao Z, Jiao Y, Wu M, Qi H, Huang C, Wayment LJ, Kaiser U, Spiecker E, Weidinger IM, Zhang W, Feng X, Dong R. sp-Carbon Incorporated Conductive Metal-Organic Framework as Photocathode for Photoelectrochemical Hydrogen Generation. Angew Chem Int Ed Engl 2022; 61:e202208163. [PMID: 35903982 PMCID: PMC9804563 DOI: 10.1002/anie.202208163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 01/05/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted increasing interest for broad applications in catalysis and gas separation due to their high porosity. However, the insulating feature and the limited active sites hindered MOFs as photocathode active materials for application in photoelectrocatalytic hydrogen generation. Herein, we develop a layered conductive two-dimensional conjugated MOF (2D c-MOF) comprising sp-carbon active sites based on arylene-ethynylene macrocycle ligand via CuO4 linking, named as Cu3 HHAE2 . This sp-carbon 2D c-MOF displays apparent semiconducting behavior and broad light absorption till the near-infrared band (1600 nm). Due to the abundant acetylene units, the Cu3 HHAE2 could act as the first case of MOF photocathode for photoelectrochemical (PEC) hydrogen generation and presents a record hydrogen-evolution photocurrent density of ≈260 μA cm-2 at 0 V vs. reversible hydrogen electrode among the structurally-defined cocatalyst-free organic photocathodes.
Collapse
Affiliation(s)
- Yang Lu
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Haixia Zhong
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Jian Li
- Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyTeknikringen 5610044StockholmSweden
| | - Anna Maria Dominic
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Yiming Hu
- Department of ChemistryUniversity of Colorado BoulderBoulderCO 80309USA
| | - Zhen Gao
- College of PhysicsHebei Key Laboratory of Photophysics Research and ApplicationHebei Normal UniversityShijiazhuang050024China
| | - Yalong Jiao
- College of PhysicsHebei Key Laboratory of Photophysics Research and ApplicationHebei Normal UniversityShijiazhuang050024China
| | - Mingjian Wu
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM)Interdisciplinary Center for Nanostructured Films (IZNF)Department of Materials Science and EngineeringFriedrich-Alexander-Universität Erlangen-NürnbergCauerstrasse 391058ErlangenGermany
| | - Haoyuan Qi
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
- Central Facility of Materials Science Electron MicroscopyUniversität Ulm89081UlmGermany
| | - Chuanhui Huang
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Lacey J. Wayment
- Department of ChemistryUniversity of Colorado BoulderBoulderCO 80309USA
| | - Ute Kaiser
- Central Facility of Materials Science Electron MicroscopyUniversität Ulm89081UlmGermany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM)Interdisciplinary Center for Nanostructured Films (IZNF)Department of Materials Science and EngineeringFriedrich-Alexander-Universität Erlangen-NürnbergCauerstrasse 391058ErlangenGermany
| | - Inez M. Weidinger
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Wei Zhang
- Department of ChemistryUniversity of Colorado BoulderBoulderCO 80309USA
| | - Xinliang Feng
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
- Max Planck Institute for Microstructure Physics06120Halle (Saale)Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| |
Collapse
|
14
|
|
15
|
Lu Y, Zhong H, Li J, Dominic AM, Hu Y, Gao Z, Jiao Y, Wu M, Qi H, Huang C, Wayment L, Kaiser U, Spiecker E, Weidinger I, Zhang W, Feng X, Dong R. sp‐Carbon Incorporated Conductive Metal‐Organic Framework as Photocathode for Photoelectrochemical Hydrogen Generation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yang Lu
- TU Dresden: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry GERMANY
| | - Haixia Zhong
- TU Dresden: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry GERMANY
| | - Jian Li
- KTH Royal Institute of Technology: Kungliga Tekniska Hogskolan Department of Fibre and Polymer Technology SWEDEN
| | - Anna Maria Dominic
- TU Dresden: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry GERMANY
| | - Yiming Hu
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Zhen Gao
- Hebei Normal University College of Physics CHINA
| | - Yalong Jiao
- Hebei Normal University College of Physics CHINA
| | - Mingjian Wu
- Friedrich Alexander University Erlangen Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Materials Science and Engineering GERMANY
| | - Haoyuan Qi
- Ulm University: Universitat Ulm Central Facility for Electron Microscopy GERMANY
| | - Chuanhui Huang
- TU Dresden: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry GERMANY
| | - Lacey Wayment
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Ute Kaiser
- Ulm University: Universitat Ulm Central Facility for Electron Microscopy GERMANY
| | - Erdmann Spiecker
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Materials Science and Engineering GERMANY
| | - Inez Weidinger
- TU Dresden: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry GERMANY
| | - Wei Zhang
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Xinliang Feng
- TU Dresden: Technische Universitat Dresden Faculty of Chemistry and Food Chemistry GERMANY
| | - Renhao Dong
- TU Dresden: Technische Universitat Dresden Department of Chemistry and Food Chemistry Mommsenstrasse 4 01062 Dresden GERMANY
| |
Collapse
|
16
|
Dang X, Shi Z, Sun Z, Li Y, Hu X, Zhao H. Ultrasensitive sandwich-type photoelectrochemcial oxytetracycline sensing platform based on MnIn2S4/WO3 (Yb, Tm) functionalized rGO film. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Yang Y, Schäfer C, Börjesson K. Detachable all-carbon-linked 3D covalent organic framework films for semiconductor/COF heterojunctions by continuous flow synthesis. Chem 2022. [DOI: 10.1016/j.chempr.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Tan X, Yu H, Liang B, Han M, Ge S, Zhang L, Li L, Li L, Yu J. A Target-Driven Self-Feedback Paper-Based Photoelectrochemical Sensing Platform for Ultrasensitive Detection of Ochratoxin A with an In 2S 3/WO 3 Heterojunction Structure. Anal Chem 2022; 94:1705-1712. [PMID: 35014798 DOI: 10.1021/acs.analchem.1c04259] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, developing versatile, easy-to-operate, and effective signal amplification strategies hold great promise in photoelectrochemical (PEC) biosensing. Herein, an ultrasensitive polyvinylpyrrolidone-treated In2S3/WO3 (In2S3-P/WO3)-functionalized paper-based PEC sensor was established for sensing ochratoxin A (OTA) based on a target-driven self-feedback (TDSF) mechanism enabled by a dual cycling tactic of PEC chemical-chemical (PECCC) redox and exonuclease III (Exo III)-assisted complementary DNA. The In2S3-P/WO3 heterojunction structure with 3D open-structure and regulable topology was initially in situ grown on Au nanoparticle-functionalized cellulose paper, which was served as a universal signal transducer to directly record photocurrent signals without complicated electrode modification, endowing the paper chip with admirable anti-interference ability and unexceptionable photoelectric conversion efficiency. With the assistance of Exo III-assisted cycling process, a trace amount of OTA could trigger substantial signal reporter ascorbic acid (AA) generated by the enzymatic catalysis of alkaline phosphatase, which could effectively provoke the PECCC redox cycling among the tris(2-carboxyethyl)phosphine acid, AA, and ferrocenecarboxylic at the In2S3-P/WO3 photoelectrode, initiating TDSF signal amplification. Based on the TDSF process induced by the Exo III-assisted recycling and PECCC redox cycling strategy, the developed paper-based PEC biosensor realized ultrasensitive determination of OTA with persuasive selectivity, high stability, and excellent reproducibility. It is believed that the proposed paper-based PEC sensing platform exhibited enormous potential for the detection of other targets in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Xiaoran Tan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Haihan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Bing Liang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Mengting Han
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, P. R. China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
19
|
Tang R, Zhou S, Zhang Z, Zheng R, Huang J. Engineering Nanostructure-Interface of Photoanode Materials Toward Photoelectrochemical Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005389. [PMID: 33733537 DOI: 10.1002/adma.202005389] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/19/2020] [Indexed: 06/12/2023]
Abstract
Photoelectrochemical (PEC) water oxidation based on semiconductor materials plays an important role in the production of clean fuel and value-added chemicals. Nanostructure-interface engineering has proven to be an effective way to construct highly efficient PEC water oxidation photoanodes with good light capture, carrier transport, and water oxidation kinetics. However, from theoretical and application perspectives, the relationship between the nanostructure and interface of photoanode materials and their PEC performance remains unclear. In this review, the PEC water oxidation reaction mechanism and evaluation criteria are briefly presented. The theoretical basis and research status of the nanostructure-interface engineering on constructing high-performance PEC water oxidation photoanodes are summarized and discussed. Finally, the current challenges and the future opportunities of nanostructure-interface engineering for the PEC reactions are pointed out.
Collapse
Affiliation(s)
- Rui Tang
- Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, 116024, China
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shujie Zhou
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zhenyu Zhang
- Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian, 116024, China
| | - Rongkun Zheng
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jun Huang
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2037, Australia
| |
Collapse
|
20
|
Wang X, Sun W, Tian Y, Dang K, Zhang Q, Shen Z, Zhan S. Conjugated π Electrons of MOFs Drive Charge Separation at Heterostructures Interface for Enhanced Photoelectrochemical Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100367. [PMID: 33690986 DOI: 10.1002/smll.202100367] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Photoanode material with high efficiency and stability is extensively desirable in photoelectrochemical (PEC) water splitting for green/renewable energy source. Herein, novel heterostructures is constructed via coating rutile TiO2 nanorods with metal organic framework (MOF) materials UiO-66 or UiO-67 (UiO-66@TiO2 and UiO-67@TiO2 ), respectively. The π electrons in the MOF linkers could increase the local electronegativity near the heterojunction interface due to the conjugation effect, thereby enhancing the internal electric field (IEF) at the heterojunction interface. The IEF could drive charge transfer following Z-scheme mechanism in the prepared heterostructures, inducing photogenerated charge separation efficiency increasing as 156% and 253% for the UiO-66@TiO2 and UiO-67@TiO2 , respectively. Correspondingly, the UiO-66@TiO2 and UiO-67@TiO2 enhanced the photocurrent density as approximate two- and threefolds compared with that of pristine TiO2 for PEC water oxidation in universal pH electrolytes. This work demonstrates an effective method of regulating the IEF of heterojunction toward further improved charge separation.
Collapse
Affiliation(s)
- Xuewei Wang
- Department of Chemistry, Analytical Instruments Center, Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, 105 North Road of Western Third Ring, Haidian District, Beijing, 100048, P. R. China
| | - Wenming Sun
- College of Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Yang Tian
- Department of Chemistry, Analytical Instruments Center, Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, 105 North Road of Western Third Ring, Haidian District, Beijing, 100048, P. R. China
| | - Kun Dang
- Department of Chemistry, Analytical Instruments Center, Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, 105 North Road of Western Third Ring, Haidian District, Beijing, 100048, P. R. China
| | - Qimeng Zhang
- Department of Chemistry, Analytical Instruments Center, Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, 105 North Road of Western Third Ring, Haidian District, Beijing, 100048, P. R. China
| | - Zhurui Shen
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
21
|
Lin Z, Li S, Huang J. Natural Cellulose Substance Based Energy Materials. Chem Asian J 2021; 16:378-396. [PMID: 33427380 DOI: 10.1002/asia.202001358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/31/2020] [Indexed: 11/08/2022]
Abstract
Natural cellulose substances have been proven to be ideal structural templates and scaffolds for the fabrication of artificial functional materials with designed structures, psychochemical properties and functionalities. They possess unique hierarchically porous network structures with flexible, biocompatible, and environmental characteristics, exhibiting great potentials in the preparation of energy-related materials. This minireview summarizes natural cellulose-based materials that are used in batteries, supercapacitors, photocatalytic hydrogen generation, photoelectrochemical cells, and solar cells. When natural cellulose substances are employed as the structural template or carbon sources of energy materials, the three-dimensional porous interwoven structures are perfectly replicated, leading to the enhanced performances of the resultant materials. Benefiting from the mechanical strengths of natural cellulose substances, wearable, portable, free-standing, and flexible materials for energy storage and conversion are easily obtained by using natural cellulose substances as the substrates.
Collapse
Affiliation(s)
- Zehao Lin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Shun Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Jianguo Huang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|