1
|
Zhou X, Zhou K, Zhang H, Sun X. A Theoretical Investigation on the Structural, Electronic and Photocatalytic Properties of BaTaO 2N Adsorbed with Metal Cocatalysts. Chemphyschem 2025; 26:e202401131. [PMID: 39927754 DOI: 10.1002/cphc.202401131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/11/2025]
Abstract
We have performed DFT calculations to study the adsorption of single metal atoms (M=Ti, V, Cr, Mn, Fe, Co, Ni, Cu) on both BaO- and TaON-terminated surfaces of cis-BaTaO2N (001). We have identified the most stable adsorption configuration of each case and explored the relative stability, structural deformations, charge transfer, work function, density of states and mechanism of photocatalytic HER. For BaO termination, all of the adatoms bind covalently on top of the surface oxygens. For TaON termination, the metal atoms are located at the fourfold hollow site. The single metal atoms tend to exist on TaON-termination while they are apt to aggregate on BaO-termination. The formation of impurity states in the band gap is mostly originated from the adatom. When electrons are transferred from the adatom to the surface, the conduction band of semiconductor becomes partially occupied. The charge gained from the BaO termination or transferred to the TaON termination reduces with the increase in electronegativity of metal adatoms. The attachment of metal atoms on the BaO termination is favorable to the improvement of HER activity. While the TaON termination adsorbed with Ti, V and Cr may have better or comparable performance of HER compared with the pure surface.
Collapse
Affiliation(s)
- Xin Zhou
- Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian, 116029, P. R. China E-mail: addresses
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, P. R. China
| | - Keyu Zhou
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, P. R. China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China
| | - Huan Zhang
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, P. R. China
| | - Xinyi Sun
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng, Henan, 475004, P. R. China
| |
Collapse
|
2
|
Du X, Ji H, Xu Y, Du S, Feng Z, Dong B, Wang R, Zhang F. Covalent organic framework without cocatalyst loading for efficient photocatalytic sacrificial hydrogen production from water. Nat Commun 2025; 16:3024. [PMID: 40155629 PMCID: PMC11953233 DOI: 10.1038/s41467-025-58337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
Metals are typically essential as either integral components within photocatalysts or as cocatalyst modifiers to enable efficient artificial photosynthesis, such as water splitting and carbon dioxide reduction. However, developing photocatalysts that function effectively without metal cocatalysts remains challenging due to their cost and scarcity. Here we show a nonstoichiometric β-ketoenamine-linked covalent organic framework that operates without cocatalysts, achieving hydrogen production rates of 15.48 mmol·g⁻¹·h⁻¹ from seawater and 22.45 mmol·g⁻¹·h⁻¹ from water with an ascorbic acid scavenger under visible light. It outperforms many reported platinum-modified covalent organic frameworks and metal-containing inorganic photocatalysts. The enhanced performance is attributed to its broad light absorption edge extending to approximately 660 nm, efficient charge separation, and the presence of abundant active oxygen sites derived from carbonyl groups, which exhibit a low hydrogen-binding Gibbs free energy change. This work lays the groundwork for designing cost-effective photocatalytic systems suitable for large-scale hydrogen production.
Collapse
Affiliation(s)
- Xuejiao Du
- School of Chemical Engineering and Technology, Yanzhao Green Chemical Engineering Laboratory, Hebei University of Technology, Tianjin, China
| | - Haifeng Ji
- School of Chemical Engineering and Technology, Yanzhao Green Chemical Engineering Laboratory, Hebei University of Technology, Tianjin, China
| | - Yang Xu
- School of Chemical Engineering and Technology, Yanzhao Green Chemical Engineering Laboratory, Hebei University of Technology, Tianjin, China
| | - Shiwen Du
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhaochi Feng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Beibei Dong
- School of Chemical Engineering and Technology, Yanzhao Green Chemical Engineering Laboratory, Hebei University of Technology, Tianjin, China.
| | - Ruihu Wang
- School of Chemical Engineering and Technology, Yanzhao Green Chemical Engineering Laboratory, Hebei University of Technology, Tianjin, China.
| | - Fuxiang Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
3
|
Zhai Y, Shi Z, Xia Q, Han W, Li W, Deng X, Zhang X. Lithiation: Advancing Material Synthesis and Structural Engineering for Emerging Applications. ACS NANO 2024; 18:26477-26502. [PMID: 39301666 DOI: 10.1021/acsnano.4c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Lithiation, a process of inserting lithium ions into a host material, is revolutionizing nanomaterials synthesis and structural engineering as well as enhancing their performance across emerging applications, particularly valuable for large-scale synthesis of high-quality low-dimensional nanomaterials. Through a systematic investigation of the synthetic strategies and structural changes induced by lithiation, this review aims to offer a comprehensive understanding of the development, potential, and challenges associated with this promising approach. First, the basic principles of lithiation/delithiation processes will be introduced. Then, the recent advancements in the lithiation-induced structure changes of nanomaterials, such as morphology tuning, phase transition, defect generation, etc., will be stressed, emphasizing the importance of lithiation in structural modulation of nanomaterials. With the tunable structures induced by the lithiation, the properties and performance in electrochemical, photochemical, electronic devices, bioapplications, etc. will be discussed, followed by outlining the current challenges and perspectives in this research area.
Collapse
Affiliation(s)
- Yanjie Zhai
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Zhenqi Shi
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Qing Xia
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wenkai Han
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Weisong Li
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Xiaoran Deng
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Jiangsu 221004, China
| | - Xiao Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Andreou E, Vamvasakis I, Armatas GS. Efficient Visible Light Photocatalytic Hydrogen Evolution by Boosting the Interfacial Electron Transfer in Mesoporous Mott-Schottky Heterojunctions of Co 2P-Modified CdIn 2S 4 Nanocrystals. ACS APPLIED ENERGY MATERIALS 2024; 7:4891-4903. [PMID: 38911345 PMCID: PMC11192152 DOI: 10.1021/acsaem.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024]
Abstract
Photocatalytic water splitting for hydrogen generation is an appealing means of sustainable solar energy storage. In the past few years, mesoporous semiconductors have been at the forefront of investigations in low-cost chemical fuel production and energy conversion technologies. Mesoporosity combined with the tunable electronic properties of semiconducting nanocrystals offers the desired large accessible surface and electronic connectivity throughout the framework, thus enhancing photocatalytic activity. In this work, we present the construction of rationally designed 3D mesoporous networks of Co2P-modified CdIn2S4 nanoscale crystals (ca. 5-6 nm in size) through an effective soft-templating synthetic route and demonstrate their impressive performance for visible-light-irradiated catalytic hydrogen production. Spectroscopic characterizations combined with electrochemical studies unravel the multipathway electron transfer dynamics across the interface of Co2P/CdIn2S4 Mott-Schottky nanoheterojunctions and shed light on their impact on the photocatalytic hydrogen evolution chemistry. The strong Mott-Schottky interaction occurring at the heterointerface can regulate the charge transport toward greatly improved hydrogen evolution performance. The hybrid catalyst with 10 wt % Co2P content unveils a H2 evolution rate of 20.9 mmol gcat -1 h-1 under visible light irradiation with an apparent quantum efficiency (AQE) up to 56.1% at 420 nm, which is among the highest reported activities. The understanding of interfacial charge-transfer mechanism could provide valuable insights into the rational development of highly efficient catalysts for clean energy applications.
Collapse
Affiliation(s)
- Evangelos
K. Andreou
- Department of Materials Science
and Engineering University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| | - Ioannis Vamvasakis
- Department of Materials Science
and Engineering University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| | - Gerasimos S. Armatas
- Department of Materials Science
and Engineering University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| |
Collapse
|
5
|
Jia G, Sun F, Zhou T, Wang Y, Cui X, Guo Z, Fan F, Yu JC. Charge redistribution of a spatially differentiated ferroelectric Bi 4Ti 3O 12 single crystal for photocatalytic overall water splitting. Nat Commun 2024; 15:4746. [PMID: 38834546 DOI: 10.1038/s41467-024-49168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Abstract
Artificial photosynthesis is a promising approach to produce clean fuels via renewable solar energy. However, it is practically constrained by two issues of slow photogenerated carrier migration and rapid electron/hole recombination. It is also a challenge to achieve a 2:1 ratio of H2 and O2 for overall water splitting. Here we report a rational design of spatially differentiated two-dimensional Bi4Ti3O12 nanosheets to enhance overall water splitting. Such a spatially differentiated structure overcomes the limitation of charge transfer across different crystal planes in a single crystal semiconductor. The experimental results show a redistribution of charge within a crystal plane. The resulting photocatalyst produces 40.3 μmol h-1 of hydrogen and 20.1 μmol h-1 of oxygen at a near stoichiometric ratio of 2:1 and a solar-to-hydrogen efficiency of 0.1% under simulated solar light.
Collapse
Affiliation(s)
- Guangri Jia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Fusai Sun
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Zhou
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Ying Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Zhengxiao Guo
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China.
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China.
| |
Collapse
|
6
|
Zhang Q, Zheng Z, Gao R, Xiao X, Jiao M, Wang B, Zhou G, Cheng HM. Constructing Bipolar Dual-Active Sites through High-Entropy-Induced Electric Dipole Transition for Decoupling Oxygen Redox. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401018. [PMID: 38602072 DOI: 10.1002/adma.202401018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/31/2024] [Indexed: 04/12/2024]
Abstract
It remains a significant challenge to construct active sites to break the trade-off between oxidation and reduction processes occurring in battery cathodes with conversion mechanism, especially for the oxygen reduction and evolution reactions (ORR/OER) involved in the zinc-air batteries (ZABs). Here, using a high-entropy-driven electric dipole transition strategy to activate and stabilize the tetrahedral sites is proposed, while enhancing the activity of octahedral sites through orbital hybridization in a FeCoNiMnCrO spinel oxide, thus constructing bipolar dual-active sites with high-low valence states, which can effectively decouple ORR/OER. The FeCoNiMnCrO high-entropy spinel oxide with severe lattice distortion, exhibits a strong 1s→4s electric dipole transition and intense t2g(Co)/eg(Ni)-2p(OL) orbital hybridization that regulates the electronic descriptors, eg and t2g, which leads to the formation of low-valence Co tetrahedral sites (Coth) and high-valence Ni octahedral sites (Nioh), resulting in a higher half-wave potential of 0.87 V on Coth sites and a lower overpotential of 0.26 V at 10 mA cm-2 on Nioh sites as well as a superior performance of ZABs compared to low/mild entropy spinel oxides. Therefore, entropy engineering presents a distinctive approach for designing catalytic sites by inducing novel electromagnetic properties in materials across various electrocatalytic reactions, particularly for decoupling systems.
Collapse
Affiliation(s)
- Qi Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhiyang Zheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Runhua Gao
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiao Xiao
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Miaolun Jiao
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Boran Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
7
|
Cheng J, Wu Y, Zhang W, Zhang J, Wang L, Zhou M, Fan F, Wu X, Xu H. Fully Conjugated 2D sp 2 Carbon-Linked Covalent Organic Frameworks for Photocatalytic Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305313. [PMID: 37818737 DOI: 10.1002/adma.202305313] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Indexed: 10/13/2023]
Abstract
Covalent organic frameworks (COFs) hold great promise for solar-driven hydrogen production. However, metal-free COFs for photocatalytic overall water splitting remain elusive, primarily due to challenges in simultaneously regulating their band structures and catalytic sites to enable concurrent half-reactions. Herein, two types of π-conjugated COFs containing the same donor-acceptor structure are constructed via Knoevenagel condensation and Schiff base reaction to afford cyanovinylene- and imine-bridged COFs, respectively. The difference in the linkage leads to a remarkable difference in their photocatalytic activity toward water splitting. The 2D sp2 carbon-linked COF exhibits notable activity for photocatalytic overall water splitting, which can reach an apparent quantum efficiency of 2.53% at 420 nm. In contrast, the 2D imine-linked COF cannot catalyze the overall water-splitting reaction. Mechanistic investigations reveal that the cyanovinylene linkage is essential in modulating the band structure and promoting charge separation in COFs, thereby enabling overall water splitting. Moreover, it is further shown that crystallinity substantially impacts the photocatalytic performance of COFs. This study represents the first successful example of developing metal-free COFs with high crystallinity for photocatalytic overall water splitting.
Collapse
Affiliation(s)
- Jun Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuting Wu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jie Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Chean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Lei Wang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Meng Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Chean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xiaojun Wu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hangxun Xu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
8
|
He X, Tian W, Yang L, Bai Z, Li L. Optical and Electrical Modulation Strategies of Photoelectrodes for Photoelectrochemical Water Splitting. SMALL METHODS 2024; 8:e2300350. [PMID: 37330656 DOI: 10.1002/smtd.202300350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/15/2023] [Indexed: 06/19/2023]
Abstract
When constructing efficient, cost-effective, and stable photoelectrodes for photoelectrochemical (PEC) systems, the solar-driven photo-to-chemical conversion efficiency of semiconductors is limited by several factors, including the surface catalytic activity, light absorption range, carrier separation, and transfer efficiency. Accordingly, various modulation strategies, such as modifying the light propagation behavior and regulating the absorption range of incident light based on optics and constructing and regulating the built-in electric field of semiconductors based on carrier behaviors in semiconductors, are implemented to improve the PEC performance. Herein, the mechanism and research advancements of optical and electrical modulation strategies for photoelectrodes are reviewed. First, parameters and methods for characterizing the performance and mechanism of photoelectrodes are introduced to reveal the principle and significance of modulation strategies. Then, plasmon and photonic crystal structures and mechanisms are summarized from the perspective of controlling the propagation behavior of incident light. Subsequently, the design of an electrical polarization material, polar surface, and heterojunction structure is elaborated to construct an internal electric field, which serves as the driving force to facilitate the separation and transfer of photogenerated electron-hole pairs. Finally, the challenges and opportunities for developing optical and electrical modulation strategies for photoelectrodes are discussed.
Collapse
Affiliation(s)
- Xianhong He
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials and Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
- Molecular Biology Laboratory, Center for Disease Immunity and Intervention, School of Medicine, Lishui University, Lishui, Zhejiang, 323000, P. R. China
| | - Wei Tian
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials and Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials and Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
9
|
Hojamberdiev M, Vargas R, Zhang F, Teshima K, Lerch M. Perovskite BaTaO 2 N: From Materials Synthesis to Solar Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305179. [PMID: 37852947 PMCID: PMC10667847 DOI: 10.1002/advs.202305179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Indexed: 10/20/2023]
Abstract
Barium tantalum oxynitride (BaTaO2 N), as a member of an emerging class of perovskite oxynitrides, is regarded as a promising inorganic material for solar water splitting because of its small band gap, visible light absorption, and suitable band edge potentials for overall water splitting in the absence of an external bias. However, BaTaO2 N still exhibits poor water-splitting performance that is susceptible to its synthetic history, surface states, recombination process, and instability. This review provides a comprehensive summary of previous progress, current advances, existing challenges, and future perspectives of BaTaO2 N for solar water splitting. A particular emphasis is given to highlighting the principles of photoelectrochemical (PEC) water splitting, classic and emerging photocatalysts for oxygen evolution reactions, and the crystal and electronic structures, dielectric, ferroelectric, and piezoelectric properties, synthesis routes, and thin-film fabrication of BaTaO2 N. Various strategies to achieve enhanced water-splitting performance of BaTaO2 N, such as reducing the surface and bulk defect density, engineering the crystal facets, tailoring the particle morphology, size, and porosity, cation doping, creating the solid solutions, forming the heterostructures and heterojunctions, designing the photoelectrochemical cells, and loading suitable cocatalysts are discussed. Also, the avenues for further investigation and the prospects of using BaTaO2 N in solar water splitting are presented.
Collapse
Affiliation(s)
- Mirabbos Hojamberdiev
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Ronald Vargas
- Instituto Tecnológico de Chascomús (INTECH) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional de San Martín (UNSAM)Avenida Intendente Marino, Km 8,2, (B7130IWA)ChascomúsProvincia de Buenos AiresArgentina
- Escuela de Bio y NanotecnologíasUniversidad Nacional de San Martín (UNSAM)Avenida Intendente Marino, Km 8,2, (B7130IWA)ChascomúsProvincia de Buenos AiresArgentina
| | - Fuxiang Zhang
- State Key Laboratory of CatalysisiChEMDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian National Laboratory for Clean EnergyDalian116023P.R. China
| | - Katsuya Teshima
- Department of Materials ChemistryShinshu University4‐17‐1 WakasatoNagano3808553Japan
- Research Initiative for Supra‐MaterialsShinshu University4‐17‐1 WakasatoNagano3808553Japan
| | - Martin Lerch
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| |
Collapse
|
10
|
Chen K, Xiao J, Hisatomi T, Domen K. Transition-metal (oxy)nitride photocatalysts for water splitting. Chem Sci 2023; 14:9248-9257. [PMID: 37712021 PMCID: PMC10498681 DOI: 10.1039/d3sc03198e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Solar-driven water splitting based on particulate semiconductor materials is studied as a technology for green hydrogen production. Transition-metal (oxy)nitride photocatalysts are promising materials for overall water splitting (OWS) via a one- or two-step excitation process because their band structure is suitable for water splitting under visible light. Yet, these materials suffer from low solar-to-hydrogen energy conversion efficiency (STH), mainly because of their high defect density, low charge separation and migration efficiency, sluggish surface redox reactions, and/or side reactions. Their poor thermal stability in air and under the harsh nitridation conditions required to synthesize these materials makes further material improvements difficult. Here, we review key challenges in the two different OWS systems and highlight some strategies recently identified as promising for improving photocatalytic activity. Finally, we discuss opportunities and challenges facing the future development of transition-metal (oxy)nitride-based OWS systems.
Collapse
Affiliation(s)
- Kaihong Chen
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University Nagano-shi Nagano 380-8553 Japan
| | - Jiadong Xiao
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University Nagano-shi Nagano 380-8553 Japan
| | - Takashi Hisatomi
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University Nagano-shi Nagano 380-8553 Japan
- PRESTO, JST 4-17-1 Wakasato, Nagano-shi Nagano 380-8553 Japan
| | - Kazunari Domen
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University Nagano-shi Nagano 380-8553 Japan
- Office of University Professors, The University of Tokyo 2-11-16 Yayoi, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Chemistry, Kyung Hee University Seoul 130-701 Republic of Korea
| |
Collapse
|
11
|
Mai H, Li X, Lu J, Wen X, Le TC, Russo SP, Chen D, Caruso RA. Synthesis of Layered Lead-Free Perovskite Nanocrystals with Precise Size and Shape Control and Their Photocatalytic Activity. J Am Chem Soc 2023; 145:17337-17350. [PMID: 37523781 DOI: 10.1021/jacs.3c04890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Halide perovskites have attracted enormous attention due to their potential applications in optoelectronics and photocatalysis. However, concerns over their instability, toxicity, and unsatisfactory efficiency have necessitated the development of lead-free all-inorganic halide perovskites. A major challenge in designing efficient halide perovskites for practical applications is the lack of effective methods for producing nanocrystals with precise size and shape control. In this work, a layered perovskite, Cs4ZnSb2Cl12 (CZS), is found from calculations to exhibit size- and facet-dependent optoelectronic properties in the nanoscale, and thus, a colloidal method is used to synthesize the CZS nanoparticles with size-tunable morphologies: zero- (nanodots), one- (nanowires and nanorods), two- (nanoplates), and three-dimensional (nanopolyhedra). The growth kinetics of the CZS nanostructures, along with the effects of surface ligands, reaction temperature, and time were investigated. The optoelectronic properties of the nanocrystals varied with size due to quantum confinement effects and with shape due to anisotropy within the crystals and the exposure of specific facets. These properties could be modulated to enhance the visible-light photocatalytic performance for toluene oxidation. In particular, the 9.7 nm CZS nanoplates displayed a toluene to benzaldehyde conversion rate of 1893 μmol g-1 h-1 (95% selectivity), 500 times higher than the bulk synthesized CZS, and comparable with the reported photocatalysts. This study demonstrates the integration of theoretical calculations and synthesis, revealing an approach to the design and fabrication of novel, high-performance colloidal perovskite nanocrystals for optoelectronic and photocatalytic applications.
Collapse
Affiliation(s)
- Haoxin Mai
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Xuying Li
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Junlin Lu
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Xiaoming Wen
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Tu C Le
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Salvy P Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Dehong Chen
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
12
|
Kutorglo EM, Schwarze M, Nguyen AD, Tameu SD, Huseyinova S, Tasbihi M, Görke O, Primbs M, Šoóš M, Schomäcker R. Efficient full solar spectrum-driven photocatalytic hydrogen production on low bandgap TiO 2/conjugated polymer nanostructures. RSC Adv 2023; 13:24038-24052. [PMID: 37577094 PMCID: PMC10414019 DOI: 10.1039/d3ra04049f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
The development of photocatalysts that can utilize the entire solar spectrum is crucial to achieving efficient solar energy conversion. The utility of the benchmark photocatalyst, TiO2, is limited only to the UV region due to its large bandgap. Extending the light harvesting properties across the entire spectrum is paramount to enhancing solar photocatalytic performance. In this work, we developed low bandgap TiO2/conjugated polymer nanostructures which exhibit full spectrum activity for efficient H2 production. The highly mesoporous structure of the nanostructures together with the photosensitizing properties of the conjugated polymer enabled efficient solar light activity. The mesoporous TiO2 nanostructures calcined at 550 °C exhibited a defect-free anatase crystalline phase with traces of brookite and high surface area, resulting in the best performance in hydrogen production (5.34 mmol g-1 h-1) under sunlight simulation. This value is higher not only in comparison to other TiO2-based catalysts but also to other semiconductor materials reported in the literature. Thus, this work provides an effective strategy for the construction of full spectrum active nanostructured catalysts for enhanced solar photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Edith Mawunya Kutorglo
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
- Bioengineering and Advanced Materials Laboratory, Department of Chemical Engineering, University of Chemistry and Technology Prague Prague 166 28 Czech Republic
| | - Michael Schwarze
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
| | - Anh Dung Nguyen
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
| | - Simon Djoko Tameu
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
| | - Shahana Huseyinova
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
- University of Santiago de Compostela, Department of Chemistry Avenida do Mestre Mateo 25 Santiago de Compostela 15706 Spain
| | - Minoo Tasbihi
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
| | - Oliver Görke
- Department of Ceramic Materials, Faculty III: Process Sciences, Technische Universität Berlin Berlin 10623 Germany
| | - Matthias Primbs
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technische Universität Berlin Berlin 10623 Germany
| | - Miroslav Šoóš
- Bioengineering and Advanced Materials Laboratory, Department of Chemical Engineering, University of Chemistry and Technology Prague Prague 166 28 Czech Republic
| | - Reinhard Schomäcker
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
| |
Collapse
|
13
|
Yu J, Chang S, Shi L, Xu X. Single-Crystalline Bi 2YO 4Cl with Facet-Aided Photocarrier Separation for Robust Solar Water Splitting. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Jinxing Yu
- Clinical and Central Lab, Putuo People′s Hospital, Tongji University, Shanghai 200060, China
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shufang Chang
- Clinical and Central Lab, Putuo People′s Hospital, Tongji University, Shanghai 200060, China
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Li Shi
- Jiangsu Key Lab for Organic Electronics and Information, Displays & Institute of Advanced Materials, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiaoxiang Xu
- Clinical and Central Lab, Putuo People′s Hospital, Tongji University, Shanghai 200060, China
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
14
|
Kang Y, Wang D, Gao Y, Guo S, Hu K, Liu B, Fang S, Memon MH, Liu X, Luo Y, Sun X, Luo D, Chen W, Li L, Jia H, Hu W, Liu Z, Ge B, Sun H. Achieving Record-High Photoelectrochemical Photoresponse Characteristics by Employing Co 3O 4 Nanoclusters as Hole Charging Layer for Underwater Optical Communication. ACS NANO 2023; 17:3901-3912. [PMID: 36753692 DOI: 10.1021/acsnano.2c12175] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The physicochemical properties of a semiconductor surface, especially in low-dimensional nanostructures, determine the electrical and optical behavior of the devices. Thereby, the precise control of surface properties is a prerequisite for not only preserving the intrinsic material quality but also manipulating carrier transport behavior for promoting device characteristics. Here, we report a facile approach to suppress the photocorrosion effect while boosting the photoresponse performance of n-GaN nanowires in a constructed photoelectrochemical-type photodetector by employing Co3O4 nanoclusters as a hole charging layer. Essentially, the Co3O4 nanoclusters not only alleviate nanowires from corrosion by optimizing the oxygen evolution reaction kinetics at the nanowire/electrolyte interface but also facilitate an efficient photogenerated carrier separation, migration, and collection process, leading to a significant ease of photocurrent attenuation (improved by nearly 867% after Co3O4 decoration). Strikingly, a record-high responsivity of 217.2 mA W-1 with an ultrafast response/recovery time of 0.03/0.02 ms can also be achieved, demonstrating one of the best performances among the reported photoelectrochemical-type photodetectors, that ultimately allowed us to build an underwater optical communication system based on the proposed nanowire array for practical applications. This work provides a perspective for the rational design of stable nanostructures for various applications in photo- and biosensing or energy-harvesting nanosystems.
Collapse
Affiliation(s)
- Yang Kang
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Danhao Wang
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yunzhi Gao
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Siqi Guo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Kejun Hu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Boyang Liu
- Platform for Characterization and Test, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People's Republic of China
| | - Shi Fang
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Muhammad Hunain Memon
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xin Liu
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yuanmin Luo
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xiyu Sun
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Dongyang Luo
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Wei Chen
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Liuan Li
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hongfeng Jia
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Wei Hu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhenghui Liu
- Platform for Characterization and Test, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People's Republic of China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Haiding Sun
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- The CAS Key Laboratory of Wireless-Optical Communications, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| |
Collapse
|
15
|
Song X, Du S, Xing X, Dong B, Feng Z, Cheng F. Flux-assisted synthesis of tungsten-doped layered perovskite oxychloride with promoted visible-light-responsive O 2 evolution performance. Chem Commun (Camb) 2023; 59:1225-1228. [PMID: 36629874 DOI: 10.1039/d2cc05806e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Here, we successfully prepared Ba2Bi3Ta2O11Cl via a simple one-step molten salt method and adjusted its crystal morphology and structure, based on which the O2-evolving activity was significantly improved. In addition, W doping promotes the charge separation efficiency, lowers the energy barrier for water oxidation reaction, and thus improves the activity. Finally, the optimized W-doped sample after molten salt treatment shows the best O2 production activity (55 μmol h-1) without loading any cocatalyst, which is 6 times higher than that of pristine Ba2Bi3Ta2O11Cl and 2 times higher than that of the undoped Ba2Bi3Ta2O11Cl treated with molten salt, respectively.
Collapse
Affiliation(s)
- Xiangyao Song
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Shiwen Du
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiangying Xing
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Beibei Dong
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Zhaochi Feng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fei Cheng
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
16
|
Li D, Zhao Y, Miao Y, Zhou C, Zhang LP, Wu LZ, Zhang T. Accelerating Electron-Transfer Dynamics by TiO 2 -Immobilized Reversible Single-Atom Copper for Enhanced Artificial Photosynthesis of Urea. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207793. [PMID: 36271589 DOI: 10.1002/adma.202207793] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Photocatalysis as a sustainable technology is expected to provide a novel sight for the green synthesis of urea directly using N2 , CO2 , and H2 O under mild conditions. However, the fundamental issue of inefficient electron transfer in photocatalysis strongly hinders its feasibility, especially for the above multi-electron-demanding urea synthesis. Herein, an effective strategy of accelerating electron-transfer dynamics is reported by TiO2 -immobilized reversible single-atom copper (denoted as Cu SA-TiO2 ) to enhance the performance for photosynthesis of urea from N2 , CO2 , and H2 O. As revealed by a series of quasi-in-situ characterizations (e.g., electron paramagnetic resonance, and wavelength-resolved and femtosecond time-resolved spectroscopies), the expedited dynamics behaviors originating from reversible single-atom copper in as-designed Cu SA-TiO2 (electron extraction rate: over 30 times faster than the reference photocatalysts) allow the assurance of abundant and continual photogenerated electrons for multi-electron-demanding co-photoactivation of N2 and CO2 , resulting in considerable rates of urea production. The strategy above for improving the photoelectron-extraction ability of photocatalysts will offer a high-efficiency and promising route for artificial urea photosynthesis and other multi-electron-demanding photocatalytic reactions.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yingxuan Miao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li-Ping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
17
|
Xu J, Luo Y, Guo Q, Zhou H, Wang Z, He H. In-situ construction of platy LaTaON2 by CsCl flux for remarkably promoted solar hydrogen production. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
18
|
Shi A, Sun D, Zhang X, Sun P, Li X, Xiong B, Niu X. Sandwich-Polarized Heterojunction: Efficient Charge Separation and Redox Capability Protection for Photocatalytic Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32018-32025. [PMID: 35796570 DOI: 10.1021/acsami.2c07278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic overall water splitting is a potential strategy to address energy crisis and environmental issues. However, it remains a great challenge to design an efficient photocatalyst, which not only possesses large spatial separation of photogenerated electrons and holes (PEH) to suppress recombination, but also can preserve the redox capability to drive the reaction. Herein, we design a new type of sandwich-polarized heterojunction by inserting a polarized semiconductor into the interlayer of the conventional photocatalyst. The inserted sublayer with out-of-plane polarization can induce a large electrostatic potential difference between the top and bottom photocatalytic sublayers. Then, the band edges of the top and bottom sublayers can be shifted to form the type II band alignment. Also, the valence band maximum and conduction band minimum will be located on different photocatalytic sublayers to facilitate the spatial separation of PEH. Simultaneously, different from the conventional type II heterojunction that reduces the redox capability, the electrostatic potential difference also acts as an auxiliary booster to offset the reduced redox potential of PEH. Taking the C2N/In2Se3/C2N heterojunction as an example, the polarized In2Se3 effectively promotes the interface transfer of PEH in 1-5 ps and extends the lifetime of PEH to ∼186 ns, which is about six times that of bilayer C2N. Simultaneously, the redox power of C2N is well preserved. Our work offers a promising scheme to advance the photocatalytic overall water splitting.
Collapse
Affiliation(s)
- Anqi Shi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Dazhong Sun
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xuemei Zhang
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Pengjia Sun
- School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xing'ao Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Bitao Xiong
- School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xianghong Niu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
19
|
CdS@Ni3(NO3)2(OH)4 nanorods@nanosheets for boosted photocatalytic H2 generation rate and stability under visible light irradiation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Li S, Xu W, Meng L, Tian W, Li L. Recent Progress on Semiconductor Heterojunction‐Based Photoanodes for Photoelectrochemical Water Splitting. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202100112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Shengnan Li
- School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Center for Energy Conversion Materials & Physics (CECMP) Soochow University Suzhou 215006 P. R. China
| | - Weiwei Xu
- School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Center for Energy Conversion Materials & Physics (CECMP) Soochow University Suzhou 215006 P. R. China
| | - Linxing Meng
- School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Center for Energy Conversion Materials & Physics (CECMP) Soochow University Suzhou 215006 P. R. China
| | - Wei Tian
- School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Center for Energy Conversion Materials & Physics (CECMP) Soochow University Suzhou 215006 P. R. China
| | - Liang Li
- School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Center for Energy Conversion Materials & Physics (CECMP) Soochow University Suzhou 215006 P. R. China
| |
Collapse
|
21
|
Qi Y, Zhang F. Photocatalytic Water Splitting for Hydrogen Production ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Ge R, Zhu Y, Wang H, Gu S. Methods and Application of Absolute Configuration Assignment for Chiral Compounds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Zhou K, Fo Y, Zhou X. First-principles calculations of the structural, energetic, electronic, optical, and photocatalytic properties of BaTaO 2N low-index surfaces. NEW J CHEM 2022. [DOI: 10.1039/d2nj01191c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present here the influence of different surface terminations on the electronic, optical, and photocatalytic properties of trans and cis BaTaO2N using density functional theory calculations.
Collapse
Affiliation(s)
- Keyu Zhou
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, China
| | - Yumeng Fo
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, China
| | - Xin Zhou
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, China
| |
Collapse
|
24
|
Liu K, Chen D, Zhang S, Su P, Huang Y. Enhancing the Charge Carrier Transfer of ZnFe 2O 4/C/TiO 2 Hollow Nanosphere Photocatalyst via Contact Interface Engineering. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kuiliang Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Daoming Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Siqi Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Peiyang Su
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Yongchao Huang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|