1
|
Li H, Li C, Zhang H, Yin D, He Y, Zhang G, Tan J, Zhang Q. Mechanically Robust and Environmentally Stable Solid-Solid Phase Change Materials via Thiolactone Strategy for Versatile Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2504538. [PMID: 40370215 DOI: 10.1002/smll.202504538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/08/2025] [Indexed: 05/16/2025]
Abstract
Solid-solid phase change materials (SSPCMs) have received great interest due to their exceptional thermal management and superior shape stability. However, traditional crosslinked structures predominantly rely on ester groups, which limits their applicability under extreme conditions such as high humidity. Herein, a novel strategy is presented for preparing SSPCMs with excellent latent heat and environmental robustness via thiolactone ring-opening reactions. Easily synthesized thiolactone copolymers provide abundant reactive sites which are then functionalized with alkyl amines and alkyl acrylates as grafted phase change components. A small amount of polyetheramine is employed to crosslink the functionalized copolymer, forming a robust network. The resulting SSPCMs exhibit tunable phase transition temperatures (44.7-61.0 °C) and enthalpies (20.3-98.9 J g-1). Owing to the high density of alkyl groups, the SSPCMs can maintain the stability of mechanical properties, phase change properties, and shape when immersed in water, acid, and alkaline conditions for 2 h. In addition, the synthesized phase change films demonstrate reversible information encryption, shape memory and infrared stealth properties. When integrated with polydopamine nanoparticles, these materials also exhibit excellent solar-thermal stores/releases capacity. Collectively, these unique features provide new insights and ideas for the development of the next generation of smart thermal management materials.
Collapse
Affiliation(s)
- Haonan Li
- Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Chunmei Li
- Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Haoran Zhang
- Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Dezhong Yin
- Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Yuanxin He
- Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Guoxian Zhang
- Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Jiaojun Tan
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Qiuyu Zhang
- Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| |
Collapse
|
2
|
Peng K, Chen H, Ye J, Guo X, Ran Y, Su L, Niu M, Lu D, Wang H. Tailoring SiC Nanowire Aerogel in Phase Change Composites with Multiresponsive Thermal Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22871-22881. [PMID: 40183926 DOI: 10.1021/acsami.5c03863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Phase change materials have demonstrated attractive application prospects in various thermal energy storage and management systems. However, the design and manufacture of high-performance phase change composites with tunable thermal properties and multiresponsive thermal energy storage remain a great challenge. Herein, a SiC nanowire aerogel with tailorable porosity and surface was used to encapsulate stearic acid for fabricating phase change composites. The porosity of the SiC nanowire aerogel could be facilely tailored by a uniaxial hot-pressing method, and its surface could be coated with C or SiO2 via chemical vapor deposition or the oxidation method. Meanwhile, the latent heat and thermal conductivity of the phase change composites were tuned by tailoring the porosity and surface of the SiC nanowire aerogel. The resulting phase change composites exhibit ultrahigh latent heat retention (96.9%) and excellent shape stability, cycling stability, and recyclability. In addition, the multiresponsiveness of the phase change composites to temperature, light, electricity, and microwave endows them with the ability to harvest thermal, solar, electric energy, and especially microwave radial energy. This study provides a promising strategy for designing and tailoring phase change composites for multienergy utilization.
Collapse
Affiliation(s)
- Kang Peng
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Honglin Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingying Ye
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xingwang Guo
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanni Ran
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Su
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Niu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - De Lu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongjie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
3
|
Long J, Li Z, Zhong T. Fabrication of clickable bamboo-sourced cellulose nanofibrils for diverse surface modifications: Hydrophobicity and fluorescence functionalities. Carbohydr Polym 2025; 348:122786. [PMID: 39562065 DOI: 10.1016/j.carbpol.2024.122786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/21/2024]
Abstract
Surface functionalization of cellulose nanofibrils (CNF) is crucial for expanding their practical application. However, most functionalization processes are complicated and laborious. Herein, this work presents a facile surface engineering strategy to create a range of functionalized CNF via thiol-ene click reaction. Initially, clickable CNF was produced by grafting a compound with both carboxylate- and norbornene groups onto bamboo cellulose via norbornene-dicarboxylic anhydride esterification followed by homogenization. The introduction of negatively charged carboxylates facilitated nanofibrillation, resulting in CNF with a diameter of 3 nm and an aspect ratio of up to 600. The introduction of norbornenes enabled diverse functionalization of CNF through click reaction. Subsequently, hexadecanethiol successfully clicked with norbornene-grafting CNF, enhancing its hydrophobicity and dispersion in organic solvents. 7-mercapto-4-methyl coumarin was also able to click with norbornene-grafting CNF, yielding fluorescence-labeled CNF while maintaining excellent aqueous dispersibility. The fluorescence-labeled CNF was demonstrated to be utilized as an eco-friendly sensor for the detection of Fe3+ ions. Additionally, it could be converted into fluorescent films or intelligent inks suitable for anti-counterfeiting purposes. This study demonstrates that the proposed surface engineering strategy provides an effective approach for producing clickable CNF and fabricating cellulosic materials with diverse functionalities that meet the demands of various applications.
Collapse
Affiliation(s)
- Juan Long
- International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of NFGA/Beijing for Bamboo & Rattan Science and Technology, National Forestry and Grassland Administration, Beijing 100102, China
| | - Zhiqiang Li
- International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of NFGA/Beijing for Bamboo & Rattan Science and Technology, National Forestry and Grassland Administration, Beijing 100102, China
| | - Tuhua Zhong
- International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of NFGA/Beijing for Bamboo & Rattan Science and Technology, National Forestry and Grassland Administration, Beijing 100102, China.
| |
Collapse
|
4
|
Liu H, Zhong H, Yuan Q, Yang R, Kim M, Chan YHT, Chen S, Lin J, Li MG. Roll-to-Roll Manufacturing of Breathable Superhydrophobic Membranes. SMALL METHODS 2024; 8:e2400038. [PMID: 38593365 PMCID: PMC11672173 DOI: 10.1002/smtd.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Self-cleaning and anti-biofouling are both advantages for lotus-leaf-like superhydrophobic surfaces. Methods for creating superhydrophobicity, including chemical bonding low surface energy molecular fragments and constructing surface morphology with protrusions, micropores, and trapped micro airbags by traditional physical strategies, unfortunately, have encountered challenges. They often involve complex synthesis processes, stubborn chemical accumulation, brutal degradation, or infeasible calculation and imprecise modulation in fabricating hierarchical surface roughness. Here, a scalable method to prepare high-quality, breathable superhydrophobic membranes is proposed by developing a successive roll-to-roll laser manufacturing technique, which offers advantages over conventional fabrication approaches in enabling automatically large-scale production and ensuring cost-effectiveness. Nanosecond laser writing and femtosecond laser drilling produce surface microstructures and micropore arrays, respectively, endowing the membrane with superior antiwater capability with hierarchical microstructures forming a barrier and blocking water infiltration. The membrane's breathability is carefully optimized by tailoring micropore arrays to allow for the adequate passage of water vapor while maintaining superhydrophobicity. These membranes combine the benefits of anti-aqueous corrosive liquid behaviors, photothermal effects, thermoplastic properties, and stretchable performances as promising comprehensive materials in diverse scenes.
Collapse
Affiliation(s)
- Huan Liu
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| | - Haosong Zhong
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| | - Qiaoyaxiao Yuan
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| | - Rongliang Yang
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| | - Minseong Kim
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| | - Yee Him Timothy Chan
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
- State Key Laboratory of Advanced Displays and Optoelectronics TechnologiesThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| | - Siyu Chen
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| | - Jing Lin
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| | - Mitch Guijun Li
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
- State Key Laboratory of Advanced Displays and Optoelectronics TechnologiesThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| |
Collapse
|
5
|
Huang W, Tang X, Fan W, Sun Q, Wang Y, Xiao Z, Xie Y. Co-assembly of stearoylated cellulose nanocrystals and GO (or CNTs) for the construction of superhydrophobic hierarchical structure with enhanced photothermal conversion. Carbohydr Polym 2023; 315:120982. [PMID: 37230619 DOI: 10.1016/j.carbpol.2023.120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/28/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
The development of photothermal materials with high photothermal-conversion efficiencies is important in a range of applications, such as power generation, sterilization, desalination, and energy-production. To date, a few reports have been published related to improving the photothermal conversion performances of photothermal materials based on self-assembled nanolamellae. Herein, hybrid films of co-assembled stearoylated cellulose nanocrystals (SCNCs) and polymer-grafted graphene oxide (pGO)/polymer-grafted carbon nanotubes (pCNTs) were prepared. The chemical compositions, microstructures, and morphologies of these products were characterized, and it was found that the self-assembled SCNC structures exhibited numerous surface nanolamellae due to crystallization of the long alkyl chains. The hybrid films (i.e., SCNC/pGO and SCNC/pCNTs films) consisted of ordered nanoflake structures, confirming the co-assembly behavior of the SCNCs with pGO or pCNTs. The melting temperature (~65 °C) and latent heat of melting (87.87 J/g) of SCNC1.07 indicate its potential to induce the formation of nanolamellar pGO or pCNTs. Under light irradiation (50-200 mW/cm2), the pCNTs exhibited a higher light absorption capacity than pGO, and as a result, the SCNC/pCNTs film exhibited the best photothermal performance and electrical conversion, ultimately demonstrating its potential for use as a solar thermal device in practical applications.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Xiangyu Tang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Wuming Fan
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Qianqian Sun
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Yonggui Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China.
| | - Zefang Xiao
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Yanjun Xie
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| |
Collapse
|
6
|
Wang G, Tang Z, Gao Y, Liu P, Li Y, Li A, Chen X. Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chem Rev 2023. [PMID: 36946191 DOI: 10.1021/acs.chemrev.2c00572] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Functional phase change materials (PCMs) capable of reversibly storing and releasing tremendous thermal energy during the isothermal phase change process have recently received tremendous attention in interdisciplinary applications. The smart integration of PCMs with functional supporting materials enables multiple cutting-edge interdisciplinary applications, including optical, electrical, magnetic, acoustic, medical, mechanical, and catalytic disciplines etc. Herein, we systematically discuss thermal storage mechanism, thermal transfer mechanism, and energy conversion mechanism, and summarize the state-of-the-art advances in interdisciplinary applications of PCMs. In particular, the applications of PCMs in acoustic, mechanical, and catalytic disciplines are still in their infancy. Simultaneously, in-depth insights into the correlations between microscopic structures and thermophysical properties of composite PCMs are revealed. Finally, current challenges and future prospects are also highlighted according to the up-to-date interdisciplinary applications of PCMs. This review aims to arouse broad research interest in the interdisciplinary community and provide constructive references for exploring next generation advanced multifunctional PCMs for interdisciplinary applications, thereby facilitating their major breakthroughs in both fundamental researches and commercial applications.
Collapse
Affiliation(s)
- Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhaodi Tang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Panpan Liu
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Yang Li
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Ang Li
- School of Chemistry Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Lv Z, Rao J, Lü B, Chen G, Hao X, Guan Y, Bian J, Peng F. Microencapsulated phase change material via Pickering emulsion based on xylan nanocrystal for thermoregulating application. Carbohydr Polym 2023; 302:120407. [PMID: 36604078 DOI: 10.1016/j.carbpol.2022.120407] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Phase change materials (PCM) are promising for thermal regulation and energy storage, but suffer from the deformation and leakage of capsules. Herein, inspired by cellulose nanocrystal (CNC), xylan nanocrystal (XNC) with a dimension of 25-60 nm was successfully prepared through oxalic acid hydrolysis of high-crystalline xylan as raw materials via a top-down approach. With the introduction of hydrophobic groups, compared to XNC, succinylated XNC showed more remarkable emulsifying property over 7 days of storage at room temperature. Microencapsulated PCM composite consisting of sodium alginate (SA) as "matrix" and succinylated xylan nanocrystal (XNC) stabilized paraffin-based Pickering capsule (PCM beads) as "core" was facilely fabricated. PCM composite with the latent heat of 105.59 J·g-1 showed excellent thermoregulating performance. Our work suggests a new pathway toward sustainability of hemicelluloses in the application of food emulsion and thermal energy management.
Collapse
Affiliation(s)
- Ziwen Lv
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jun Rao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Baozhong Lü
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Gegu Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Xiang Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Ying Guan
- Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Dai B, Fan C, Zhu Z, Xu T, Zhang X. Tunable Thermoresponsive Flexible Films for Adaptive Temperature Management and Visual Temperature Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29284-29291. [PMID: 35708252 DOI: 10.1021/acsami.2c07058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Effective temperature management is essential for human thermal comfort and health. Although various temperature regulation materials have been proposed previously, there are few materials that have the dual functions of temperature monitoring and thermal management. Herein, a thermoresponsive form-stable flexible film based on phase-change materials (PCMs) and polydimethylsiloxane (PDMS) is rationally designed. The resultant versatile PCM@PDMS film is able to absorb and release heat responding to temperature stimuli and good mechanical strength. Moreover, optical visibility of the PCM@PDMS film can be reversibly converted between opaque and transparent states to monitor temperature. The switching principle is that solid PCMs embedded in the PDMS would be melted into liquid PCMs to enable light through the PCM@PDMS. The thermal experiment results suggest that the PCM@PDMS films can effectively regulate the human body temperature to adapt to the demanding environment (self-heating more than 3 °C in the cold environment or self-cooling more than 4 °C in the hot environment). Such dual-function films open a pathway to develop smart personalized thermoregulation materials for human body thermal management and temperature monitoring.
Collapse
Affiliation(s)
- Bing Dai
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Chuan Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zihao Zhu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Tailin Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
Niu W, Guo Y, Huang W, Song L, Xiao Z, Xie Y, Wang Y. Aliphatic chains grafted cellulose nanocrystals with core-corona structures for efficient toughening of PLA composites. Carbohydr Polym 2022; 285:119200. [DOI: 10.1016/j.carbpol.2022.119200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/28/2023]
|
10
|
Abstract
Liquid phase leakage, intrinsic rigidity, and easy brittle failure are the longstanding bottlenecks of phase change materials (PCMs) for thermal energy storage, which seriously hinder their widespread applications in advanced energy-efficient systems. Emerging flexible composite PCMs that are capable of enduring certain deformation and guaranteeing superior mutual contact with integrated devices are considered as a cutting-edge effective solution. Flexible PCMs-based thermal regulation technology can reallocate thermal energy and regulate the temperature within an optimal range. Currently, tireless efforts are devoted to the development of versatile flexible PCMs-based thermal regulation devices, and a big step forward has been taken. Herein, we systematically outline fabrication techniques, flexibility evaluation strategies, advanced functions and advances of flexible composite PCMs. Furthermore, existing challenges and future perspectives are provided in terms of flexible PCMs-based thermal regulation techniques. This insightful review aims to provide an in-depth understanding and constructive guidance of engineering advanced flexible multifunctional PCMs.
Collapse
Affiliation(s)
- Piao Cheng
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, PR China
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, PR China
| | - Zhaodi Tang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yan Gao
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Panpan Liu
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, PR China
| | - Changhui Liu
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
11
|
Chen X, Huang X, Shi TY, Wang JX, Yuan XR, Huang H, Wang J, He R, Yu XF. Synthesis and Properties of Shape-Stabilized Phase Change Materials Based on Poly(triallyl isocyanurate-silicone)/ n-Octadecane Composites. ACS OMEGA 2022; 7:14952-14960. [PMID: 35557688 PMCID: PMC9089381 DOI: 10.1021/acsomega.2c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Triallyl isocyanurate (TAIC) was modified by hydrogen silicone oil (SO) via hydrosilylation reaction, generating the original TAIC-SO (TS) intermediate. After the cross-linking polymerization of TS (PTS), the shape-stabilized phase change materials (PCMs) consisting of n-octadecane and silicone-modified supporting matrix were first synthesized by an in situ reaction. Remarkably, the novel three-dimensional PTS network effectively prevents the leakage of n-octadecane during its phase transition, solving the prominent problem of solid-liquid PCMs in practical applications. Moreover, n-octadecane is uniformly dispersed in the continuous and high-strength cross-linked network, contributing to excellent thermal reliability and structural stability of PTS/n-octadecane (TSO) composites. Differential scanning calorimetry analysis of the optimal TSO composite indicates that melting and freezing temperatures are 29.05 and 22.89 °C, and latent heats of melting and freezing are 130.35 and 129.81 J/g, respectively. After comprehensive characterizations, the shape-stabilized TSO composites turn out to be promising in thermal energy storage applications. Meanwhile, the strategy is practical and economical due to its advantages of easy operation, mild conditions, short reaction time, and low energy consumption.
Collapse
Affiliation(s)
- Xi Chen
- Shenzhen
Institutes of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, China
| | - Xuelin Huang
- Shenzhen
Institutes of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, China
| | - Tong-Yu Shi
- Shenzhen
Institutes of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Jia-Xin Wang
- Shenzhen
Institutes of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Xin-Ru Yuan
- Shenzhen
Institutes of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Hao Huang
- Shenzhen
Institutes of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, China
| | - Jiahong Wang
- Shenzhen
Institutes of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Rui He
- Shenzhen
Institutes of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, China
| | - Xue-Feng Yu
- Shenzhen
Institutes of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| |
Collapse
|
12
|
Yang Y, Li N, Lv T, Chen Z, Liu Y, Dong K, Cao S, Chen T. Natural wood-derived free-standing films as efficient and stable separators for high-performance lithium ion batteries. NANOSCALE ADVANCES 2022; 4:1718-1726. [PMID: 36132163 PMCID: PMC9417349 DOI: 10.1039/d2na00097k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 06/15/2023]
Abstract
A sustainable and low-cost separator is highly required for electrochemical energy storage systems. Herein, a type of modified natural wood film with excellent mechanical properties, ion conductivity and thermal stability is fabricated for high-performance lithium ion batteries. Using the modified natural wood film as a separator, the fabricated symmetric cell exhibits a more stable and lower plating/stripping voltage for Li than that of the cell with a commercialized polypropylene (PP) separator. The LiFePO4/Li half-cell with the modified wood film separator shows a small polarization voltage and high discharge capacity because of the multi-level nanostructure and abundant functional groups of the modified wood films. The results suggest that the modified wood films are a promising candidate for use as separators in lithium ion batteries. As desired, the LiFePO4/Li half-cells with the modified wood film separator deliver much higher discharge capacities and more stable Coulomb efficiency over two hundred charge/discharge cycles than the cell based on the PP separator. The present work systematically investigate the feasibility of abundant and cheap natural wood-derived materials for use as efficient separators instead of synthetic polymers for high-performance lithium ion batteries with long cycle life.
Collapse
Affiliation(s)
- Yunlong Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Ning Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Tian Lv
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Zilin Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Yanan Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Keyi Dong
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Tao Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| |
Collapse
|
13
|
Chen F, Wang Y, Tian Y, Zhang D, Song J, Crick CR, Carmalt CJ, Parkin IP, Lu Y. Robust and durable liquid-repellent surfaces. Chem Soc Rev 2022; 51:8476-8583. [DOI: 10.1039/d0cs01033b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides a comprehensive summary of characterization, design, fabrication, and application of robust and durable liquid-repellent surfaces.
Collapse
Affiliation(s)
- Faze Chen
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yaquan Wang
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Dawei Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Jinlong Song
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Colin R. Crick
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Claire J. Carmalt
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Ivan P. Parkin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Yao Lu
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|