1
|
Altharawi A, Aldakhil T, A. Alossaimi M. Synthesis of Rh-MOF/PVA-PVP nanofibers for skin cancer and infection inhibition. Front Chem 2025; 13:1575183. [PMID: 40357128 PMCID: PMC12066281 DOI: 10.3389/fchem.2025.1575183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Using electrospinning for nanofiber production, we can create unique materials with multiple applications in various industries, including medical bandages and wound dressings. One of the most important features of these materials and using the electrospinning technique, is the incorporation of compounds and metals into their structure. In this study, a new metal-organic framework (MOF) was synthesized from rhodium, a metal with significant biological potential, which was then used to produce new nanofibers using electrospinning technique, (Rh-MOF/PVA-PVP nanofiber) by mixing polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP). The newly synthesized nanofiber was tested against common microbial skin pathogens and cancer cells, showing significant inhibition. Specifically, an IC50 value of 19.45 μg/mL against cancer cells and MIC values ranging from 4 μg/mL to 64 μg/mL μg against skin pathogenic strains were observed. This notable inhibitory ability can be attributed to both physical characteristics (with specific surface area of 2,348 m2/g), and chemical factors, including the active compounds present in its rhodium (Rh) structure. The synthesized Rh-MOF/PVA-PVP nanofiber has the potential for use in developing bioactive bandages, and wound dressings.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | | |
Collapse
|
2
|
Liu S, Zhang Y, Zhao ZS, Chu JQ, Li CN, Yuan D, Liu L, Han ZB. Tuning the Pore Microenvironment of Metal-Organic Frameworks for Boosting CO 2 Fixation. CHEMSUSCHEM 2025:e2500490. [PMID: 40219734 DOI: 10.1002/cssc.202500490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
The pore microenvironment plays an important role in catalytic systems, as it can regulate substrate transport, reactant molecule enrichment, and the strength of active centers, thereby affecting catalytic performance. However, the effect of pore sizes/functionality/Lewis acid strength on catalytic performance has still not been adequately and systematically investigated and summarized. Herein, a series of isostructural fcu-type metal-organic frameworks (MOFs) are used through a novel strategy to study the effect of subtle changes in pore microenvironment on the catalysis of carbon dioxide (CO2) cycloaddition at ambient temperature and pressure. The results of systematic experiments indicate that the enlargement of the pore size of MOFs, the access of pore wall functional groups, and the increase of Lewis acid strength of metal nodes can significantly improve the performance of the CO2 cycloaddition reaction. The reaction mechanism catalyzed by fcu-type MOFs is investigated in detail, based on the experimental inferences and periodic calculations of density functional theory. This study provides a reference for designing of high-performance catalysts for CO2 fixation.
Collapse
Affiliation(s)
- Shuo Liu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Yue Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Zi-Song Zhao
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Jia-Qi Chu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Chen-Ning Li
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Lin Liu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Zheng-Bo Han
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| |
Collapse
|
3
|
Gao CY, Ding L, Li Y, Xu N, Wu Y, Wang W, Liu J, Yang Y. Anchoring Ag(I) into MOF-253 for Effectively Catalyzing Cycloaddition of CO 2 with Alkynyl Alcohols/Amine under Ambient Conditions. Inorg Chem 2025; 64:2496-2507. [PMID: 39865652 DOI: 10.1021/acs.inorgchem.4c04984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
In the era of global warming, the conversion of carbon dioxide into high-value products has become a widely scrutinized emerging mitigation strategy. Metalation of bpy-containing MOF-253 led to the synthesis of MOF-253-0.5Ag, which acts as an efficient catalyst for the carbonylative cyclization of CO2 with alkyne molecules (such as propynyl alcohols and propynyl amines) at room temperature and ambient CO2 pressure, yielding the corresponding α-alkyl cyclic carbonates and oxazolidinones, thus endowing the catalytic system with bifunctional characteristics. Additionally, the MOF-253-0.5Ag catalyst demonstrated stability, high activity, and recyclability. The mechanisms were further elucidated through experimental results and NMR analysis, demonstrating that Ag(I) can effectively activate the C≡C bonds and hydroxy/amino groups of the substrates.
Collapse
Affiliation(s)
- Chao-Ying Gao
- Inner Mongolia Engineering Research Centre of Lithium-Sulfur Battery Energy Storage, Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Lin Ding
- Inner Mongolia Engineering Research Centre of Lithium-Sulfur Battery Energy Storage, Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Yang Li
- Inner Mongolia Engineering Research Centre of Lithium-Sulfur Battery Energy Storage, Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Ning Xu
- Inner Mongolia Engineering Research Centre of Lithium-Sulfur Battery Energy Storage, Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Yakun Wu
- Inner Mongolia Engineering Research Centre of Lithium-Sulfur Battery Energy Storage, Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Wenbo Wang
- Inner Mongolia Engineering Research Centre of Lithium-Sulfur Battery Energy Storage, Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Jinghai Liu
- Inner Mongolia Engineering Research Centre of Lithium-Sulfur Battery Energy Storage, Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Inner Mogolia Minzu University, Tongliao, Inner Mongolia 028000, People's Republic of China
| | - Yang Yang
- Inner Mongolia Engineering Research Centre of Lithium-Sulfur Battery Energy Storage, Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| |
Collapse
|
4
|
Zhao C, Song W, Wang J, Tang X, Jiang Z. Immunoadjuvant-functionalized metal-organic frameworks: synthesis and applications in tumor immune modulation. Chem Commun (Camb) 2025; 61:1962-1977. [PMID: 39774558 DOI: 10.1039/d4cc06510g] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Cancer immunotherapy, which leverages the body's immune system to recognize and attack cancer cells, has made significant progress, particularly in the treatment of metastatic tumors. However, challenges such as drug stability and off-target effects still limit its clinical success. To address these issues, metal-organic frameworks (MOFs) have emerged as promising nanocarriers in cancer immunotherapy. MOFs have unique porous structure, excellent drug loading capacity, and tunable surface modification properties. MOFs not only enhance drug delivery efficiency but also allow for precise control of drug release. They reduce off-target effects and significantly improve targeting and therapy efficacy. As research deepens, MOFs' effectiveness as drug carriers has been refined. When combined with immunoadjuvants or anticancer drugs, MOFs further stimulate the immune response. This improves the specificity of immune attacks on tumors. This review provides a comprehensive overview of the applications of MOFs in cancer immunotherapy. It focuses on synthesis, drug loading strategies, and surface modifications. It also analyzes their role in enhancing immunotherapy effectiveness. By integrating current research, we aim to provide insights for the future development of immunoadjuvant-functionalized MOFs, accelerating their clinical application for safer and more effective cancer treatments.
Collapse
Affiliation(s)
- Chen Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Weihua Song
- Xuanwu Hospital Capital Medical University, Beijing, 100037, China
| | - Jianing Wang
- School of Medical Technology, the Qiushi College, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhenqi Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
5
|
Wang Q, Hu Y, Gu Y. Molecular Mechanism Behind the Capture of Fluorinated Gases by Metal-Organic Frameworks. NANO-MICRO LETTERS 2025; 17:118. [PMID: 39869273 PMCID: PMC11772676 DOI: 10.1007/s40820-024-01584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/01/2024] [Indexed: 01/28/2025]
Abstract
Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired. Recently, as a highly designable porous adsorbents, metal-organic frameworks (MOFs) exhibit excellent selective sorption performance toward F-gases, especially for the recognition and separation of different F-gases with highly similar properties, showing their great potential in F-gases control and recovery. In this review, we discuss the capture and separation of F-gases and their azeotropic, near-azeotropic, and isomeric mixtures in various application scenarios by MOFs, specifically classify and analyze molecular interaction between F-gases and MOFs, and interpret the mechanisms underlying their high performance regarding both adsorption capacity and selectivity, providing a repertoire for future materials design. Challenges faced in the transformation research roadmap of MOFs adsorbent separation technologies toward F-gases are also discussed, and areas for future research endeavors are highlighted.
Collapse
Affiliation(s)
- Qian Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, People's Republic of China
| | - Yifan Gu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
- Key Laboratory of Cities' Mitigation and Adaptation to Climate Change, China Meteorological Administration (CMA), Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
6
|
Liu Y, Zheng J, Zhu Z, Huang Z, Hu C, Liu B. Enhanced visible light responsive piezoelectric photocatalysis based on Bi 2S 3 coated BaTiO 3 nanorods heterostructures. J Colloid Interface Sci 2025; 678:657-670. [PMID: 39265337 DOI: 10.1016/j.jcis.2024.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Although the presence of the built-in electric field will solve the problem of carrier complexation in photocatalytic systems to some extent. However, free carriers will quickly shield the stabilized electric field and lose its effect. Therefore, how to introduce the dynamic piezoelectric field into the photocatalytic system has become an imminent problem. Herein, we developed an overcoated, visible light responsive, piezoelectric-assisted photocatalytic system by depositing Bi2S3 photocatalysts with a narrow-band system onto the surface of highly piezo-responsive BaTiO3 nanorods (BTO NRs). The heterojunction structure, bound by Bi-O chemical bonding, enhances carrier transport efficiency under the influence of the piezoelectric field. In the degradation experiments, the first-order rate constant for the degradation of chlortetracycline hydrochloride (CTC) in the BTO NRs/Bi2S3 system with the optimal complex ratio was 0.0276 min-1, which was 3.1 and 7.8 times higher than that of BTO NRs and Bi2S3, respectively. Additionally, we deduced the degradation pathways of CTC through a combination of Density functional theory (DFT) calculations and Liquid Chromatograph Mass Spectrometer (LC-MS), evaluating the toxicity of the intermediates. This complex system, featuring a highly photo-responsive semiconductor as a photo-acceptor deposited on a piezoelectric semiconductor surface providing a dynamic built-in electric field, enhances carrier separation efficiency under optimal light energy utilization conditions. These findings present novel and effective strategies for addressing two primary challenges in photocatalytic systems: low spectral utilization and significant photogenerated carrier complexation.
Collapse
Affiliation(s)
- Yu Liu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Jian Zheng
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhijia Zhu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhangmi Huang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| | - Baojiang Liu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
7
|
Han Z, Yang Y, Rushlow J, Huo J, Liu Z, Hsu YC, Yin R, Wang M, Liang R, Wang KY, Zhou HC. Development of the design and synthesis of metal-organic frameworks (MOFs) - from large scale attempts, functional oriented modifications, to artificial intelligence (AI) predictions. Chem Soc Rev 2025; 54:367-395. [PMID: 39582426 DOI: 10.1039/d4cs00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Owing to the exceptional porous properties of metal-organic frameworks (MOFs), there has recently been a surge of interest, evidenced by a plethora of research into their design, synthesis, properties, and applications. This expanding research landscape has driven significant advancements in the precise regulation of MOF design and synthesis. Initially dominated by large-scale synthesis approaches, this field has evolved towards more targeted functional modifications. Recently, the integration of computational science, particularly through artificial intelligence predictions, has ushered in a new era of innovation, enabling more precise and efficient MOF design and synthesis methodologies. The objective of this review is to provide readers with an extensive overview of the development process of MOF design and synthesis, and to present visions for future developments.
Collapse
Affiliation(s)
- Zongsu Han
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Joshua Rushlow
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Jiatong Huo
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Zhaoyi Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Yu-Chuan Hsu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Rujie Yin
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Mengmeng Wang
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348 Louvain-laNeuve, Belgium
| | - Rongran Liang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Kun-Yu Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
8
|
Asselin P, Harvey PD. Thoughts on the Rational Design of MOF-Guest Interactions for Future Intelligent Materials. SMALL METHODS 2024; 8:e2400584. [PMID: 39428953 DOI: 10.1002/smtd.202400584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Indexed: 10/22/2024]
Abstract
The MOF-guest relationship is broken down in elementary phases, descriptors, and parameters. These descriptors and parameters allow precise descriptions of processes, whether they occur at the point when the guest enters the MOF, during the stay, or at the point of exiting. Description of these three phases is possible according to the location of the guest inside the MOF, the activity between MOF and guest, whether stimuli can be used, and whether a selective action can be exercised. The vocabulary provided herein can be useful to better formulate requirements when designing host-guest interactions in, and building new classes of, intelligent materials.
Collapse
Affiliation(s)
- Paul Asselin
- Département de Chimie, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
9
|
Miao P, Yan Y, Du S, Du Y. Capillary electrochromatography synergistic enantioseparation system for racemate malic acid based on a novel nanomaterial synthesized by chiral molecularly imprinted polymer and chiral metal-organic framework. Anal Chim Acta 2024; 1330:343303. [PMID: 39489982 DOI: 10.1016/j.aca.2024.343303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Chirality is one of the most fundamental features of nature. In terms of biological activities, pharmacological effects, etc., enantiomers often show great differences among each other. Therefore, it is important to develop highly efficient enantioseparation and analysis methods. Capillary electrochromatography (CEC) is one of the most popular methods in the field of enantioseparation. In the chiral stationary phase of CEC, chiral molecularly imprinted polymers (CMIPs) and chiral metal-organic frameworks (CMOFs) have shown great potential of enantioseparation. However, the enantioseparation performance of CMOFs and CMIPs alone as chiral separation media is less satisfactory. RESULTS In this work, a novel nanomaterial synthesized by CMOFs and CMIPs was used as stationary phase in CEC synergistic enantioseparation system and the relevant reports have not been internationally found by authors. As a proof-of-concept demonstration, a coated capillary column was prepared by a one-step method using l-malic acid (template), [Cu2(D-Cam)2Dabco] (Cu-MOF) and dopamine (functional monomer/cross-linking agent), which greatly simplified the modification process of the capillary columns. Compared with Cu-MOF and CMIP alone, the CEC synergistic enantioseparation system based on Cu-MOF@MIP has significantly better enantioseparation performance of malic acid enantiomers (resolution: 1.03/0.58 → 4.22), and there is also a satisfactory performance in the quantitative analysis in real samples. Finally, through molecular docking and adsorption experiments, it was systematically proved that Cu-MOF@MIP had a significantly stronger binding ability for l-malic acid than d-malic acid. SIGNIFICANCE Cu-MOF with chiral recognition ability have synergize with CMIPs to greatly improve the chiral selectivity of Cu-MOF@MIP, which is firstly used for the construction of the CEC chiral separation system. This pioneering synergistic chiral separation system creates a potential direction for efficient enantioseparation. Considering the diversity of CMOFs and CMIPs, the stationary phases hold great promise in chiral separation science.
Collapse
Affiliation(s)
- Pandeng Miao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yifan Yan
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shuaijing Du
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
10
|
Wang L, Shao M, Xie ZL, Mulfort KL. Recent Advances in Immobilizing and Benchmarking Molecular Catalysts for Artificial Photosynthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24195-24215. [PMID: 39495742 DOI: 10.1021/acs.langmuir.4c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Transition metal complexes have been widely used as catalysts or chromophores in artificial photosynthesis. Traditionally, they are employed in homogeneous settings. Despite their functional versatility and structural tunability, broad industrial applications of these catalysts are impeded by the limitations of homogeneous catalysis such as poor catalyst recyclability, solvent constraints (mostly organic solvents), and catalyst durability. Over the past few decades, researchers have developed various methods for molecular catalyst heterogenization to overcome these limitations. In this review, we summarize recent developments in heterogenization strategies, with a focus on describing methods employed in the heterogenization process and their effects on catalytic performances. Alongside the in-depth discussion of heterogenization strategies, this review aims to provide a concise overview of the key metrics associated with heterogenized systems. We hope this review will aid researchers who are new to this research field in gaining a better understanding.
Collapse
Affiliation(s)
- Lei Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
| | - Mengjiao Shao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
| | - Zhu-Lin Xie
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Karen L Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
11
|
Yu J, Dinh A, Zhong X, Jiang X, Bu X, Zhao X. Cooperative Immobilization of Transition-Metal Clusters into Kagome-Type Metal-Organic Framework for C 2H 2/CO 2 Separation. Inorg Chem 2024. [PMID: 39560331 DOI: 10.1021/acs.inorgchem.4c04343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
There has long been a pursuit for a metal-organic framework (MOF)-based adsorbent for various hydrocarbon separations. Herein, we utilized simple trimesic acid and 1,2,4-triazole, together with the heterometallic strategy to produce two quaternary MOFs with a kgm-type structure. The cooperative coordination allows the immobilization of metal clusters into the pore channels, creating an appropriate pore size and high density of open metal sites. The resulting material shows excellent C2H2/CO2 separation performance with good stability.
Collapse
Affiliation(s)
- Jianhua Yu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Andy Dinh
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States
| | - Xingxing Zhong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoyan Jiang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States
| | - Xiang Zhao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
12
|
Zhang F, Cheng K, Zhang XS, Zhou S, Zou JH, Tian MY, Hou XL, Hu YG, Yuan J, Fan JX, Zhao YD, Liu TC. Cascade-catalysed nanocarrier degradation for regulating metabolism homeostasis and enhancing drug penetration on breast cancer. J Nanobiotechnology 2024; 22:680. [PMID: 39506777 PMCID: PMC11542379 DOI: 10.1186/s12951-024-02948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
The abnormal structure of tumor vascular seriously hinders the delivery and deep penetration of drug in tumor therapy. Herein, an integrated and tumor microenvironment (TME)-responsive nanocarrier is designed, which can dilate vessle and improve the drug penetration by in situ releasing nitric oxide (NO). Briefly, S-nitroso-glutathione (GSNO) and curcumin (Cur) were encapsulatd into the Cu-doped zeolite imidazole framework-8 (Cu-ZIF-8) and modified with hyaluronic acid. The nanocarrier degradation in the weakly acidic of TME releases Cu2+, then deplete overexpressed intratumourally glutathione and transformed into Cu+, thus disrupting the balance between nicotinamide adenine dinucleotide phosphate and flavin adenine dinucleotide (NADPH/FAD) during the metabolism homeostasis of tumor. The Cu+ can generate highly toxic hydroxyl radical through the Fenton-like reaction, enhancing the chemodynamic therapeutic effect. In addition, Cu+ also decomposes GSNO to release NO by ionic reduction, leading to vasodilation and increased vascular permeability, significantly promoting the deep penetration of Cur in tumor. Afterwards, the orderly operation of cell cycle is disrupted and arrested in the S-phase to induce tumor cell apoptosis. Deep-hypothermia potentiated 2D/3D fluorescence imaging demonstrated nanocarrier regulated endogenous metabolism homeostasis of tumor. The cascade-catalysed multifunctional nanocarrier provides an approach to treat orthotopic tumor.
Collapse
Affiliation(s)
- Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Xiao-Shuai Zhang
- Basic Medical Laboratory, General Hospital of Central Theater Command, Wuhan, Hubei, 430081, P.R. China
| | - Sui Zhou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Jia-Hua Zou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
- Department of Oncology, Huanggang Central Hospital of Yangtze University, Huanggang, Hubei, 438000, P.R. China
| | - Ming-Yu Tian
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Xiao-Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Yong-Guo Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China.
- NMPA Research Base of Regulatory Science for Medical Devices & Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China.
| | - Tian-Cai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, P.R. China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, P.R. China.
| |
Collapse
|
13
|
Wang D, Yao H, Ye J, Gao Y, Cong H, Yu B. Metal-Organic Frameworks (MOFs): Classification, Synthesis, Modification, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404350. [PMID: 39149999 DOI: 10.1002/smll.202404350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Metal-organic frameworks (MOFs) are a new variety of solid crystalline porous functional materials. As an extension of inorganic porous materials, it has made important progress in preparation and application. MOFs are widely used in various fields such as gas adsorption storage, drug delivery, sensing, and biological imaging due to their high specific surface area, porosity, adjustable pore size, abundant active sites, and functional modification by introducing groups. In this paper, the types of MOFs are classified, and the synthesis methods and functional modification mechanisms of MOFs materials are summarized. Finally, the application prospects and challenges of metal-organic framework materials in the biomedical field are discussed, hoping to promote their application in multidisciplinary fields.
Collapse
Affiliation(s)
- Dayang Wang
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Huanchen Yao
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jiashuo Ye
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yan Gao
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
14
|
Mao T, Fu H, Shen K. Structural engineering in hierarchical nanoarchitectures of metal-organic frameworks and their derivatives. NANOSCALE 2024; 16:18788-18804. [PMID: 39302136 DOI: 10.1039/d4nr02835j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Metal-organic frameworks (MOFs) have attracted much attention owing to their tuneable structures, high surface areas, and good functionalization. Nanoreactors derived from various MOFs are now widely used in heterogeneous catalysis, electrocatalysis and photocatalysis. The nanoarchitectures of MOFs and their derivatives have a great impact on mass and energy transfer pathways, thus affecting the activity and selectivity of the catalysts. In this review, we intend to provide a universal survey of reported methods to synthesize MOF-based core-satellite, core-shell, yolk-shell and hollow-shell structures or their derivatives in recent years and present a continuous evolution among them. We hope that this review could provide some perspectives for exploring new facile methods to prepare different hierarchical nanoarchitectures of MOFs or their derivatives.
Collapse
Affiliation(s)
- Tianzhu Mao
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Hongchuan Fu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Kui Shen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
15
|
Glasby L, Cordiner JL, Cole JC, Moghadam PZ. Topological Characterization of Metal-Organic Frameworks: A Perspective. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:9013-9030. [PMID: 39398380 PMCID: PMC11467834 DOI: 10.1021/acs.chemmater.4c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 10/15/2024]
Abstract
Metal-organic frameworks (MOFs) began to emerge over two decades ago, resulting in the deposition of 120 000 MOF-like structures (and counting) into the Cambridge Structural Database (CSD). Topological analysis is a critical step toward understanding periodic MOF materials, offering insight into the design and synthesis of these crystals via the simplification of connectivity imposed on the complete chemical structure. While some of the most prevalent topologies, such as face-centered cubic (fcu), square lattice (sql), and diamond (dia), are simple and can be easily assigned to structures, MOFs that are built from complex building blocks, with multiple nodes of different symmetry, result in difficult to characterize topological configurations. In these complex structures, representations can easily diverge where the definition of nodes and linkers are blurred, especially for cases where they are not immediately obvious in chemical terms. Currently, researchers have the option to use software such as ToposPro, MOFid, and CrystalNets to aid in the assignment of topology descriptors to new and existing MOFs. These software packages are readily available and are frequently used to simplify original MOF structures into their basic connectivity representations before algorithmically matching these condensed representations to a database of underlying mathematical nets. These approaches often require the use of in-built bond assignment algorithms alongside the simplification and matching rules. In this Perspective, we discuss the importance of topology within the field of MOFs, the methods and techniques implemented by these software packages, and their availability and limitations and review their uptake within the MOF community.
Collapse
Affiliation(s)
- Lawson
T. Glasby
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, United
Kingdom
| | - Joan L. Cordiner
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, United
Kingdom
| | - Jason C. Cole
- Cambridge
Crystallographic Data Centre, Cambridge CB2 1EZ, United Kingdom
| | - Peyman Z. Moghadam
- Department
of Chemical Engineering, University College
London, London WC1E 7JE, United
Kingdom
| |
Collapse
|
16
|
Zhang L, Deng X, Qing Z, Lei Y, Feng F, Yang R, Zou Z. A logic-activated nanoswitch for killing cancer cells according to assessment of drug-resistance. RSC Adv 2024; 14:31165-31169. [PMID: 39351405 PMCID: PMC11440625 DOI: 10.1039/d4ra04651j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
A logic-activated nanoswitch that could diagnose the differences between drug-resistant and non-drug-resistant cancer cells and control the release of drugs was developed for enhanced chemo-gene therapy using a standalone system. Compared to traditional treatments, the nanoswitch displayed improved anti-tumor efficiency in vitro.
Collapse
Affiliation(s)
- Lihua Zhang
- College of Chemistry and Chemical Engineering, Shanxi Datong University Datong 037009 China
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Biological Engineering, Changsha University of Science and Technology Changsha 410004 China
| | - Xiangxi Deng
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Biological Engineering, Changsha University of Science and Technology Changsha 410004 China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Biological Engineering, Changsha University of Science and Technology Changsha 410004 China
| | - Yanli Lei
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Biological Engineering, Changsha University of Science and Technology Changsha 410004 China
| | - Feng Feng
- College of Chemistry and Chemical Engineering, Shanxi Datong University Datong 037009 China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 China
| | - Zhen Zou
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 China
| |
Collapse
|
17
|
Zhang J, Wang B, Ke J, Ying P. Plasticity of Metal-Organic Framework Crystals: Thermally Activated Collapse of Nanopores. J Phys Chem Lett 2024; 15:9051-9057. [PMID: 39194171 DOI: 10.1021/acs.jpclett.4c01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Unrecoverable deformation or plasticity can be generated in crystalline metal-organic frameworks (MOFs) by compressive loading with different rates in various applications. Herein, plastic behaviors of MOF HKUST-1 crystals are investigated by a series of in situ strain-rate-dependent compression tests. The yield strength is found to significantly increase with increasing strain rate, following a logarithmic dependence. Our reactive molecular dynamics simulations illustrate that the yielding of crystalline HKUST-1 is induced by the irreversible collapse of its nanopores, which can be accelerated by thermal activation at finite temperatures. Based on this mechanism together with the reaction rate theory, we derive an analytical expression relating the yield strength of MOFs and strain rate, which fits experimental findings well. Overall, this work can expand our current understanding of MOF plasticity, which is of importance for the mechanical shaping and various applications of MOF crystals.
Collapse
Affiliation(s)
- Jin Zhang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Bing Wang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Jin Ke
- School of Science, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Penghua Ying
- Department of Physical Chemistry, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
18
|
Yang F, Dong Q, Chen Z, Gao B, Zheng D, Wang R, Qin S, Peng F, Luo M, Yang J, Nie M, Li B, Yang X. A pH-Responsive Drug-Delivery System Based on Apatinib-Loaded Metal-Organic Frameworks for Ferroptosis-Targeted Synergistic Anti-Tumor Therapy. Int J Nanomedicine 2024; 19:9055-9070. [PMID: 39246426 PMCID: PMC11380856 DOI: 10.2147/ijn.s477248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose The efficacy of systemic therapy for hepatocellular carcinoma (HCC) is limited mainly by the complex tumor defense mechanism and the severe toxic side-effects of drugs. The efficacy of apatinib (Apa), a key liver cancer treatment, is unsatisfactory due to inadequate targeting and is accompanied by notable side-effects. Leveraging nanomaterials to enhance its targeting represents a crucial strategy for improving the effectiveness of liver cancer therapy. Patients and Methods A metal polyphenol network-coated apatinib-loaded metal-organic framework-based multifunctional drug-delivery system (MIL-100@Apa@MPN) was prepared by using metal-organic frameworks (MOFs) as carriers. The nanoparticles (NPs) were subsequently characterized using techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), zeta potential measurements, and particle size analysis. In vitro experiments were conducted to observe the drug release kinetics and cytotoxic effects of MIL-100@Apa@MPN on HepG2 cells. The in vivo anti-tumor efficacy of MIL-100@Apa@MPN was evaluated using the H22 tumor-bearing mouse model. Results The formulated MIL-100@Apa@MPN demonstrates remarkable thermal stability and possesses a uniform structure, with measured drug-loading (DL) and encapsulation efficiency (EE) rates of 28.33% and 85.01%, respectively. In vitro studies demonstrated that HepG2 cells efficiently uptake coumarin-6-loaded NPs, and a significant increase in cumulative drug release was observed under lower pH conditions (pH 5.0), leading to the release of approximately 73.72% of Apa. In HepG2 cells, MIL-100@Apa@MPN exhibited more significant antiproliferative activity compared to free Apa. In vivo, MIL-100@Apa@MPN significantly inhibited tumor growth, attenuated side-effects, and enhanced therapeutic effects in H22 tumor-bearing mice compared to other groups. Conclusion We have successfully constructed a MOF delivery system with excellent safety, sustained-release capability, pH-targeting, and improved anti-tumor efficacy, highlighting its potential as a therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Fengyi Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Qiaoyan Dong
- Luzhou Senior High School, Luzhou, 646000, People's Republic of China
| | - Zhuo Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Benjian Gao
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Dongning Zheng
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Rui Wang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Shu Qin
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fangyi Peng
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Ming Luo
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Jin Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Mengmei Nie
- Department of Urological Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Xiaoli Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| |
Collapse
|
19
|
Xing S, Ma X, Gu Q, Ma N, Zhang Z, Han G, Huang R, Feng X, Yang B, Duan C, Liu Y. Cluster-Cluster Co-Nucleation Induced Defective Polyoxometalate-Based Metal-Organic Frameworks for Efficient Tandem Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400410. [PMID: 38721986 DOI: 10.1002/smll.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Indexed: 10/01/2024]
Abstract
The construction of defective sites is one of the effective strategies to create high-activity Metal-Organic frameworks (MOFs) catalysts. However, traditional synthesis methods usually suffer from cumbersome synthesis steps and disordered defect structures. Herein, a cluster-cluster co-nucleation (CCCN) strategy is presented that involves the in situ introduction of size-matched functional polyoxometalates (H6P2W18O62, {P2W18}) to intervene the nucleation process of cluster-based MOFs (UiO-66), achieving one-step inducement of exposed defective sites without redundant post-processing. POM-induced UiO-66 ({P2W18}-0.1@UiO-66) exhibits a classical reo topology for well-defined cluster defects. Moreover, the defective sites and the interaction between POM and skeletal cluster nodes are directly observed by Integrated Differential Phase Contrast in Scanning Transmission Electron Microscopy (iDPC-STEM). Owing to the molecular-level proximity between defective sites and POM in the same nano-reaction space, {P2W18}-0.1@UiO-66 exhibits efficient tandem catalysis in the preparation of γ-valerolactone (γ-GVL) from laevulinic acid (LA) by the combination of Lewis and Brønsted acids with 11 times higher performance than defective UiO-66 formed by conventional coordination modulation strategy. The CCCN strategy is applicable to different POM and has the potential to be extended to other cluster-based MOFs, which will pave a new way for the construction of functional MOFs with multi-centered synergistic catalysis.
Collapse
Affiliation(s)
- Songzhu Xing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xujiao Ma
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Qingqing Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Nana Ma
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Zhong Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Guoying Han
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Rui Huang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiao Feng
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chunying Duan
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yiwei Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
20
|
Moradi E, Salehi MM, Maleki A. Highly stable mesoporous Co/Ni mixed metal-organic framework [Co/Ni(μ3-tp) 2(μ2-pyz) 2] for Co (II) heavy metal ions (HMIs) remediation. Heliyon 2024; 10:e35044. [PMID: 39157380 PMCID: PMC11327570 DOI: 10.1016/j.heliyon.2024.e35044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
A bimetallic cobalt/nickel-based metal-organic framework (MOF), [Co/Ni(μ3-tp)2(μ2-pyz)2], denoted as Co/Ni-MOF, has been successfully prepared by a hydrothermal method. The MOF was prepared by incorporating mixed O- and N- donor ligands, specifically terephthalic acid (tp) and pyrazine (pyz). The Mesoporous Co/Ni-MOF was comprehensively characterized using various analytical methods such as XRD, BET, FT-IR, TGA (23 % char yields), SEM, and EDS analyses. The synthesized mesoporous Co/Ni-MOF was then used to absorb Co (II) from aquatic areas efficiently. Several critical parameters, such as the beginning Co (II) concentration (25-150 mg/L), the effect of pH (2-10), the duration of time (5-30 min), and the amount of adsorbent (0.003-0.02 g), were systematically investigated. Remarkably, the Mesoporous Co/Ni MOF displayed a significant adsorption capacity of 372.66 mg g-1 in the optimum conditions, including pH = 6, amount of adsorbent = 0.003 g, duration of time = 25 min, and beginning Co (II) concentration = 150 mg/L. Adsorption data from the experimental studies of the mesoporous Co/Ni MOF are matched based on the non-linear pseudo-first-order (PSO) kinetic model (R2 = 0.9999), and a chemical process is suggested for chemisorption. Furthermore, the adsorption isotherms of Co (II) heavy metal ions (HMIs) are an excellent fit with the non-linear Temkin, indicating that they explain the sorbent/sorbate interactions concerning the heat of adsorption. It is evident from the thermodynamic parameters that adsorption is a spontaneous and favorable exothermic process. These results highlight the promising adsorption performance and potential applications of the mesoporous Co/Ni-MOF as an effective adsorbent for Co (II) elimination from aquatic areas. Four-cycle regeneration studies were the most effective for the Co (II) under study.
Collapse
Affiliation(s)
| | | | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
21
|
An H, Mu X, Tan G, Su P, Liu L, Song N, Bai S, Yan CH, Tang Y. A Coordination-Derived Cerium-Based Amorphous-Crystalline Heterostructure with High Electrocatalytic Oxygen Evolution Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311505. [PMID: 38433398 DOI: 10.1002/smll.202311505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Indexed: 03/05/2024]
Abstract
The rational design of heterogeneous catalysts is crucial for achieving optimal physicochemical properties and high electrochemical activity. However, the development of new amorphous-crystalline heterostructures is significantly more challenging than that of the existing crystalline-crystalline heterostructures. To overcome these issues, a coordination-assisted strategy that can help fabricate an amorphous NiO/crystalline NiCeOx (a-NiO/c-NiCeOx) heterostructure is reported herein. The coordination geometry of the organic ligands plays a pivotal role in permitting the formation of coordination polymers with high Ni contents. This consequently provides an opportunity for enabling the supersaturation of Ni in the NiCeOx structure during annealing, leading to the endogenous spillover of Ni from the depths of NiCeOx to its surface. The resulting heterostructure, featuring strongly coupled amorphous NiO and crystalline NiCeOx, exhibits harmonious interactions in addition to low overpotentials and high catalytic stability in the oxygen evolution reaction (OER). Theoretical calculations prove that the amorphous-crystalline interfaces facilitate charge transfer, which plays a critical role in regulating the local electron density of the Ni sites, thereby promoting the adsorption of oxygen-based intermediates on the Ni sites and lowering the dissociation-related energy barriers. Overall, this study underscores the potential of coordinating different metal ions at the molecular level to advance amorphous-crystalline heterostructure design.
Collapse
Affiliation(s)
- Haiyan An
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xijiao Mu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guoying Tan
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Pingru Su
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Liangliang Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Nan Song
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Shiqiang Bai
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chun-Hua Yan
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yu Tang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, P. R. China
| |
Collapse
|
22
|
Han J, Xu H, Zhao B, Sun R, Chen G, Wu T, Zhong G, Gao Y, Zhang SL, Yamauchi Y, Guan B. "Hard" Emulsion-Induced Interface Super-Assembly: A General Strategy for Two-Dimensional Hierarchically Porous Metal-Organic Framework Nanoarchitectures. J Am Chem Soc 2024; 146:18979-18988. [PMID: 38950132 DOI: 10.1021/jacs.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Two-dimensional (2D) hierarchically porous metal-organic framework (MOF) nanoarchitectures with tailorable meso-/macropores hold great promise for enhancing mass transfer kinetics, augmenting accessible active sites, and thereby boosting performance in heterogeneous catalysis. However, achieving the general synthesis of 2D free-standing MOF nanosheets with controllable hierarchical porosity and thickness remains a challenging task. Herein, we present an ingenious "hard" emulsion-induced interface super-assembly strategy for preparing 2D hierarchically porous UiO-66-NH2 nanosheets with highly accessible pore channels, tunable meso-/macropore sizes, and adjustable thicknesses. The methodology relies on transforming the geometric shape of oil droplet templates within appropriate oil-in-water emulsions from conventional zero-dimensional (0D) "soft" liquid spheres to 2D "hard" solid sheets below the oil's melting/freezing point. Subsequent surfactant exchange on the surface of 2D "hard" emulsions facilitates the heterogeneous nucleation and interfacial super-assembly of in situ formed mesostructured MOF nanocomposites, serving as structural units, in a loosely packed manner to produce 2D MOF nanosheets with multimodal micro/meso-/macroporous systems. Importantly, this strategy can be extended to prepare other 2D hierarchically porous MOF nanosheets by altering metal-oxo clusters and organic ligands. Benefiting from fast mass transfer and highly accessible Lewis acidic sites, the resultant 2D hierarchically porous UiO-66-NH2 nanosheets deliver a fabulous catalytic yield of approximately 96% on the CO2 cycloaddition of glycidyl-2-methylphenyl ether, far exceeding the yield of approximately 29% achieved using conventional UiO-66-NH2 microporous crystals. This "hard" emulsion-induced interface super-assembly strategy paves a new path toward the rational construction of elaborate 2D nanoarchitecture of hierarchical MOFs with tailored physicochemical properties for diverse potential applications.
Collapse
Affiliation(s)
- Ji Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Haidong Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Bin Zhao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Ruigang Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Guangrui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Tianyu Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Guiyuan Zhong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Yanjing Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Song Lin Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane QLD 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Buyuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| |
Collapse
|
23
|
Yue Y, Mohamed SA, Jiang J. Classifying and Predicting the Thermal Expansion Properties of Metal-Organic Frameworks: A Data-Driven Approach. J Chem Inf Model 2024; 64:4966-4979. [PMID: 38920337 DOI: 10.1021/acs.jcim.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Metal-organic frameworks (MOFs) are versatile materials for a wide variety of potential applications. Tunable thermal expansion properties promote the application of MOFs in thermally sensitive composite materials; however, they are currently available only in a handful of structures. Herein, we report the first data set for thermal expansion properties of 33,131 diverse MOFs generated from molecular simulations and subsequently develop machine learning (ML) models to (1) classify different thermal expansion behaviors and (2) predict volumetric thermal expansion coefficients (αV). The random forest model trained on hybrid descriptors combining geometric, chemical, and topological features exhibits the best performance among different ML models. Based on feature importance analysis, linker chemistry and topological arrangement are revealed to have a dominant impact on thermal expansion. Furthermore, we identify common building blocks in MOFs with exceptional thermal expansion properties. This data-driven study is the first of its kind, not only constructing a useful data set to facilitate future studies on this important topic but also providing design guidelines for advancing new MOFs with desired thermal expansion properties.
Collapse
Affiliation(s)
- Yifei Yue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, 119077 Singapore
| | - Saad Aldin Mohamed
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, 119077 Singapore
| |
Collapse
|
24
|
Kulandaivel S, Yang CC, Yeh YC, Lin CH. Defect Induced Structural Transition and Lipase Immobilization in Mesoporous Aluminum Metal-Organic Frameworks. Chemistry 2024; 30:e202400603. [PMID: 38613137 DOI: 10.1002/chem.202400603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/14/2024]
Abstract
The transition from disorder to order and structural transformation are distinctive metal-organic framework (MOF) features. How to adapt or control both behaviors in MOF has rarely been studied. In this case, we demonstrate that our successful synthesis of [Al(OH)(PDA)]n (AlPDA-53-DEF, AlPDA-53-H, and AlPDA-68) with H2PDA=4,4'-[1,4-phenylenebis(ethyne-2,1-diyl)]-di benzoic acid has shown the intricate world of Aluminum Metal-Organic Frameworks (Al-MOFs). It offers profound insights into defect structures to order and transformations. AlPDA-53-DEF, in particular, revealed a fascinating interplay of various pore sizes within both micro and mesoporous regions, unveiling a unique lattice rearrangement phenomenon upon solvent desorption. Defects and disorders emerged as crucial impacts of transforming AlPDA-53-DEF, with its initially imperfect crystallinity, into the highly crystalline, hierarchically porous AlPDA-53-H.
Collapse
Affiliation(s)
| | - Chun-Chuen Yang
- Department of Physics, National Central University, Taoyuan City, 32023, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| |
Collapse
|
25
|
Li C, Yuan Y, Yue M, Hu Q, Ren X, Pan B, Zhang C, Wang K, Zhang Q. Recent Advances in Pristine Iron Triad Metal-Organic Framework Cathodes for Alkali Metal-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310373. [PMID: 38174633 DOI: 10.1002/smll.202310373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/10/2023] [Indexed: 01/05/2024]
Abstract
Pristine iron triad metal-organic frameworks (MOFs), i.e., Fe-MOFs, Co-MOFs, Ni-MOFs, and heterometallic iron triad MOFs, are utilized as versatile and promising cathodes for alkali metal-ion batteries, owing to their distinctive structure characteristics, including modifiable and designable composition, multi-electron redox-active sites, exceptional porosity, and stable construction facilitating rapid ion diffusion. Notably, pristine iron triad MOFs cathodes have recently achieved significant milestones in electrochemical energy storage due to their exceptional electrochemical properties. Here, the recent advances in pristine iron triad MOFs cathodes for alkali metal-ion batteries are summarized. The redox reaction mechanisms and essential strategies to boost the electrochemical behaviors in associated electrochemical energy storage devices are also explored. Furthermore, insights into the future prospects related to pristine iron triad MOFs cathodes for lithium-ion, sodium-ion, and potassium-ion batteries are also delivered.
Collapse
Affiliation(s)
- Chao Li
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Yuquan Yuan
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Min Yue
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Qiwei Hu
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Xianpei Ren
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Baocai Pan
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Kuaibing Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
26
|
Zhan L, Yin X, Qiu L, Li C, Wang Y. Application of dual chemotherapeutic drug delivery system based on metal-organic framework platform in enhancing tumor regression for breast cancer research. Biochem Biophys Res Commun 2024; 710:149889. [PMID: 38581955 DOI: 10.1016/j.bbrc.2024.149889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The nanomedicine system based on dual drug delivery systems (DDDs) can significantly enhance the efficacy of tumor treatment. Herein, a metal-organic framework, Zeolite imidazole salt frames 8 (ZIF-8), was successfully utilized as a carrier to load the dual chemotherapeutic drugs doxorubicin (DOX) and camptothecin (CPT), named DOX/CPT@ZIF-8 (denoted as DCZ), and their inhibitory effects on 4T1 breast cancer cells were evaluated. The study experimentally demonstrated the synergistic effects of the dual chemotherapeutic drugs within the ZIF-8 carrier and showed that the ZIF-8 nano-carrier loaded with the dual drugs exhibited stronger cytotoxicity and inhibitory effects on 4T1 breast cancer cells compared to single-drug treatment. The use of a ZIF-8-based dual chemotherapeutic drug carrier system highlighted its potential advantages in suppressing 4T1 breast cancer cells.
Collapse
Affiliation(s)
- Lin Zhan
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering & School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xuelian Yin
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering & School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Li Qiu
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering & School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Chenchen Li
- International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, School of Pharmacy & the First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
| | - Yanli Wang
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering & School of Medicine, Shanghai University, Shanghai, 200444, China; International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, School of Pharmacy & the First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
27
|
Feng X, Ren Y, Wang H, Wu W, Jiang H. Dimensional Reduction of Metal-Organic Frameworks for Photocatalytic Synthesis of Fused Tetracyclic Heterocycles. Inorg Chem 2024; 63:9854-9863. [PMID: 38753036 DOI: 10.1021/acs.inorgchem.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Heterogeneous palladium catalysts with high efficiency, high Pd atom utilization, simplified separation, and recycle have attracted considerable attention in the field of synthetic chemistry. Herein, we reported a zirconium-based two-dimensional metal-organic framework (2D-MOF)-based Pd(II) photocatalyst (Zr-Ir-Pd) by merging the Ir photosensitizers and Pd(II) species into the skeletons of the 2D-MOF for the Pd(II)-catalyzed oxidation reaction. Morphological and structural characterization identified that Zr-Ir-Pd with a specific nanoflower-like structure consists of ultrathin 2D-MOF nanosheets (3.85 nm). Due to its excellent visible-light response and absorption capability, faster transfer and separation of photogenerated carriers, more accessible Pd active sites, and low mass transfer resistance, Zr-Ir-Pd exhibited boosted photocatalytic activity in catalyzing sterically hindered isocyanide insertion of diarylalkynes for the construction of fused tetracyclic heterocycles, with up to 12 times the Pd catalyst turnover number than the existing catalytic systems. In addition, Zr-Ir-Pd inhibited the competitive agglomeration of Pd(0) species and could be reused at least five times, owing to the stabilization of 2D-MOF on the single-site Pd and Ir sites. Finally, a possible mechanism of the photocatalytic synthesis of fused tetracyclic heterocycles catalyzed by Zr-Ir-Pd was proposed.
Collapse
Affiliation(s)
- Xiao Feng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yanwei Ren
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Haosen Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
28
|
Altharawi A, Alqahtani SM, Aldakhil T, Ahmad I. Microwave-assisted synthesis of novel Ti/BTB-MOFs as porous anticancer and antibacterial agents. Front Chem 2024; 12:1386311. [PMID: 38803382 PMCID: PMC11128661 DOI: 10.3389/fchem.2024.1386311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Nano compounds, especially metal-organic frameworks (MOFs), have significant properties. Among the most important properties of these compounds, which depend on their specific surface area and porosity, are biological properties, such as anticancer and antibacterial properties. In this study, a new titanium/BTB metal-organic framework (Ti/BTB-MOF) was synthesized by using titanium nitrate and 1,3,5-Tris(4-carboxyphenyl)benzene (BTB) under microwave radiation. The structure of the synthesized Ti/BTB-MOF was characterized and confirmed using X-ray diffraction (XRD) patterns, X-ray photoelectron spectroscopy (XPS) analysis, Fourier transform infrared (FT-IR) spectra, energy-dispersive X-ray (EDAX) analysis mapping, scanning electron microscope (SEM) images, thermogravimetric analysis (TGA) curves, and Brunauer-Emmett-Teller (BET) analysis. The in vitro anticancer properties of Ti/BTB-MOF were evaluated using the MTT method against MG-63/bone cancer cells and A-431/skin cancer cells. The in vitro antibacterial activity was tested using the Clinical and Laboratory Standards Institute (CLSI) guidelines. In the anticancer activity, IC50 (half-maximal inhibitory concentration) values of 152 μg/mL and 201 μg/mL for MG-63/bone cancer cells and A-431/skin cancer cells, respectively, were observed. In the antibacterial activity, minimum inhibitory concentrations (MICs) of 2-64 μg/mL were observed against studied pathogenic strains. The antimicrobial activity of Ti/BTB-MOF was higher than that of penicillin and gentamicin. Therefore, the synthesized Ti/BTB-MOF could be introduced as a suitable bioactive candidate.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Safar M. Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Taibah Aldakhil
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
29
|
Xu H, Hang Y, Lei X, Deng J, Yang J. Synthesis of cobalt phosphide hybrid for simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid. RSC Adv 2024; 14:14665-14671. [PMID: 38708113 PMCID: PMC11067435 DOI: 10.1039/d4ra01702a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Ascorbic acid (AA), dopamine (DA), and uric acid (UA) are important biomarkers for the clinical screening of diseases. However, the simultaneous determination of these three analytes is still challenging. Herein, we report a facile metal-organic framework (MOF)-derived method to synthesize a cobalt phosphide (Co2P) hybrid for the simultaneous electrochemical detection of AA, DA and UA. The introduction of highly dispersed Co2P nanoparticles onto a P, N-doped porous carbon matrix is responsible for providing abundant active sites and facilitating electron transfer, thereby contributing to the improved electrocatalytic performance of the hybrid. Well-resolved oxidation peaks and an enhanced current response for the simultaneous oxidation of AA, DA, and UA were achieved using a Co2P hybrid-modified screen-printed electrode (Co2P hybrid-SPE) with the differential pulse voltammetry (DPV) method. The detection limits for AA, DA, and UA in simultaneous detection were calculated as 17.80 μM, 0.018 μM, and 0.068 μM (S/N = 3), respectively. Furthermore, the feasibility of using Co2P hybrid-SPE for the simultaneous detection of AA, DA, and UA in real serum samples was also confirmed.
Collapse
Affiliation(s)
- Hongyan Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University Chongqing 400044 China
| | - Yulu Hang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University Chongqing 400044 China
| | - Xiaoyu Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University Chongqing 400044 China
| | - Jinan Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University Chongqing 400044 China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University Chongqing 400044 China
| |
Collapse
|
30
|
Wu P, Geng S, Wang X, Zhang X, Li H, Zhang L, Shen Y, Zha B, Zhang S, Huo F, Zhang W. Exfoliation of Metal-Organic Frameworks to Give 2D MOF Nanosheets for the Electrocatalytic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2024; 63:e202402969. [PMID: 38407381 DOI: 10.1002/anie.202402969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The structure and properties of materials are determined by a diverse range of chemical bond formation and breaking mechanisms, which greatly motivates the development of selectively controlling the chemical bonds in order to achieve materials with specific characteristics. Here, an orientational intervening bond-breaking strategy is demonstrated for synthesizing ultrathin metal-organic framework (MOF) nanosheets through balancing the process of thermal decomposition and liquid nitrogen exfoliation. In such approach, proper thermal treatment can weaken the interlayer bond while maintaining the stability of the intralayer bond in the layered MOFs. And the following liquid nitrogen treatment results in significant deformation and stress in the layered MOFs' structure due to the instant temperature drop and drastic expansion of liquid N2, leading to the curling, detachment, and separation of the MOF layers. The produced MOF nanosheets with five cycles of treatment are primarily composed of nanosheets that are less than 10 nm in thickness. The MOF nanosheets exhibit enhanced catalytic performance in oxygen evolution reactions owing to the ultrathin thickness without capping agents which provide improved charge transfer efficiency and dense exposed active sites. This strategy underscores the significance of orientational intervention in chemical bonds to engineer innovative materials.
Collapse
Affiliation(s)
- Peng Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Shuang Geng
- School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Xinyu Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Xinglong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Hongfeng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Lulu Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Baoli Zha
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Suoying Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, 211816, Nanjing, China
| |
Collapse
|
31
|
Wang J, Cheng C, Sun S, Zhao W, Zhao C. Metal-organic framework-based adsorbents for blood purification: progress, challenges, and prospects. J Mater Chem B 2024; 12:3594-3613. [PMID: 38506127 DOI: 10.1039/d3tb03047d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Blood purification, such as hemodialysis (HD), plasma exchange (PE), and hemoperfusion (HP), is widely applied in patients with organ failure (such as kidney and liver failure). Among them, HP mainly relies on porous adsorbents to efficiently adsorb accumulated metabolic wastes and toxins, thus improving purification efficiency. Metal-organic frameworks (MOFs), with a high porosity, large surface area, high loading capacity, and tailorable topology, are emerging as some of the most promising materials for HP. Compared with non-metal framework counterparts, the self-built metal centers of MOFs feature the intrinsic advantages of coordination with toxin molecules. However, research on MOFs in blood purification is insufficient, particularly in contrast to materials applied in other biomedical applications. Thus, to broaden this area, this review first discusses the essential characteristics, potential mechanisms, and structure-function relationship between MOFs and toxin adsorption based on porosity, topology, ligand functionalization, metal centers, and toxin types. Moreover, the stability, utilization safety, and hemocompatibility of MOFs are illustrated for adsorbent selection. The current development and progress in MOF composites for HD, HP, and extracorporeal membrane oxygenation (ECMO) are also summarized to highlight their practicability. Finally, we propose future opportunities and challenges from materials design and manufacture to the computational prediction of MOFs in blood purification. It is anticipated that our review will expand the interest of researchers for more impact in this area.
Collapse
Affiliation(s)
- Jiemin Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
32
|
Yin J, Wang C, Li J, Yu S, Wu Z, Zhang Y, Du Y. In Situ Electrodeposition of Ultralow Pt into NiFe-Metal-Organic Framework/Nickel Foam Nanosheet Arrays as a Bifunctional Catalyst for Overall Water Splitting. Inorg Chem 2024; 63:5167-5174. [PMID: 38442484 DOI: 10.1021/acs.inorgchem.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Exploring highly effective bifunctional electrocatalysts with surface structural advantages and synergistic optimization effects among multimetals is greatly important for overall water splitting. Herein, we successfully synthesized Pt-loaded NiFe-metal-organic framework nanosheet arrays grown on nickel foam (Pt-NiFe-MOF/NF) via a facile hydrothermal-electrodeposition process. Benefiting from large exposed specific surface, optimal electrical conductivity and efficient metal-support interaction endow Pt-NiFe-MOF/NF with highly catalytic performance, exhibiting small overpotential of 261 mV toward oxygen evolution reaction and 125 mV toward hydrogen evolution reaction at a current density of 100 mA cm-2 in alkaline medium. More significantly, the assembled water electrolyzer comprising the Pt-NiFe-MOF/NF//Pt-NiFe-MOF/NF couple demands a low cell voltage of 1.45 V to reach 10 mA cm-2. This work renders a viable approach to design dual-functional electrocatalysts with exceptional electrocatalytic activity and stability at high current density, showing the great prospect of water electrolysis for commercial application.
Collapse
Affiliation(s)
- Jiongting Yin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
- College of Chemical and Environmental Engineering, Yancheng Teachers University, No. 2 Hope Avenue South Road, Yancheng 224007, China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Shudi Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
33
|
Sikma RE, Butler KS, Vogel DJ, Harvey JA, Sava Gallis DF. Quest for Multifunctionality: Current Progress in the Characterization of Heterometallic Metal-Organic Frameworks. J Am Chem Soc 2024; 146:5715-5734. [PMID: 38364319 DOI: 10.1021/jacs.3c05425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Metal-organic frameworks (MOFs) are a class of porous, crystalline materials that have been systematically developed for a broad range of applications. Incorporation of two or more metals into a single crystalline phase to generate heterometallic MOFs has been shown to lead to synergistic effects, in which the whole is oftentimes greater than the sum of its parts. Because geometric proximity is typically required for metals to function cooperatively, deciphering and controlling metal distributions in heterometallic MOFs is crucial to establish structure-function relationships. However, determination of short- and long-range metal distributions is nontrivial and requires the use of specialized characterization techniques. Advancements in the characterization of metal distributions and interactions at these length scales is key to rapid advancement and rational design of functional heterometallic MOFs. This perspective summarizes the state-of-the-art in the characterization of heterometallic MOFs, with a focus on techniques that allow metal distributions to be better understood. Using complementary analyses, in conjunction with computational methods, is critical as this field moves toward increasingly complex, multifunctional systems.
Collapse
Affiliation(s)
- R Eric Sikma
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Kimberly S Butler
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dayton J Vogel
- Computational Materials & Data Science Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jacob A Harvey
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
34
|
Zhang N, Mu M, Zhu S, Gao Y, Lu M. Well-defined Fe 3O 4@MIL-100(Fe) hollow nanoflower heterostructures for selective dection and monitoring of benzoylurea insecticides from food and water. Food Chem 2024; 435:137579. [PMID: 37769564 DOI: 10.1016/j.foodchem.2023.137579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Developing a platform for the selective detection and effective monitor of toxic contaminants is a major challenge to address organic contaminants contamination in environmental science. Here, for the first time, the thickness-controllable Fe3O4@MIL-100(Fe) heterogeneous materials with special hollow nanoflower (HFs) morphology had been synthesized. The morphology and shell thickness of the nano-petal could be tuned by changing the reaction time. The resultant Fe3O4@MIL-100(Fe) HFs exhibited the hollow nanoflower shapes and exposed abundant accessible active sites. The enrichment performance of Fe3O4@MIL-100(Fe) HFs was approximately 1.4-1.7 times that of spherical Fe3O4@MIL-100(Fe) composite for benzoylurea insecticides (BUs). Furthermore, the optimal sample achieved the wide linearity (0.05-500 ng mL-1) and low limits of detection, (0.003-0.01 ng mL-1) for BUs. The research provides a new strategy for highly sensitive detection and monitoring of harmful pollutant levels in the environment.
Collapse
Affiliation(s)
- Ning Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| | - Mengyao Mu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Shiping Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Yanmei Gao
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
35
|
Kim Y, Lee S, Chen YP, Lee B, Lee S, Park J. Partial-Interpenetration-Controlled UiO-Type Metal-Organic Framework and its Catalytic Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305999. [PMID: 37840400 DOI: 10.1002/smll.202305999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 10/17/2023]
Abstract
An unprecedented correlation between the catalytic activity of a Zr-based UiO-type metal-organic framework (MOF) and its degree of interpenetration (DOI) is reported. The DOI of an MOF is hard to control owing to the high-energy penalty required to construct a partially interpenetrated structure. Surprisingly, strong interactions between building blocks (inter-ligand hydrogen bonding) facilitate the formation of partially interpenetrated structures under carefully regulated synthesis conditions. Moreover, catalytic conversion rates for cyanosilylation and Knoevenagel condensation reactions are found to be proportional to the DOI of the MOF. Among MOFs with DOIs in the 0-100% range, that with a DOI of 87% is the most catalytically active. Framework interpenetration is known to lower catalytic performance by impeding reactant diffusion. A higher effective reactant concentration due to tight inclusion in the interpenetrated region is possibly responsible for this inverted result.
Collapse
Affiliation(s)
- Yeonghun Kim
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sanghyeop Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Ying-Pin Chen
- Electrode Engineering, Panasonic Energy of North America, Reno, NV, 89502, USA
| | - Byeongchan Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sunggi Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jinhee Park
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| |
Collapse
|
36
|
Yao X, Chen X, Sun Y, Yang P, Gu X, Dai X. Application of metal-organic frameworks-based functional composite scaffolds in tissue engineering. Regen Biomater 2024; 11:rbae009. [PMID: 38420353 PMCID: PMC10900102 DOI: 10.1093/rb/rbae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 03/02/2024] Open
Abstract
With the rapid development of materials science and tissue engineering, a variety of biomaterials have been used to construct tissue engineering scaffolds. Due to the performance limitations of single materials, functional composite biomaterials have attracted great attention as tools to improve the effectiveness of biological scaffolds for tissue repair. In recent years, metal-organic frameworks (MOFs) have shown great promise for application in tissue engineering because of their high specific surface area, high porosity, high biocompatibility, appropriate environmental sensitivities and other advantages. This review introduces methods for the construction of MOFs-based functional composite scaffolds and describes the specific functions and mechanisms of MOFs in repairing damaged tissue. The latest MOFs-based functional composites and their applications in different tissues are discussed. Finally, the challenges and future prospects of using MOFs-based composites in tissue engineering are summarized. The aim of this review is to show the great potential of MOFs-based functional composite materials in the field of tissue engineering and to stimulate further innovation in this promising area.
Collapse
Affiliation(s)
- Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xinran Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yu Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
37
|
Zheng Z, Wang B, Li Z, Hao H, Wei C, Luo W, Jiao L, Zhang S, Zhou B, Ma X. Enhanced Charge Transfer via S-Scheme Heterojunction Interface Engineering of Supramolecular SubPc-Br/UiO-66 Arrays for Efficient Photocatalytic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306820. [PMID: 37802970 DOI: 10.1002/smll.202306820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Indexed: 10/08/2023]
Abstract
Constructing heterojunction of supramolecular arrays self-assembled on metal-organic frameworks (MOFs) with elaborate charge transfer mechanisms is a promising strategy for the photocatalytic oxidation of organic pollutants. Herein, H12 SubPcB-Br (SubPc-Br) and UiO-66 are used to obtain the step-scheme (S-scheme) heterojunction SubPc-Br/UiO-66 for the first time, which is then applied in the photocatalytic oxidation of minocycline. Atomic-level B-O-Zr charge-transfer channels and van der Waals force connections synergistically accelerated the charge transfer at the interface of the SubPc-Br/UiO-66 heterojunction, while the establishment of the B-O-Zr bonds also led to the directional transfer of charge from SubPc-Br to UiO-66. The synergy is the key to improving the photocatalytic activity and stability of SubPc-Br/UiO-66, which is also verified by various characterization methods and theoretical calculations. The minocycline degradation efficiency of supramolecular SubPc-Br/UiO-66 arrays reach 90.9% within 30 min under visible light irradiation. The molecular dynamics simulations indicate that B-O-Zr bonds and van der Waals force contribute significantly to the stability of the SubPc-Br/UiO-66 heterojunction. This work reveals an approach for the rational design of semiconducting MOF-based heterojunctions with improved properties.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Bing Wang
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Zhuo Li
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - ChaoYang Wei
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - WenYu Luo
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - LinYu Jiao
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Sheng Zhang
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Bo Zhou
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an, 710069, China
| | - XiaoXun Ma
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| |
Collapse
|
38
|
Zhang L, Zhang H, Zhao Z, Meng T, Ma X, Li X, Liu R, Han X, Zhao X, Hao H, Yan H. Molecular Dynamics Simulation of the Adsorption and Diffusion of C 8 Aromatic Isomers in MIL-47(V). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2385-2395. [PMID: 38237570 DOI: 10.1021/acs.langmuir.3c03706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The separation of C8 aromatic isomers (oX: o-xylene, pX: p-xylene, mX: m-xylene, and EB: ethylbenzene) remains an enormous challenge in industrial production due to their similar molecular structures and physical properties. Porous materials with suitable pore structures and selective recognition sites to discriminate the slight structural differences of isomers are imminently needed. In this paper, MIL-47(V) with a three-dimensional (3D) grid structure of 10.5 × 10.5 Å2 and a one-dimensional (1D) diamond channel was selected as the adsorbent. However, the mechanism of the adsorption and separation of C8 aromatic isomers in porous materials still needs to be understood. Given the importance of C8 aromatic isomers' confinement in MIL-47(V) for adsorption and diffusion applications, it is important to understand C8 aromatic isomers' behavior in MIL-47(V). Here, we demonstrated from a simulation perspective that metal-organic frameworks MIL-47(V) with one-dimensional (1D) diamond channels can identify C8 aromatic isomers. Molecular dynamics (MD) simulations have shown that organic ligands with guest response sites of MIL-47(V) can effectively distinguish between C8 aromatic isomers by adaptation to the shape of a specific isomer. MIL-47(V) has high adsorption and an excellent separation sequence between C8 aromatic isomers: oX > pX ≈ mX > EB. Significant differences exist in π-π superposition interactions between C8 aromatic isomers and between C8 aromatic isomers and the skeletons. This phenomenon is mainly caused by the unique pore structure and guest response characteristics of MIL-47(V). This work is identified as a supplementary instruction to experimental research and is expected to provide profound insights into research on developing C8 aromatic isomers' adsorption and separation and theoretical support.
Collapse
Affiliation(s)
- Lu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hao Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Zhen Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Tong Meng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiaoxue Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xin Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Ronghua Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xueke Han
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xin Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
39
|
Tasnim NT, Ferdous N, Rumon MMH, Shakil MS. The Promise of Metal-Doped Iron Oxide Nanoparticles as Antimicrobial Agent. ACS OMEGA 2024; 9:16-32. [PMID: 38222657 PMCID: PMC10785672 DOI: 10.1021/acsomega.3c06323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Antibiotic resistance (AMR) is one of the pressing global public health concerns and projections indicate a potential 10 million fatalities by the year 2050. The decreasing effectiveness of commercially available antibiotics due to the drug resistance phenomenon has spurred research efforts to develop potent and safe antimicrobial agents. Iron oxide nanoparticles (IONPs), especially when doped with metals, have emerged as a promising avenue for combating microbial infections. Like IONPs, the antimicrobial activities of doped-IONPs are also linked to their surface charge, size, and shape. Doping metals on nanoparticles can alter the size and magnetic properties by reducing the energy band gap and combining electronic charges with spins. Furthermore, smaller metal-doped nanoparticles tend to exhibit enhanced antimicrobial activity due to their higher surface-to-volume ratio, facilitating greater interaction with bacterial cells. Moreover, metal doping can also lead to increased charge density in magnetic nanoparticles and thereby elevate reactive oxygen species (ROS) generation. These ROS play a vital role to disrupt bacterial cell membrane, proteins, or nucleic acids. In this review, we compared the antimicrobial activities of different doped-IONPs, elucidated their mechanism(s), and put forth opinions for improved biocompatibility.
Collapse
Affiliation(s)
- Nazifa Tabassum Tasnim
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Nushrat Ferdous
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Mahamudul Hasan Rumon
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| |
Collapse
|
40
|
Yun LX, Zhang C, Shi XR, Dong YJ, Zhang HT, Shen ZG, Wang JX. The controllable and efficient synthesis of two-dimensional metal-organic framework nanosheets for heterogeneous catalysis. NANOSCALE 2024; 16:691-700. [PMID: 38054762 DOI: 10.1039/d3nr05348b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Two-dimensional (2D) MOFs exhibit unique periodicity in surface structures and thus have attracted much interest in the fields of catalysis, energy, and sensors. However, the expanded production scale of 2D MOFs had remained a great challenge in most previous studies. Herein, a controllable and efficient crystallization method for synthesizing 2D MOF nanosheets using high-gravity reactive precipitation is proposed, significantly improving heterogeneous catalysis efficiency. The two-dimensional ZIF-L nanosheets prepared in a rotating packed bed (RPB) reactor show a smaller lateral and lamellar thickness and a higher BET surface area compared to ZIF-L nanosheets prepared in a conventional stirred tank reactor (STR), with a greatly shortened reaction time. Applying the ZIF-L-RPB nanosheets as a catalyst, the catalytic Knoevenagel condensation as a probe reaction displays a high conversion rate of benzaldehyde (99.3%) within 2 h at room temperature, greatly exceeding that displayed by ZIF-L-STR and other reported catalysts. Furthermore, ZIL-L-RPB nanosheets of only 0.2 wt% enhanced the catalytic activity for the glycolysis of poly(ethylene terephthalate) (PET) with a PET conversion and a monomer yield of 90% in a short period of 15 min at 195 °C and almost completely depolymerized PET with a monomer yield of 94% in 30 min, which was far above that achieved by ZIL-L-STR. These results indicate the promising prospects of a high-gravity reactive precipitation strategy with precise size control in an economical way to prepare high-activity 2D MOF nanosheets for a wide range of heterogeneous catalysis.
Collapse
Affiliation(s)
- Ling-Xia Yun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Cong Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Xin-Ran Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Yan-Jun Dong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Hang-Tian Zhang
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
- Quzhou Innovation Institute for Chemical Engineering and Materials, Quzhou, Zhejiang, 324000, China
| | - Zhi-Gang Shen
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
41
|
Lv Z, Zhang H, Liu C, Li S, Song J, He J. Oxygen-Bridged Cobalt-Chromium Atomic Pair in MOF-Derived Cobalt Phosphide Networks as Efficient Active Sites Enabling Synergistic Electrocatalytic Water Splitting in Alkaline Media. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306678. [PMID: 37997194 PMCID: PMC10797420 DOI: 10.1002/advs.202306678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Electrochemical water splitting offers a most promising pathway for "green hydrogen" generation. Even so, it remains a struggle to improve the electrocatalytic performance of non-noble metal catalysts, especially bifunctional electrocatalysts. Herein, aiming to accelerate the hydrogen and oxygen evolution reactions, an oxygen-bridged cobalt-chromium (Co-O-Cr) dual-sites catalyst anchored on cobalt phosphide synthesized through MOF-mediation are proposed. By utilizing the filling characteristics of 3d orbitals and modulated local electronic structure of the catalytic active site, the well-designed catalyst requires only an external voltage of 1.53 V to deliver the current density of 20 mA cm-2 during the process of water splitting apart from the superb HER and OER activity with a low overpotential of 87 and 203 mV at a current density of 10 mA cm-2 , respectively. Moreover, density functional theory (DFT) calculations are utilized to unravel mechanistic investigations, including the accelerated adsorption and dissociation process of H2 O on the Co-O-Cr moiety surface, the down-shifted d-band center, a lowered energy barrier for the OER and so on. This work offers a design direction for optimizing catalytic activity toward energy conversion.
Collapse
Affiliation(s)
- Zepeng Lv
- Zhongyuan critical metals laboratoryZhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Huakui Zhang
- Henan province industrial technology research institute of resources and materialsZhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Chenhui Liu
- Henan province industrial technology research institute of resources and materialsZhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Shaolong Li
- Henan province industrial technology research institute of resources and materialsZhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Jianxun Song
- Zhongyuan critical metals laboratoryZhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Jilin He
- Zhongyuan critical metals laboratoryZhengzhou UniversityZhengzhouHenan450001P. R. China
| |
Collapse
|
42
|
Xie Y, Wu X, Shi Y, Peng Y, Zhou H, Wu X, Ma J, Jin J, Pi Y, Pang H. Recent Progress in 2D Metal-Organic Framework-Related Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305548. [PMID: 37643389 DOI: 10.1002/smll.202305548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Indexed: 08/31/2023]
Abstract
2D metal-organic frameworks-based (2D MOF-related) materials benefit from variable topological structures, plentiful open active sites, and high specific surface areas, demonstrating promising applications in gas storage, adsorption and separation, energy conversion, and other domains. In recent years, researchers have innovatively designed multiple strategies to avoid the adverse effects of conventional methods on the synthesis of high-quality 2D MOFs. This review focuses on the latest advances in creative synthesis techniques for 2D MOF-related materials from both the top-down and bottom-up perspectives. Subsequently, the strategies are categorized and summarized for synthesizing 2D MOF-related composites and their derivatives. Finally, the current challenges are highlighted faced by 2D MOF-related materials and some targeted recommendations are put forward to inspire researchers to investigate more effective synthesis methods.
Collapse
Affiliation(s)
- Yun Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Xinyue Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yuxin Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Xiaohui Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Jiao Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Jiangchen Jin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
43
|
Lu W, Lei C, Chen K, Wang Z, Liu F, Li X, Shen J, Shen Q, Gao J, Lin W, Hu Q. A Cu-Based Metal-Organic Framework Cu-Cip with Cuproptosis for Cancer Therapy and Inhibition of Cancer Cell Migration. Inorg Chem 2023; 62:21299-21308. [PMID: 38069807 DOI: 10.1021/acs.inorgchem.3c03393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Microflora within cancer cells plays a pivotal role in promoting metastasis of cancer. However, contemporary anticancer research often overlooks the potential benefits of combining anticancer and antibacterial agents. Consequently, a metal-organic framework Cu-Cip with cuproptosis and antibacterial properties was synthesized for cancer therapy. To enhance the anticancer effect of the material, Mn2+ was loaded into Cu-Cip, yielding Mn@Cu-Cip. The fabricated material was characterized using single-crystal X-ray diffraction, PXRD, and FT-IR. By interacting with overexpressed H2O2 to produce ROS and accumulating Cu ions in cancer cells, MOFs exhibited excellent anticancer performance. Moreover, the material displayed the function of damaging Staphylococcus aureus and Escherichia coli, revealing the admirable antibacterial properties of the material. In addition, the antibacterial ability could inhibit tumor cell migration. The Cu-based MOF revealed promising applications in the field of tumor treatment.
Collapse
Affiliation(s)
- Wenwen Lu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Chen Lei
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Ke Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Zhengfeng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Feng Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Xianan Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Jie Shen
- Department of Gynecology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P. R. China
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Junkuo Gao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Wenxin Lin
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
44
|
Sk S, Jamma A, Gavali DS, Bhasin V, Ghosh R, Sudarshan K, Thapa R, Pal U. Modulated Ultrathin NiCo-LDH Nanosheet-Decorated Zr 3+-Rich Defective NH 2-UiO-66 Nanostructure for Efficient Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55822-55836. [PMID: 37994833 DOI: 10.1021/acsami.3c13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Defect engineering through modification of their surface linkage is found to be an effective pathway to escalate the solar energy conversion efficiency of metal-organic frameworks (MOFs). Herein, defect engineering using controlled decarboxylation on the NH2-UiO-66 surface and integration of ultrathin NiCo-LDH nanosheets synergizes the hydrogen evolution reaction (HER) under a broad visible light regime. Diversified analytical methods including positron annihilation lifetime spectroscopy were employed to investigate the role of Zr3+-rich defects by analyzing the annihilation characteristics of positrons in NH2-UiO-66, which provides a deep insight into the effects of structural defects on the electronic properties. The progressively tuned photophysical properties of the NiCo-LDH@NH2-UiO-66-D-heterostructured nanocatalyst led to an impressive rate of HER (∼2458 μmol h-1 g-1), with an apparent quantum yield of ∼6.02%. The ultrathin NiCo-LDH nanosheet structure was found to be highly favored toward electrostatic self-assembly in the heterostructure for efficient charge separation. Coordination of Zr3+ on the surface of the NiCo-LDH nanosheet support through NH2-UiO-66 was confirmed by X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy techniques. Femtosecond transient absorption spectroscopy studies unveiled a photoexcited charge migration process from MOF to NiCo-LDH which favorably occurred on a picosecond time scale to boost the catalytic activity of the composite system. Furthermore, the experimental finding and HER activity are validated by density functional theory studies and evaluation of the free energy pathway which reveals the strong hydrogen binding over the surface and infers the anchoring effect of the ultrathin layered double hydroxide (LDH) in the vicinity of the Zr cluster with a strong host-guest interaction. This work provided a novel insight into efficient photocatalysis via defect engineering at the linker modulation in MOFs.
Collapse
Affiliation(s)
- Saddam Sk
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aparna Jamma
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepak S Gavali
- Department of Physics, SRM University AP, Amaravati 522240, Andhra Pradesh, India
| | - Vidha Bhasin
- Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Rajib Ghosh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Kathi Sudarshan
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Ranjit Thapa
- Department of Physics, SRM University AP, Amaravati 522240, Andhra Pradesh, India
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
45
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
46
|
Glasby L, Oktavian R, Zhu K, Cordiner JL, Cole JC, Moghadam PZ. Augmented Reality for Enhanced Visualization of MOF Adsorbents. J Chem Inf Model 2023; 63:5950-5955. [PMID: 37751570 PMCID: PMC10565814 DOI: 10.1021/acs.jcim.3c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Indexed: 09/28/2023]
Abstract
Augmented reality (AR) is an emerging technique used to improve visualization and comprehension of complex 3D materials. This approach has been applied not only in the field of chemistry but also in real estate, physics, mechanical engineering, and many other areas. Here, we demonstrate the workflow for an app-free AR technique for visualization of metal-organic frameworks (MOFs) and other porous materials to investigate their crystal structures, topology, and gas adsorption sites. We think this workflow will serve as an additional tool for computational and experimental scientists working in the field for both research and educational purposes.
Collapse
Affiliation(s)
- Lawson
T. Glasby
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - Rama Oktavian
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - Kewei Zhu
- Department
of Chemical Engineering, University College
London, London, WC1E 7JE, United
Kingdom
| | - Joan L. Cordiner
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - Jason C. Cole
- Cambridge
Crystallographic Data Centre, Cambridge, CB2 1EZ, United Kingdom
| | - Peyman Z. Moghadam
- Department
of Chemical Engineering, University College
London, London, WC1E 7JE, United
Kingdom
| |
Collapse
|
47
|
Mousavi SJ, Ejeian F, Razmjou A, Nasr-Esfahani MH. In vivo evaluation of bone regeneration using ZIF8-modified polypropylene membrane in rat calvarium defects. J Clin Periodontol 2023; 50:1390-1405. [PMID: 37485621 DOI: 10.1111/jcpe.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
AIM The profound potential of zeolitic imidazolate framework 8 (ZIF8) thin film for inducing osteogenesis has been previously established under in vitro conditions. As the next step towards the clinical application of ZIF8-modified substrates in periodontology, this in vivo study aimed to evaluate the ability of the ZIF8 crystalline layer to induce bone regeneration in an animal model defect. MATERIALS AND METHODS Following the mechanical characterization of the membranes and analysing the in vitro degradation of the ZIF8 layer, in vivo bone regeneration was evaluated in a critical-sized (5-mm) rat calvarial bone defect model. For each animal, one defect was randomly covered with either a polypropylene (PP) or a ZIF8-modified membrane (n = 7 per group), while the other defect was left untreated as a control. Eight weeks post surgery, bone formation was assessed by microcomputed tomography scanning, haematoxylin and eosin staining and immunohistochemical analysis. RESULTS The ZIF8-modified membrane outperformed the PP membrane in terms of mechanical properties and revealed a trace Zn+2 release. Results of in vivo evaluation verified the superior barrier function of the ZIF8-coated membrane compared with pristine PP membrane. Compared with the limited marginal bone formation in the control and PP groups, the defect area was almost filled with mature bone in the ZIF8-coated membrane group. CONCLUSIONS Our results support the effectiveness of the ZIF8-coated membrane as a promising material for improving clinical outcomes of guided bone regeneration procedures, without using biological components.
Collapse
Affiliation(s)
- Seyed Javad Mousavi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Perth, Western Australia, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
48
|
Wu P, Zhao Y, Zhang X, Fan Y, Zhang S, Zhang W, Huo F. Opportunities and Challenges of Metal-Organic Framework Micro/Nano Reactors for Cascade Reactions. JACS AU 2023; 3:2413-2435. [PMID: 37772189 PMCID: PMC10523373 DOI: 10.1021/jacsau.3c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
Building bridges among different types of catalysts to construct cascades is a highly worthwhile pursuit, such as chemo-, bio-, and chemo-bio cascade reactions. Cascade reactions can improve the reaction efficiency and selectivity while reducing steps of separation and purification, thereby promoting the development of "green chemistry". However, compatibility issues in cascade reactions pose significant constraints on the development of this field, particularly concerning the compatibility of diverse catalyst types, reaction conditions, and reaction rates. Metal-organic framework micro/nano reactors (MOF-MNRs) are porous crystalline materials formed by the self-assembly coordination of metal sites and organic ligands, possessing a periodic network structure. Due to the uniform pore size with the capability of controlling selective transfer of substances as well as protecting active substances and the organic-inorganic parts providing reactive microenvironment, MOF-MNRs have attracted significant attention in cascade reactions in recent years. In this Perspective, we first discuss how to address compatibility issues in cascade reactions using MOF-MNRs, including structural design and synthetic strategies. Then we summarize the research progress on MOF-MNRs in various cascade reactions. Finally, we analyze the challenges facing MOF-MNRs and potential breakthrough directions and opportunities for the future.
Collapse
Affiliation(s)
- Peng Wu
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yanhua Zhao
- Frontiers
Science Center for Flexible Electronics, Xi’an Institute of
Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials
& Engineering, Northwestern Polytechnical
University, 127 West
Youyi Road, Xi’an 710072, China
| | - Xinglong Zhang
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yun Fan
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Suoying Zhang
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Weina Zhang
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| | - Fengwei Huo
- Key
Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced
Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
49
|
Zhao T, Zou M, Xiao P, Luo M, Nie S. Template-Free Synthesis and Multifunctional Application of Foam HKUST-1. Inorg Chem 2023; 62:14659-14667. [PMID: 37624582 DOI: 10.1021/acs.inorgchem.3c01923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Hierarchically porous metal-organic frameworks (HP-MOFs) have attracted a lot of attention in recent years because their hierarchical pores have critical importance in strengthening their performance, including guest diffusion kinetics, catalytic activity, and selectivity, especially with reference to large molecules. However, the preparation method for simple, controllable, and stable HP-MOFs at a micro-/meso-/macroscopic scale is still lacking. Herein, we showed several forms of HKUST-1 (HKUST = Hong Kong University of Science and Technology) by simply changing the copper source and solvent type, including original micron HKUST-1 (O-HKUST-1), half-foam HKUST-1 (HF-HKUST-1), and fully foam HKUST-1 (F-HKUST-1). Compared to O-HKUST-1, HF-HKUST-1 and F-HKUST-1 possessed an apparent hierarchically porous structure due to the high fusion of HKUST-1 nanocrystals. Especially in F-HKUST-1, all of the HKUST-1 nanocrystals were tightly integrated into each other, which formed a holistic hollow foam structure. Hence, F-HKUST-1 exhibited the highest adsorption capacity toward large molecules, including proteases, phosphotungstic acid, and organic dyes. Meanwhile, F-HKUST-1 presented the highest photocatalytic degradation capability for rhodamine B. Furthermore, F-HKUST-1, loaded with phosphotungstic acid (F-HKUST-1@PTA), which was used as a catalyst, indicated a catalytic capacity comparable to that of a homogeneous catalyst (pure phosphotungstic acid).
Collapse
Affiliation(s)
- Tian Zhao
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Minmin Zou
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Pengcheng Xiao
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Mingliang Luo
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Saiqun Nie
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
50
|
Li L, Zou JY, You SY, Zhang L. Ratiometric Fluorescence Thermometry, Quantitative Gossypol Detection, and CO 2 Chemical Fixation by a Multipurpose Europium (III) Metal-Organic Framework. Inorg Chem 2023; 62:14168-14179. [PMID: 37606309 DOI: 10.1021/acs.inorgchem.3c00739] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A lanthanide-based molecular crystalline material endows metal-organic frameworks (MOFs) with many fascinating applications such as fluorescence detection and CO2 chemical fixation. Herein, we describe and study a multipurpose europium(III) MOF with the formula of {[Eu2(TATAB)2]·2.5H2O·2DMF}n (Eu-MOF) (where H3TATAB is 4,4',4″-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tribenzoic acid ligand) for photoluminescence sensor matrix and CO2 chemical fixation. This Eu-MOF features 1D square channels along the c direction with a pore size of ca.14.07 Å × 14.07 Å, occupied by lattice water and DMF molecules. The obtained Eu-MOF can achieve simultaneous luminescence of the H3TATAB ligand and Eu3+ ions, which can be developed as the sensor matrix for ratiometric fluorescence thermometry. The luminescence of the Eu-MOF demonstrates an obvious color change from red to yellow as temperature rises from 303 to 373 K and the Eu-MOF has a satisfying relative sensitivity of 3.21% K-1 and a small temperature uncertainty of 0.0093 K at 333 K. Moreover, sensitive detection of gossypol was achieved with a quenching constant Ksv of 1.18 × 105 M-1 and a detection limit of 4.61 μM. A combination of the competitive absorption and photoinduced electron transfer caused by host-guest interactions and strengthened π-π packing effect synergistically between gossypol molecules and the Eu-MOF skeleton realizes the "turn-off" sensing of gossypol. Importantly, the nature of the Eu-MOF allows showing CO2 chemical fixation under mild conditions. Thus, the Eu-MOF can be utilized as a multipurpose material for ratiometric fluorescence thermometry, quantitative gossypol detection, and CO2 chemical fixation.
Collapse
Affiliation(s)
- Ling Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Ji-Yong Zou
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Sheng-Yong You
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Li Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| |
Collapse
|