1
|
Zhao C, Wang X, Li L, Huang H, Wu B, Zhang L, Huang X. Biomineralization-Inspired Membranization Toward Structural Enhancement of Coacervate Community. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417832. [PMID: 40089856 PMCID: PMC12079539 DOI: 10.1002/advs.202417832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/19/2025] [Indexed: 03/17/2025]
Abstract
The design and assembly of protocell models that can mimic the features and functions of life present a significant research challenge with the potential for far-reaching impact. Inspired by the natural phenomenon of microbe-induced mineralization, a way is developed to induce the spontaneous formation of mineralized membrane on the surface of coacervate droplets utilizing Fe3+ ions. In particular, the effect of Fe3+ ions on the microstructure of droplets at the molecular level is dissected by combining theoretical and experimental approaches. The reversible formation process of membrane can be regulated by redox reactions involving Fe2+/Fe3+ ions within the coacervate. The formation of mineralized membrane not only enhances the stability of the coacervate droplets and prevents aggregation and coalescence, but also allows the aggregation of adjacent droplets together. The membranized coacervate assemblages retain the inherent properties of biomolecule sequestration and enzyme catalysis, and also demonstrate excellent resistance to high temperatures and pressures as well as good stability for over 30 days. This study will offer a new platform for the assembly of coacervate-based life-like biomimetic systems, as well as enhance the understanding of the interactions underlying various biological phenomena at the molecular level.
Collapse
Affiliation(s)
- Chunyu Zhao
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesTaianShandong271016China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinHeilongjiang150001China
| | - Lianning Li
- School of Materials Science and EngineeringXinjiang UniversityUrumchiXinjiang830000China
| | - Hu Huang
- School of Materials Science and EngineeringXinjiang UniversityUrumchiXinjiang830000China
| | - Bingzhao Wu
- School of Materials Science and EngineeringXinjiang UniversityUrumchiXinjiang830000China
| | - Lei Zhang
- School of Materials Science and EngineeringXinjiang UniversityUrumchiXinjiang830000China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinHeilongjiang150001China
| |
Collapse
|
2
|
Wang D, Zhou L, Zhang X, Zhou Z, Huang Z, Gao N. Supramolecular Switching of Liquid-Liquid Phase Separation for Orchestrating Enzyme Kinetics. Angew Chem Int Ed Engl 2025; 64:e202422601. [PMID: 39833115 DOI: 10.1002/anie.202422601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Dynamic liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) and associated assembly and disassembly of biomolecular condensates play crucial roles in cellular organization and metabolic networks. These processes are often regulated by supramolecular interactions. However, the complex and disordered structures of IDPs, coupled with their rapid conformational fluctuations, pose significant challenges for reconstructing supramolecularly-regulated dynamic LLPS systems and quantitatively illustrating variations in molecular interactions. Inspired by the structural feature of IDPs that facilitates LLPS, we designed a simplified phase-separating molecule, Nap-o-Nap, consisting of two naphthalene moieties linked by an ethylene glycol derivative. This compound exhibits LLPS under physiological conditions, forming coacervate microdroplets that undergo multiple cycles of disassembly and reassembly upon stoichiometric addition of Cucurbit[7]uril and Adamantane, respectively, based upon competitive host-guest interactions. Importantly, such reversible control offers a unique route to quantify entropically dominant nature (ΔS=14.0 cal ⋅ mol-1 ⋅ K-1) within the LLPS process, in which the binding affinity of host-guest interactions (ΔG=-14.9 kcal ⋅ mol-1) surpass that of the LLPS of Nap-o-Nap (ΔG=-2.1 kcal ⋅ mol-1), enabling the supramolecular regulation process. The supramolecularly switched LLPS, along with selective client recruitment and exclusion by resultant coacervates, provides a promising platform for either boosting or retarding enzymatic reactions, thereby orchestrating biological enzyme kinetics.
Collapse
Affiliation(s)
- Deyi Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Lingying Zhou
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Xiaokun Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Zixiang Zhou
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Zehuan Huang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Ning Gao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| |
Collapse
|
3
|
Lenzen P, Hoch T, Condado-Morales I, Jacquat RPB, Frigerio R, Garlipp J, Torrini F, Gori A, Capasso Palmiero U, Boyman O, Arosio P. One-Step Immunoassay for Biomarker Quantification in Complex Mixtures Based on Phase-Separated Antifouling Coacervates. Anal Chem 2025; 97:4906-4914. [PMID: 40013662 PMCID: PMC11912134 DOI: 10.1021/acs.analchem.4c04661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
We develop and present a one-pot sandwich immunoassay (termed oneSTEP) to detect target biomolecules in complex biological fluids based on programmable zwitterionic polymer coacervates. We design these coacervates to selectively recruit target analytes with ultralow nonspecific adsorption. We show that dynamic compartmentalization combined with local target enrichment delivers a rapid and wash-free sandwich immunoassay with high specificity and a high signal-to-noise ratio. The fluorescence-based readout is performed using standard microscopy methods and flow cytometry. We demonstrate the capabilities of the oneSTEP assay by detecting complement component 5 in human serum and the spike protein of severe acute respiratory syndrome coronavirus 2 in artificial saliva with a limit of detection of 300 pM. The results highlight the potential of the oneSTEP sandwich immunoassay as complementary to bead-based approaches in high-throughput screening studies as well as clinical diagnostics.
Collapse
Affiliation(s)
- Philippe
S. Lenzen
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Tobias Hoch
- Department
of Immunology, University Hospital Zurich,
University of Zurich, 8091 Zurich, Switzerland
| | - Itzel Condado-Morales
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Raphaël P. B. Jacquat
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Roberto Frigerio
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
- Consiglio
Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche
“Giulio Natta” (SCITEC), 20133 Milan, Italy
| | - Jonathan Garlipp
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Francesca Torrini
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Alessandro Gori
- Consiglio
Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche
“Giulio Natta” (SCITEC), 20133 Milan, Italy
| | - Umberto Capasso Palmiero
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Onur Boyman
- Department
of Immunology, University Hospital Zurich,
University of Zurich, 8091 Zurich, Switzerland
- Faculty
of Medicine and Faculty of Science, University
of Zurich, 8091 Zurich, Switzerland
| | - Paolo Arosio
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Zhu M, Li Z, Li J, Lin Y, Chen H, Qiao X, Wang X, Liu X, Huang X. Organelle-like structural evolution of coacervate droplets induced by photopolymerization. Nat Commun 2025; 16:1783. [PMID: 39971992 PMCID: PMC11839979 DOI: 10.1038/s41467-025-57069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
The dynamic study of coacervates in vitro contributes our understanding of phase separation mechanisms in cells due to complex intracellular physiology. However, current researches mainly involve the use of exogenous auxiliary agents to form multi-compartmental coacervates with short-term stability. Herein, we report the endogenous self-organizing of multi-component coacervates (HA/PDDA/BSA/DMAEMA) induced by a dynamic stimulation process of protein-mediated photopolymerization. As polymerization proceeds, the cycled structural evolution and maturation from coacervate droplets into multi-compartmental coacervates, coacervate vesicles and coacervate droplets are revealed, which are driven by electrostatic interaction and osmotic pressure difference supported by dynamic and thermodynamic control. Specially, by regulating the light stimulation time, a type of multi-compartmental coacervates can be widely obtained with high structural stability over 300 days. Being a promising artificial cell model, it shows the special characteristic of compartmentalized encapsulation of substrates, efficiently improving enzymatic interfacial catalytic efficiency of organelle-like communication. Our study holds great potential for advancing the understanding of the structural evolution mechanism of membraneless organelles and provides an instructive technique for constructing multi-compartmental coacervates with long-term stability.
Collapse
Affiliation(s)
- Mei Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhenhui Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.
| |
Collapse
|
5
|
Song S, Ivanov T, Doan-Nguyen TP, da Silva LC, Xie J, Landfester K, Cao S. Synthetic Biomolecular Condensates: Phase-Separation Control, Cytomimetic Modelling and Emerging Biomedical Potential. Angew Chem Int Ed Engl 2025; 64:e202418431. [PMID: 39575859 DOI: 10.1002/anie.202418431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Indexed: 01/24/2025]
Abstract
Liquid-liquid phase separation towards the formation of synthetic coacervate droplets represents a rapidly advancing frontier in the fields of synthetic biology, material science, and biomedicine. These artificial constructures mimic the biophysical principles and dynamic features of natural biomolecular condensates that are pivotal for cellular regulation and organization. Via adapting biological concepts, synthetic condensates with dynamic phase-separation control provide crucial insights into the fundamental cell processes and regulation of complex biological pathways. They are increasingly designed with the ability to display more complex and ambitious cell-like features and behaviors, which offer innovative solutions for cytomimetic modeling and engineering active materials with sophisticated functions. In this minireview, we highlight recent advancements in the design and construction of synthetic coacervate droplets; including their biomimicry structure and organization to replicate life-like properties and behaviors, and the dynamic control towards engineering active coacervates. Moreover, we highlight the unique applications of synthetic coacervates as catalytic centers and promising delivery vehicles, so that these biomimicry assemblies can be translated into practical applications.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, 55128, Mainz, Germany
| | - Tsvetomir Ivanov
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Thao P Doan-Nguyen
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Lucas Caire da Silva
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, PR China
| | | | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
6
|
Fu J, Wang B, Zhu W, Xu Y, Qian X, Yang Y. Feedback-induced phase separation of hollow condensates to create biomimetic membraneless compartments. J Mater Chem B 2025; 13:1395-1402. [PMID: 39670461 DOI: 10.1039/d4tb01670j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Intracellular macromolecules have the ability to form membraneless compartments, such as vacuoles and hollow condensates, through liquid-liquid phase separation (LLPS) in order to adapt to changes in their environment. The development of artificial non-homogeneous compartments, such as multiphase hollow or multicavity condensates, has gained significant attention due to their potential to uncover the mechanisms underlying the formation of artificial condensates and biomolecular condensates. However, the complexity of design and construction has hindered progress, particularly in creating dynamic non-homogeneous compartments. In this study, we present a dynamic membraneless compartment using peptide-oligonucleotide conjugates derived from short elastin-like polypeptides (sELP-ONs), which undergo pH-mediated phase transition. Below pH 8.8, the microcompartment exists as microdroplets that transform into non-homogeneous hollow condensates above pH 8.8. Notably, these hollow condensates retain liquid properties and high molecular ordering, and effectively sequester guest molecules with a hollow condensed layer. Furthermore, our sELP-ON microcompartments exhibit a feedback-induced phase transition in response to environmental pH fluctuations generated by complex enzymatic reactions mimicking cellular metabolism, providing a novel dynamic model for creating biomimetic membraneless compartments.
Collapse
Affiliation(s)
- Jianmian Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Bin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Weiping Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yufang Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yangyang Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| |
Collapse
|
7
|
Wang H, Zhuang H, Tang W, Zhu J, Zhu W, Jiang L. Coacervate-pore complexes for selective molecular transport and dynamic reconfiguration. Nat Commun 2024; 15:10069. [PMID: 39567561 PMCID: PMC11579452 DOI: 10.1038/s41467-024-54510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
Despite surging interests on liquid-state coacervates and condensates, confinement within solid-state pores for selective permeation remains an unexplored area. Drawing inspiration from nuclear pore complexes (NPCs), we design and construct coacervate-pore complexes (CPCs) with regulatable permeability. We demonstrate universal CPC formation across 19 coacervate systems and 5 pore types, where capillarity drives the spontaneous imbibition of coacervate droplets into dispersed or interconnected pores. CPCs regulate through-pore transport by forming a fluidic network that modulates guest molecule permeability based on guest-coacervate affinity, mimicking NPC selectivity. While solid constructs of NPC mimicries are limited by spatial fixation of polymer chains, CPCs of a liquid nature feature dynamic healing and rapid phase transitioning for permeability recovery and regulation, respectively. Looking forward, we expect the current work to establish a basis for developing liquid-based NPC analogs using a large pool of synthetic coacervates and biomolecular condensates.
Collapse
Affiliation(s)
- Hao Wang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hui Zhuang
- Experimental Basis and Practical Training Center, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjing Tang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jun Zhu
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510640, China.
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
8
|
Yang B, Li C, Ren Y, Wang W, Zhang X, Han X. Construction of the Glycolysis Metabolic Pathway Inside an Artificial Cell for the Synthesis of Amino Acid and Its Reversible Deformation. J Am Chem Soc 2024; 146:21847-21858. [PMID: 39042264 DOI: 10.1021/jacs.4c06227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The bottom-up construction of artificial cells is beneficial for understanding cell working mechanisms. The glycolysis metabolism mimicry inside artificial cells is challenging. Herein, the glycolytic pathway (Entner-Doudoroff pathway in archaea) is reconstituted inside artificial cells. The glycolytic pathway comprising glucose dehydrogenase (GDH), gluconate dehydratase (GAD), and 2-keto-3-deoxygluconate aldolase (KDGA) converts glucose molecules to pyruvate molecules. Inside artificial cells, pyruvate molecules are further converted into alanine with the help of alanine dehydrogenase (AlaDH) to build a metabolic pathway for synthesizing amino acid. On the other hand, the pyruvate molecules from glycolysis stimulate the living mitochondria to produce ATP inside artificial cells, which further trigger actin monomers to polymerize to form actin filaments. With the addition of methylcellulose inside the artificial cell, the actin filaments form adjacent to the inner lipid bilayer, deforming the artificial cell from a spherical shape to a spindle shape. The spindle-shaped artificial cell reverses to a spherical shape by depolymerizing the actin filament upon laser irradiation. The glycolytic pathway and its further extension to produce amino acids (or ATP) inside artificial cells pave the path to build functional artificial cells with more complicated metabolic pathways.
Collapse
Affiliation(s)
- Boyu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Yongshuo Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Weichen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Xiangxiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| |
Collapse
|
9
|
Chowdhury P, Saha B, Bauri K, Sumerlin BS, De P. Hydrogen Bonding-Driven Self-Coacervation of Nonionic Homopolymers for Stimuli-Triggered Therapeutic Release. J Am Chem Soc 2024; 146:21664-21676. [PMID: 39058398 DOI: 10.1021/jacs.4c05624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Inspired by the unique functionalities of biomolecular membraneless organelles (MLOs) formed via liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) and nucleic acids, a great deal of effort has been devoted to devising phase-separated artificial subcellular dynamic compartments. These endeavors aim to unravel the molecular mechanism underlying the formation and intracellular delivery of susceptible macromolecular therapeutics. We report herein pyroglutamic acid (PGA)-based well-defined homopolymers featuring stimuli-tunable reversible self-coacervation ability. The polymer exhibits an upper critical solution temperature (UCST) transition in aqueous solutions and has the propensity to undergo cooling-induced LLPS, producing micrometer-sized liquid droplets. This phase separation phenomenon could be modulated by various factors, including polymer concentration, chain length, solution pH, and types and concentrations of different additives. These micrometer droplets are thermally reversible and encapsulate a wide variety of cargoes, including small hydrophobic fluorescent molecules, hydrophilic anticancer drugs, and fluorophore-labeled macromolecular proteins (bovine serum albumin and lysozyme). The payloads were released by exploiting the thermo/pH-mediated disassembly behavior of the coacervates, preserving the bioactivity of the sensitive therapeutics. This environmentally responsive, simple yet versatile artificial MLO model system will provide insights into the biomolecular nonionic condensates and pave the way for the de novo design of dynamic biomolecule depots.
Collapse
Affiliation(s)
- Pampa Chowdhury
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Kamal Bauri
- Department of Chemistry, Raghunathpur College, Raghunathpur, Purulia, West Bengal 723133, India
| | - Brent S Sumerlin
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
10
|
Morelli C, Faltova L, Capasso Palmiero U, Makasewicz K, Papp M, Jacquat RPB, Pinotsi D, Arosio P. RNA modulates hnRNPA1A amyloid formation mediated by biomolecular condensates. Nat Chem 2024; 16:1052-1061. [PMID: 38472406 PMCID: PMC11230912 DOI: 10.1038/s41557-024-01467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
Several RNA binding proteins involved in membraneless organelles can form pathological amyloids associated with neurodegenerative diseases, but the mechanisms of how this aggregation is modulated remain elusive. Here we investigate how heterotypic protein-RNA interactions modulate the condensation and the liquid to amyloid transition of hnRNPA1A, a protein involved in amyothropic lateral sclerosis. In the absence of RNA, formation of condensates promotes hnRNPA1A aggregation and fibrils are localized at the interface of the condensates. Addition of RNA modulates the soluble to amyloid transition of hnRNPA1A according to different pathways depending on RNA/protein stoichiometry. At low RNA concentrations, RNA promotes both condensation and amyloid formation, and the catalytic effect of RNA adds to the role of the interface between the dense and dilute phases. At higher RNA concentrations, condensation is suppressed according to re-entrant phase behaviour but formation of hnRNPA1A amyloids is observed over longer incubation times. Our findings show how heterotypic nucleic acid-protein interactions affect the kinetics and molecular pathways of amyloid formation.
Collapse
Affiliation(s)
- Chiara Morelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zürich, Switzerland
| | - Lenka Faltova
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zürich, Switzerland
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zürich, Switzerland
| | - Katarzyna Makasewicz
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zürich, Switzerland
| | - Marcell Papp
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zürich, Switzerland
| | - Raphaël P B Jacquat
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zürich, Switzerland
| | - Dorothea Pinotsi
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Zürich, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
11
|
Lin Z, Beneyton T, Baret JC, Martin N. Coacervate Droplets for Synthetic Cells. SMALL METHODS 2023; 7:e2300496. [PMID: 37462244 DOI: 10.1002/smtd.202300496] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Indexed: 12/24/2023]
Abstract
The design and construction of synthetic cells - human-made microcompartments that mimic features of living cells - have experienced a real boom in the past decade. While many efforts have been geared toward assembling membrane-bounded compartments, coacervate droplets produced by liquid-liquid phase separation have emerged as an alternative membrane-free compartmentalization paradigm. Here, the dual role of coacervate droplets in synthetic cell research is discussed: encapsulated within membrane-enclosed compartments, coacervates act as surrogates of membraneless organelles ubiquitously found in living cells; alternatively, they can be viewed as crowded cytosol-like chassis for constructing integrated synthetic cells. After introducing key concepts of coacervation and illustrating the chemical diversity of coacervate systems, their physicochemical properties and resulting bioinspired functions are emphasized. Moving from suspensions of free floating coacervates, the two nascent roles of these droplets in synthetic cell research are highlighted: organelle-like modules and cytosol-like templates. Building the discussion on recent studies from the literature, the potential of coacervate droplets to assemble integrated synthetic cells capable of multiple life-inspired functions is showcased. Future challenges that are still to be tackled in the field are finally discussed.
Collapse
Affiliation(s)
- Zi Lin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Thomas Beneyton
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Jean-Christophe Baret
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Nicolas Martin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| |
Collapse
|
12
|
Liu X, Mokarizadeh AH, Narayanan A, Mane P, Pandit A, Tseng YM, Tsige M, Joy A. Multiphasic Coacervates Assembled by Hydrogen Bonding and Hydrophobic Interactions. J Am Chem Soc 2023; 145:23109-23120. [PMID: 37820374 DOI: 10.1021/jacs.3c06675] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Coacervation has emerged as a prevalent mechanism to compartmentalize biomolecules in living cells. Synthetic coacervates help in understanding the assembly process and mimic the functions of biological coacervates as simplified artificial systems. Though the molecular mechanism and mesoscopic properties of coacervates formed from charged coacervates have been well investigated, the details of the assembly and stabilization of nonionic coacervates remain largely unknown. Here, we describe a library of coacervate-forming polyesteramides and show that the water-tertiary amide bridging hydrogen bonds and hydrophobic interactions stabilize these nonionic, single-component coacervates. Analogous to intracellular biological coacervates, these coacervates exhibit "liquid-like" features with low viscosity and low interfacial energy, and form coacervates with as few as five repeating units. By controlling the temperature and engineering the molar ratio between hydrophobic interaction sites and bridging hydrogen bonding sites, we demonstrate the tuneability of the viscosity and interfacial tension of polyesteramide-based coacervates. Taking advantage of the differences in the mesoscopic properties of these nonionic coacervates, we engineered multiphasic coacervates with core-shell architectures similar to those of intracellular biological coacervates, such as nucleoli and stress granule-p-body complexes. The multiphasic structures produced from these synthetic nonionic polyesteramide coacervates may serve as a valuable tool for investigating physicochemical principles deployed by living cells to spatiotemporally control cargo partitioning, biochemical reaction rates, and interorganellar signal transport.
Collapse
Affiliation(s)
- Xinhao Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abdol Hadi Mokarizadeh
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Prathamesh Mane
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Avanti Pandit
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yen-Ming Tseng
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
13
|
Zhang L, Wang J, Fan Y, Wang Y. Coacervate-Enhanced Deposition of Sprayed Pesticide on Hydrophobic/Superhydrophobic Abaxial Leaf Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300270. [PMID: 37078792 PMCID: PMC10288258 DOI: 10.1002/advs.202300270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Deposition of high-speed droplets on inverted surfaces is important to many fundamental scientific principles and technological applications. For example, in pesticide spraying to target pests and diseases emerging on abaxial side of leaves, the downward rebound and gravity of the droplets make the deposition exceedingly difficult on hydrophobic/superhydrophobic leaf underside, causing serious pesticide waste and environmental pollution. Here, a series of bile salt/cationic surfactant coacervates are developed to attain efficient deposition on the inverted surfaces of diverse hydrophobic/superhydrophobic characteristics. The coacervates have abundant nanoscale hydrophilic/hydrophobic domains and intrinsic network-like microstructures, which endow them with efficient encapsulation of various solutes and strong adhesion to surface micro/nanostructures. Thus, the coacervates with low viscosity achieve high-efficient deposition on superhydrophobic abaxial-side of tomato leaves and inverted artificial surfaces with a water contact angle from 170° to 124°, much better than that of commercial agricultural adjuvants. Intriguingly, the compactness of network-like structures dominantly controls adhesion force and deposition efficiency, and the most crowded one leads to the most efficient deposition. The tunable coacervates can help comprehensively understand the complex dynamic deposition, and provide innovative carriers for depositing sprayed pesticides on abaxial and adaxial sides of leaves, thereby potentially reducing pesticide use and promoting sustainable agriculture.
Collapse
Affiliation(s)
- Liangchen Zhang
- CAS Key Laboratory of Colloid Interface and Chemical ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesBeijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100190P. R. China
| | - Jie Wang
- CAS Key Laboratory of Colloid Interface and Chemical ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesBeijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100190P. R. China
| | - Yaxun Fan
- CAS Key Laboratory of Colloid Interface and Chemical ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesBeijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid Interface and Chemical ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesBeijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100190P. R. China
| |
Collapse
|
14
|
Yang S, Yu H, Xu X, Yang T, Wei Y, Zan R, Zhang X, Ma Q, Shum HC, Song Y. AIEgen-Conjugated Phase-Separating Peptides Illuminate Intracellular RNA through Coacervation-Induced Emission. ACS NANO 2023; 17:8195-8203. [PMID: 37093110 DOI: 10.1021/acsnano.2c12072] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Intrinsically disordered peptides drive dynamic liquid-liquid phase separation (LLPS) in membraneless organelles and encode cellular functions in response to environmental stimuli. Engineering design on phase-separating peptides (PSPs) holds great promise for bioimaging, vaccine delivery, and disease theranostics. However, recombinant PSPs are devoid of robust luminogen or suitable cell permeability required for intracellular applications. Here, we synthesize a peptide-based RNA sensor by covalently connecting tetraphenylethylene (TPE), an aggregation-induced emission luminogen (AIEgens), to tandem peptide repeats of (RRASL)n (n = 1, 2, 3). Interestingly, the conjugation of TPE luminogen promotes liquid-liquid phase separation of the peptide repeats, and the minimum coacervation concentration (MCC) of TPE-(RRASL)n is decreased by an order of magnitude, compared to that of the untagged, TPE-free counterparts. Moreover, the luminescence of TPE-(RRASL)n is enhanced by up to 700-fold with increasing RNA concentration, which is attributed to the constricted rotation of the TPE moiety as a result of peptide/RNA coacervates within the droplet phase. Besides, at concentrations above MCC, TPE-(RRASL)n can efficiently penetrate through human gallbladder carcinoma cells (SGC-996), translocate into the cell nucleus, and colocalize with intracellular RNA. These observations suggest that AIEgen-conjugated PSPs can be used as droplet-based biosensors for intracellular RNA imaging through a regime of coacervation-induced emission.
Collapse
Affiliation(s)
- Shi Yang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Yu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiuli Xu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ting Yang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Wei
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Zan
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Budkov YA, Brandyshev PE, Kalikin NN. Theory of self-coacervation in semi-dilute and concentrated zwitterionic polymer solutions. SOFT MATTER 2023; 19:3281-3289. [PMID: 37089119 DOI: 10.1039/d3sm00140g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Based on the random phase approximation, we develop a molecular theory of self-coacervation in zwitterionic polymer solutions. We show that the interplay between the volume interactions of the monomeric units and electrostatic correlations of charged groups on a polymer backbone can result in liquid-liquid phase separation (self-coacervation). We analyse the behavior of the coacervate phase polymer concentration depending on the electrostatic interaction strength - the ratio of the Bjerrum length to the bond length of the chain. We establish that in a wide range of polymer concentration values - from a semi-dilute to a rather concentrated solution - the chain connectivity and excluded volume interaction of the monomeric units have an extremely weak effect on the contribution of the electrostatic interactions of the dipolar monomeric units to the total free energy. We show that for rather weak electrostatic interactions, the electrostatic correlations manifest themselves as Keesom interactions of point-like freely rotating dipoles (Keesom regime), while in the region of strong electrostatic interactions the electrostatic free energy is described by the Debye-Hückel limiting law (Debye regime). We show that for real zwitterionic coacervates the Keesom regime is realized only for sufficiently small polymer concentrations of the coacervate phase, while the Debye regime is approximately realized for rather dense coacervates. Using the mean-field variant of the density functional theory, we calculate the surface tension (surface free energy) of the "coacervate-solvent" interface as a function of the bulk polymer concentration. Obtained results can be used to estimate the parameters of the polymer chains needed for practical applications such as drug encapsulation and delivery, as well as the design of adhesive materials.
Collapse
Affiliation(s)
- Yury A Budkov
- School of Applied Mathematics, HSE University, Tallinskaya st. 34, 123458 Moscow, Russia.
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya st. 1, Ivanovo, 153045, Russia
| | - Petr E Brandyshev
- School of Applied Mathematics, HSE University, Tallinskaya st. 34, 123458 Moscow, Russia.
| | - Nikolai N Kalikin
- School of Applied Mathematics, HSE University, Tallinskaya st. 34, 123458 Moscow, Russia.
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya st. 1, Ivanovo, 153045, Russia
| |
Collapse
|
16
|
Liu W, Lupfer C, Samanta A, Sarkar A, Walther A. Switchable Hydrophobic Pockets in DNA Protocells Enhance Chemical Conversion. J Am Chem Soc 2023; 145:7090-7094. [PMID: 36971596 DOI: 10.1021/jacs.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Synthetic cell models help us understand living cells and the origin of life. Key aspects of living cells are crowded interiors where secondary structures, such as the cytoskeleton and membraneless organelles/condensates, can form. These can form dynamically and serve structural or functional purposes, such as protection from heat shock or as crucibles for various biochemical reactions. Inspired by these phenomena, we introduce a crowded all-DNA protocell and encapsulate a temperature-switchable DNA-b-polymer block copolymer, in which the synthetic polymer phase-segregates at elevated temperatures. We find that thermoreversible phase segregation of the synthetic polymer occurs via bicontinuous phase separation, resulting in artificial organelle structures that can reorient into larger domains depending on the viscoelastic properties of the protocell interior. Fluorescent sensors confirm the formation of hydrophobic compartments, which enhance the reactivity of bimolecular reactions. This study leverages the strengths of biological and synthetic polymers to construct advanced biohybrid artificial cells that provide insights into phase segregation under crowded conditions and the formation of organelles and microreactors in response to environmental stress.
Collapse
|
17
|
Cook A, Novosedlik S, van Hest JCM. Complex Coacervate Materials as Artificial Cells. ACCOUNTS OF MATERIALS RESEARCH 2023; 4:287-298. [PMID: 37009061 PMCID: PMC10043873 DOI: 10.1021/accountsmr.2c00239] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/07/2023] [Indexed: 05/19/2023]
Abstract
Cells have evolved to be self-sustaining compartmentalized systems that consist of many thousands of biomolecules and metabolites interacting in complex cycles and reaction networks. Numerous subtle intricacies of these self-assembled structures are still largely unknown. The importance of liquid-liquid phase separation (both membraneless and membrane bound) is, however, recognized as playing an important role in achieving biological function that is controlled in time and space. Reconstituting biochemical reactions in vitro has been a success of the last decades, for example, establishment of the minimal set of enzymes and nutrients able to replicate cellular activities like the in vitro transcription translation of genes to proteins. Further than this though, artificial cell research has the aim of combining synthetic materials and nonliving macromolecules into ordered assemblies with the ability to carry out more complex and ambitious cell-like functions. These activities can provide insights into fundamental cell processes in simplified and idealized systems but could also have an applied impact in synthetic biology and biotechnology in the future. To date, strategies for the bottom-up fabrication of micrometer scale life-like artificial cells have included stabilized water-in-oil droplets, giant unilamellar vesicles (GUV's), hydrogels, and complex coacervates. Water-in-oil droplets are a valuable and easy to produce model system for studying cell-like processes; however, the lack of a crowded interior can limit these artificial cells in mimicking life more closely. Similarly membrane stabilized vesicles, such as GUV's, have the additional membrane feature of cells but still lack a macromolecularly crowded cytoplasm. Hydrogel-based artificial cells have a macromolecularly dense interior (although cross-linked) that better mimics cells, in addition to mechanical properties more similar to the viscoelasticity seen in cells but could be seen as being not dynamic in nature and limiting to the diffusion of biomolecules. On the other hand, liquid-liquid phase separated complex coacervates are an ideal platform for artificial cells as they can most accurately mimic the crowded, viscous, highly charged nature of the eukaryotic cytoplasm. Other important key features that researchers in the field target include stabilizing semipermeable membranes, compartmentalization, information transfer/communication, motility, and metabolism/growth. In this Account, we will briefly cover aspects of coacervation theory and then outline key cases of synthetic coacervate materials used as artificial cells (ranging from polypeptides, modified polysaccharides, polyacrylates, and polymethacrylates, and allyl polymers), finishing with envisioned opportunities and potential applications for coacervate artificial cells moving forward.
Collapse
Affiliation(s)
- Alexander
B. Cook
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Helix, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Sebastian Novosedlik
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Helix, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jan C. M. van Hest
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Helix, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
18
|
Han X, Tan S, Jin R, Jiang L, Heng L. Noncontact Charge Shielding Knife for Liquid Microfluidics. J Am Chem Soc 2023; 145:6420-6427. [PMID: 36898132 DOI: 10.1021/jacs.2c13674] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Multibehavioral droplet manipulation in a precise and programmed manner is crucial for stoichiometry, biological virus detection, and intelligent lab-on-a-chip. Apart from fundamental navigation, merging, splitting, and dispensing of the droplets are required for being combined in a microfluidic chip as well. Yet, existing active manipulations including strategies from light to magnetism are arduous to use to split liquids on superwetting surfaces without mass loss and contamination, because of the high cohesion and Coanda effect. Here, we demonstrate a charge shielding mechanism (CSM) for platforms to integrate with a series of functions. In response to attachment of shielding layers from the bottom, the instantaneous and repeatable change of local potential on our platform achieves the desired loss-free manipulation of droplets, with a wide-ranging surface tension from 25.7 mN m-1 to 87.6 mN m-1, functioning as a noncontact air knife to cleave, guide, rotate, and collect reactive monomers on demand. With further refinement of the surface circuit, the droplets, just as the electron, can be programmed to be transported directionally at extremely high speeds of 100 mm s-1. This new generation of microfluidics is expected to be applied in the field of bioanalysis, chemical synthesis, and diagnostic kit.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education Department, School of Chemistry, Beihang University, Beijing 100083, China
| | - Shengda Tan
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education Department, School of Chemistry, Beihang University, Beijing 100083, China
| | - Rongyu Jin
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education Department, School of Chemistry, Beihang University, Beijing 100083, China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education Department, School of Chemistry, Beihang University, Beijing 100083, China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liping Heng
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education Department, School of Chemistry, Beihang University, Beijing 100083, China
| |
Collapse
|
19
|
Baruch Leshem A, Sloan-Dennison S, Massarano T, Ben-David S, Graham D, Faulds K, Gottlieb HE, Chill JH, Lampel A. Biomolecular condensates formed by designer minimalistic peptides. Nat Commun 2023; 14:421. [PMID: 36702825 PMCID: PMC9879991 DOI: 10.1038/s41467-023-36060-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Inspired by the role of intracellular liquid-liquid phase separation (LLPS) in formation of membraneless organelles, there is great interest in developing dynamic compartments formed by LLPS of intrinsically disordered proteins (IDPs) or short peptides. However, the molecular mechanisms underlying the formation of biomolecular condensates have not been fully elucidated, rendering on-demand design of synthetic condensates with tailored physico-chemical functionalities a significant challenge. To address this need, here we design a library of LLPS-promoting peptide building blocks composed of various assembly domains. We show that the LLPS propensity, dynamics, and encapsulation efficiency of compartments can be tuned by changes to the peptide composition. Specifically, with the aid of Raman and NMR spectroscopy, we show that interactions between arginine and aromatic amino acids underlie droplet formation, and that both intra- and intermolecular interactions dictate droplet dynamics. The resulting sequence-structure-function correlation could support the future development of compartments for a variety of applications.
Collapse
Affiliation(s)
- Avigail Baruch Leshem
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Tlalit Massarano
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shavit Ben-David
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Hugo E Gottlieb
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Jordan H Chill
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Ayala Lampel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel. .,Center for Nanoscience and Nanotechnology Tel Aviv University, Tel Aviv, 69978, Israel. .,Sagol Center for Regenerative Biotechnology Tel Aviv University, Tel Aviv, 69978, Israel. .,Center for the Physics and Chemistry of Living Systems Tel Aviv University, Tel Aviv 69978, Israel, Tel Aviv, 69978, Israel.
| |
Collapse
|
20
|
Paganini C, Capasso Palmiero U, Picciotto S, Molinelli A, Porello I, Adamo G, Manno M, Bongiovanni A, Arosio P. High-Yield Separation of Extracellular Vesicles Using Programmable Zwitterionic Coacervates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204736. [PMID: 36367966 DOI: 10.1002/smll.202204736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Programmable coacervates based on zwitterionic polymers are designed as dynamic materials for ion exchange bioseparation. These coacervates are proposed as promising materials for the purification of soft nanoparticles such as liposomes and extracellular vesicles (EVs). It is shown that the stimulus-responsiveness of the coacervates and the recruitment of desired molecules can be independently programmed by polymer design. Moreover, the polymeric coacervates can recruit and release intact liposomes, human EVs, and nanoalgosomes in high yields and separate vesicles from different types of impurities, including proteins and nucleic acids. This approach combines the speed and simplicity of precipitation methods and the programmability of chromatography with the gentleness of aqueous two-phase separation, thereby guaranteeing product stability. This material represents a promising alternative for providing a low-shear, gentle, and selective purification method for EVs.
Collapse
Affiliation(s)
- Carolina Paganini
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Sabrina Picciotto
- Institute for Research and Biomedical Innovation, National Research Council of Italy, Via Ugo la Malfa 153, Palermo, 90146, Italy
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, 90146, Italy
| | - Alessandro Molinelli
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Ilaria Porello
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Giorgia Adamo
- Institute for Research and Biomedical Innovation, National Research Council of Italy, Via Ugo la Malfa 153, Palermo, 90146, Italy
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, Via Ugo la Malfa 153, Palermo, 90146, Italy
| | - Antonella Bongiovanni
- Institute for Research and Biomedical Innovation, National Research Council of Italy, Via Ugo la Malfa 153, Palermo, 90146, Italy
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| |
Collapse
|
21
|
Villois A, Capasso Palmiero U, Mathur P, Perone G, Schneider T, Li L, Salvalaglio M, deMello A, Stavrakis S, Arosio P. Droplet Microfluidics for the Label-Free Extraction of Complete Phase Diagrams and Kinetics of Liquid-Liquid Phase Separation in Finite Volumes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202606. [PMID: 36180409 DOI: 10.1002/smll.202202606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Liquid-liquid phase separation of polymer and protein solutions is central in many areas of biology and material sciences. Here, an experimental and theoretical framework is provided to investigate the thermodynamics and kinetics of liquid-liquid phase separation in volumes comparable to cells. The strategy leverages droplet microfluidics to accurately measure the volume of the dense phase generated by liquid-liquid phase separation of solutions confined in micro-sized compartments. It is shown that the measurement of the volume fraction of the dense phase at different temperatures allows the evaluation of the binodal lines that determine the coexistence region of the two phases in the temperature-concentration phase diagram. By applying a thermodynamic model of phase separation in finite volumes, it is further shown that the platform can predict and validate kinetic barriers associated with the formation of a dense droplet in a parent dilute phase, therefore connecting thermodynamics and kinetics of liquid-liquid phase separation.
Collapse
Affiliation(s)
- Alessia Villois
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Prerit Mathur
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Gaia Perone
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Timo Schneider
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Lunna Li
- Thomas Young Centre and Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Andrew deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Stavros Stavrakis
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|