1
|
Mondal S, Basak D. Excitonic Rydberg States in a Trilayer to Monolayer H 2-Aided CVD-Grown Large-Area MoS 2 Film with Excellent UV to Visible Broad Band Photodetection Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2940-2953. [PMID: 38176105 DOI: 10.1021/acsami.3c15655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The diverse nature of optoelectronic properties of few-layer or monolayer MoS2 is generally dominated by A and B excitons. Occasionally, strong Coulombic interactions within the 2D monolayer led to the creation of hydrogen-like Rydberg states of excitons in MoS2 similar to other 2D monolayers. In this paper, a simple process is used to convert trilayer MoS2 films to a monolayer by introducing H2 gas during chemical vapor deposition. Remarkably, alongside the usual A, B excitons, and A- trion, the appearance of the Rydberg states is evidenced by photoluminescence spectra even at room temperature; also, there is an increase in their areal percentage with an increase in H2 content. The s-type excited Rydberg states up to the fourth order (n = 5) and third order (n = 4) of A and B excitons, respectively, have been probed from the photoluminescence spectra at 93 K. Unprecedentedly, the first-order derivative of room-temperature photocurrent spectrum reveals the Rydberg states concurrently and elaboratively. Furthermore, the large-area MoS2 films exhibit photoresponse in a broad UV to visible region with excellent photosensitivity (∼102) toward both UV and visible lights. Not only does this provide a profound understanding of the excitonic Rydberg states but also highlights the considerable potential of large-area monolayer MoS2 overcoming the difficulty of tiny flake-related 2D device endeavors.
Collapse
Affiliation(s)
- Sourav Mondal
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Durga Basak
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
2
|
Shi J, Feng S, He P, Fu Y, Zhang X. Nonlinear Optical Properties from Engineered 2D Materials. Molecules 2023; 28:6737. [PMID: 37764513 PMCID: PMC10535766 DOI: 10.3390/molecules28186737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Two-dimensional (2D) materials with atomic thickness, tunable light-matter interaction, and significant nonlinear susceptibility are emerging as potential candidates for new-generation optoelectronic devices. In this review, we briefly cover the recent research development of typical nonlinear optic (NLO) processes including second harmonic generation (SHG), third harmonic generation (THG), as well as two-photon photoluminescence (2PPL) of 2D materials. Nonlinear light-matter interaction in atomically thin 2D materials is important for both fundamental research and future optoelectronic devices. The NLO performance of 2D materials can be greatly modulated with methods such as carrier injection tuning, strain tuning, artificially stacking, as well as plasmonic resonant enhancement. This review will discuss various nonlinear optical processes and corresponding tuning methods and propose its potential NLO application of 2D materials.
Collapse
Affiliation(s)
- Jia Shi
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, China; (S.F.); (Y.F.); (X.Z.)
| | - Shifeng Feng
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, China; (S.F.); (Y.F.); (X.Z.)
| | - Peng He
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore;
| | - Yulan Fu
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, China; (S.F.); (Y.F.); (X.Z.)
| | - Xinping Zhang
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, China; (S.F.); (Y.F.); (X.Z.)
| |
Collapse
|
3
|
Wang Y, Iyikanat F, Bai X, Hu X, Das S, Dai Y, Zhang Y, Du L, Li S, Lipsanen H, García de Abajo FJ, Sun Z. Optical Control of High-Harmonic Generation at the Atomic Thickness. NANO LETTERS 2022; 22:8455-8462. [PMID: 36305718 PMCID: PMC9650768 DOI: 10.1021/acs.nanolett.2c02711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Indexed: 06/16/2023]
Abstract
High-harmonic generation (HHG), an extreme nonlinear optical phenomenon beyond the perturbation regime, is of great significance for various potential applications, such as high-energy ultrashort pulse generation with outstanding spatiotemporal coherence. However, efficient active control of HHG is still challenging due to the weak light-matter interaction displayed by currently known materials. Here, we demonstrate optically controlled HHG in monolayer semiconductors via the engineering of interband polarization. We find that HHG can be efficiently controlled in the excitonic spectral region with modulation depths up to 95% and ultrafast response speeds of several picoseconds. Quantitative time-domain theory of the nonlinear optical susceptibilities in monolayer semiconductors further corroborates these experimental observations. Our demonstration not only offers an in-depth understanding of HHG but also provides an effective approach toward active optical devices for strong-field physics and extreme nonlinear optics.
Collapse
Affiliation(s)
- Yadong Wang
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo02150, Finland
| | - Fadil Iyikanat
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, 08860Castelldefels, Barcelona, Spain
| | - Xueyin Bai
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo02150, Finland
| | - Xuerong Hu
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo02150, Finland
- International
Cooperation Base of Photoelectric Technology and Functional Materials,
and Institute of Photonics and Photon-Technology, Northwest University, Xi’an710069, China
| | - Susobhan Das
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo02150, Finland
| | - Yunyun Dai
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo02150, Finland
| | - Yi Zhang
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo02150, Finland
| | - Luojun Du
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo02150, Finland
| | - Shisheng Li
- WPI
International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba305-0044, Japan
| | - Harri Lipsanen
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo02150, Finland
| | - F. Javier García de Abajo
- ICFO-Institut
de Ciencies Fotoniques, The Barcelona Institute
of Science and Technology, 08860Castelldefels, Barcelona, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010Barcelona, Spain
| | - Zhipei Sun
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo02150, Finland
- QTF Centre
of Excellence, Department of Applied Physics, Aalto University, Espoo02150, Finland
| |
Collapse
|
4
|
Shi J, Lin Z, Zhu Z, Zhou J, Xu GQ, Xu QH. Probing Excitonic Rydberg States by Plasmon Enhanced Nonlinear Optical Spectroscopy in Monolayer WS 2 at Room Temperature. ACS NANO 2022; 16:15862-15872. [PMID: 36169603 DOI: 10.1021/acsnano.2c02276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The optoelectronic properties of two-dimensional (2D) transition metal dichalcogenide (TMDC) monolayers such as WS2 are largely dominated by excitons due to strong Coulomb interactions in these 2D confined monolayers, which lead to formation of Rydberg-like excitonic states below the free quasiparticle band gap. The precise knowledge of high order Rydberg excitonic states is of great importance for both fundamental understanding such as many-electron effects and device applications such as optical switching and quantum process information. Bright excitonic states could be probed by linear optical spectroscopy, while probing dark excitonic states generally requires nonlinear optical (NLO) spectroscopy. Conventional optical methods for probing high-order Rydberg excitonic states were generally performed at cryogenic temperatures to ensure enough signal-to-noise ratio (SNR) and narrow line width. Here we have designed a hybrid nanostructure of monolayer WS2 integrated with a plasmonic cavity and investigated their NLO properties at the single particle level. Giant enhancement in NLO responses, stronger excitonic resonance effects, and narrowed line widths of NLO excitation spectra were observed when monolayer WS2 was placed in our carefully designed plasmonic cavity. Optimum enhancement of 1000-, 3000-, and 3800-fold were achieved for two-photon photoluminescence (2PPL), second harmonic generation (SHG), and third-harmonic generation (THG), respectively, in the optimized cavity structure. The line width of SHG excitation spectra was reduced from 43 down to 15 meV. Plasmon enhanced NLO responses brought improved SNR and spectral resolution, which allowed us to distinguish discrete excitonic states with small energy differences at room temperature. By using three complementary NLO techniques in combination with linear optical spectroscopy, energies of Rydberg excitonic states of A (1s, 2s, 2p, 3s, 3p, 4s), B (1s), and C and D excitons of monolayer WS2 have been accurately determined, which allow us to determine exciton binding energy and quasiparticle bandgap. It was interesting to find that the 2p lies 30 meV below 2s, which lends strong support to the theoretical prediction of nonlocal dielectric screening effects based on a non-hydrogenic model. Our results show that plasmon enhanced NLO spectroscopy could serve as a general method for probing high order Rydberg excitonic states of 2D materials.
Collapse
Affiliation(s)
- Jia Shi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zexin Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ziyu Zhu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jiadong Zhou
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Guo Qin Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Qing-Hua Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| |
Collapse
|
5
|
Zhang Y, Bai X, Arias Muñoz J, Dai Y, Das S, Wang Y, Sun Z. Coherent modulation of chiral nonlinear optics with crystal symmetry. LIGHT, SCIENCE & APPLICATIONS 2022; 11:216. [PMID: 35803908 PMCID: PMC9270472 DOI: 10.1038/s41377-022-00915-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Light modulation is of paramount importance for photonics and optoelectronics. Here we report all-optical coherent modulation of third-harmonic generation (THG) with chiral light via the symmetry enabled polarization selectivity. The concept is experimentally validated in monolayer materials (MoS2) with modulation depth approaching ~100%, ultra-fast modulation speed (<~130 fs), and wavelength-independence features. Moreover, the power and polarization of the incident optical beams can be used to tune the output chirality and modulation performance. Major performance of our demonstration reaches the fundamental limits of optical modulation: near-unity modulation depth, instantaneous speed (ultra-fast coherent interaction), compact footprint (atomic thickness), and unlimited operation bandwidth, which hold an ideal optical modulation solution for emerging and future nonlinear optical applications (e.g., interconnection, imaging, computing, and quantum technologies).
Collapse
Affiliation(s)
- Yi Zhang
- Department of Electronics and Nanoengineering, Aalto University, 02150, Espoo, Finland.
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, 02150, Espoo, Finland.
| | - Xueyin Bai
- Department of Electronics and Nanoengineering, Aalto University, 02150, Espoo, Finland
| | - Juan Arias Muñoz
- Department of Electronics and Nanoengineering, Aalto University, 02150, Espoo, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, 02150, Espoo, Finland
| | - Yunyun Dai
- Department of Electronics and Nanoengineering, Aalto University, 02150, Espoo, Finland
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, 100081, Beijing, China
| | - Susobhan Das
- Department of Electronics and Nanoengineering, Aalto University, 02150, Espoo, Finland
| | - Yadong Wang
- Department of Electronics and Nanoengineering, Aalto University, 02150, Espoo, Finland.
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, 02150, Espoo, Finland.
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, 02150, Espoo, Finland.
| |
Collapse
|