1
|
Luo W, Ren L, Hu B, Zhang H, Yang Z, Jin L, Zhang D. Recent Development of Fibrous Hydrogels: Properties, Applications and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408657. [PMID: 39530645 PMCID: PMC11714238 DOI: 10.1002/advs.202408657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Fibrous hydrogels (FGs), characterized by a 3D network structure made from prefabricated fibers, fibrils and polymeric materials, have emerged as significant materials in numerous fields. However, the challenge of balancing mechanical properties and functions hinders their further development. This article reviews the main advantages of FGs, including enhanced mechanical properties, high conductivity, high antimicrobial and anti-inflammatory properties, stimulus responsiveness, and an extracellular matrix (ECM)-like structure. It also discusses the influence of assembly methods, such as fiber cross-linking, interfacial treatments of fibers with hydrogel matrices, and supramolecular assembly, on the diverse functionalities of FGs. Furthermore, the mechanisms for improving the performance of the above five aspects are discussed, such as creating ion carrier channels for conductivity, in situ gelation of drugs to enhance antibacterial and anti-inflammatory properties, and entanglement and hydrophobic interactions between fibers, resulting in ECM-like structured FGs. In addition, this review addresses the application of FGs in sensors, dressings, and tissue scaffolds based on the synergistic effects of optimizing the performance. Finally, challenges and future applications of FGs are discussed, providing a theoretical foundation and new insights for the design and application of cutting-edge FGs.
Collapse
Affiliation(s)
- Wen Luo
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Liujiao Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Bin Hu
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Huali Zhang
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Research Institute of Xi'an Jiaotong UniversityHangzhou311200P. R. China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Di Zhang
- Department of General Surgery (Colorectal Surgery)Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyBiomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655P. R. China
| |
Collapse
|
2
|
Wang C, Yang Y, Zhang X, Wang P, Bi X, Li H, Wang ZL, Cheng T. Ultra-High Sensitivity Real-Time Monitoring of Landslide Surface Deformation via Triboelectric Nanogenerator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410471. [PMID: 39439163 DOI: 10.1002/adma.202410471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Monitoring surface deformation is crucial for the early warning of landslides, facilitating timely preventive measures. Triboelectric nanogenerator (TENG) demonstrates great potential for self-powered distributed monitoring in remote and power-scarce landslide areas. However, landslides deform typically at a rate of a few millimeters per day (mm d-1), making it challenging for TENG to directly monitor the deformation process. Herein, a method for monitoring surface deformation of landslides by constructing an ultra-low-speed triboelectric displacement sensor (US-TDS) is reported. Utilizing a force storage-release device and an accelerator, the US-TDS can produce obvious sensing signals at a linear input speed of 4.32 mm d-1. The coefficient of determination (R2) for the fitting curve of the pulse signals within the speed range of 21.6 to 129.6 mm d-1 reaches 0.999. Moreover, US-TDS can detect deformation displacement as small as 0.0382 mm. The stability of US-TDS displacement measurements is confirmed at a speed of 108 mm d-1, with relative errors under 1%. Ultimately, a real-time monitoring and early warning system for landslide surface deformation is constructed and verified through a combination of indoor simulations and outdoor experiments. This work provides a feasible solution for the scientific monitoring and early warning of the landslide development.
Collapse
Affiliation(s)
- Chao Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Yu Yang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Xiaosong Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Xiangzhuang Bi
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Hengyu Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangzhou Institute of Blue Energy, Guangzhou, 510555, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Guangzhou Institute of Blue Energy, Guangzhou, 510555, China
| | - Tinghai Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangzhou Institute of Blue Energy, Guangzhou, 510555, China
| |
Collapse
|
3
|
Yu N, Cheng B, Liu Y, Wu W, Li RKY, Liang Z, Cheng F, Zhao H. High-Strength and High-Toughness Supramolecular Materials for Self-Healing Triboelectric Nanogenerator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405700. [PMID: 39165189 DOI: 10.1002/smll.202405700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Indexed: 08/22/2024]
Abstract
The development of self-healing materials provides a new opportunity and challenge for advancing triboelectric nanogenerators (TENGs). However, the low strength and low toughness of self-healing triboelectric materials often result in the deformation or breakage of TENG under high mechanical loads, thereby limiting their potential applications. Herein, a new strategy for fabricating self-healing triboelectric materials is reported, which introduces cross-linking networks with hydrogen bonds and metal coordination bonds. The desired high performance can be achieved by simply adjusting the molar ratio of the metal to the ligand. When the molar ratio is 1:2, the tensile strength, toughness, and elongation at break of the material reached 13.7 MPa, 76.9 MJ m-3, and 1321%, respectively. Furthermore, its self-healing efficiency can reach 74% at 70 °C in 6 h. Working in contact-separation mode, the electrical output can reach 164 V, 18.2 µA, 57.5 nC, with a maximum power density of 2.54 W m-2. Notably, even if it is sheared, the electrical output performances of TENG can be completely recovered to the original state. In addition, the developed TENG exhibits excellent output stability over 10 000 contact separation cycles. This study presents a promising approach for the development of stretchable smart generators.
Collapse
Affiliation(s)
- Ning Yu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Bingxu Cheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yang Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Wei Wu
- Jihua Laboratory, Foshan, 528200, China
| | - Robert K Y Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 518057, China
| | - Zihui Liang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan, 430200, China
| | - Fangchao Cheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
4
|
Liu MN, Chen T, Yin F, Song WZ, Wu LX, Zhang J, Ramakrishna S, Long YZ. Smart Bandage Based on a ZIF-8 Triboelectric Nanogenerator for In Situ Real-Time Monitoring of Drug Concentration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39079-39089. [PMID: 39021338 DOI: 10.1021/acsami.4c07446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
For chronic wounds, frequent replacement of bandages not only increases the likelihood of secondary damage and the risk of cross infection but also wastes medication. Therefore, in situ real-time monitoring of the concentrations of residual drugs in bandages is crucial. Here, we propose a novel strategy that combines a triboelectric nanogenerator (TENG) with medical bandages to develop a smart bandage based on zeolite imidazolate framework TENG. During the process of wound healing, the electrical output of TENG changes with the continuous release of drugs. Based on the correlation between the electrical signal of TENG and drug concentration, the concentration of residual drugs in the bandage can be monitored in real-time in situ, guiding medical staff to replace the bandage at the most appropriate time. The smart bandage based on TENG provides a new strategy for in situ real-time monitoring of drug concentration and also provides an ideal and feasible solution for the field of biomedical drug sensing.
Collapse
Affiliation(s)
- Meng-Nan Liu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Ting Chen
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Fang Yin
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Wei Zhi Song
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Lin-Xin Wu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers & Eco-Textiles (Qingdao University), Qingdao 266071, China
| |
Collapse
|
5
|
Liu J, Qian J, Adil M, Bi Y, Wu H, Hu X, Wang Z, Zhang W. Bioinspired integrated triboelectric electronic tongue. MICROSYSTEMS & NANOENGINEERING 2024; 10:57. [PMID: 38725435 PMCID: PMC11079038 DOI: 10.1038/s41378-024-00690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 05/12/2024]
Abstract
An electronic tongue (E-tongue) comprises a series of sensors that simulate human perception of taste and embedded artificial intelligence (AI) for data analysis and recognition. Traditional E-tongues based on electrochemical methods suffer from a bulky size and require larger sample volumes and extra power sources, limiting their applications in in vivo medical diagnosis and analytical chemistry. Inspired by the mechanics of the human tongue, triboelectric components have been incorporated into E-tongue platforms to overcome these limitations. In this study, an integrated multichannel triboelectric bioinspired E-tongue (TBIET) device was developed on a single glass slide chip to improve the device's taste classification accuracy by utilizing numerous sensory signals. The detection capability of the TBIET was further validated using various test samples, including representative human body, environmental, and beverage samples. The TBIET achieved a remarkably high classification accuracy. For instance, chemical solutions showed 100% identification accuracy, environmental samples reached 98.3% accuracy, and four typical teas demonstrated 97.0% accuracy. Additionally, the classification accuracy of NaCl solutions with five different concentrations reached 96.9%. The innovative TBIET exhibits a remarkable capacity to detect and analyze droplets with ultrahigh sensitivity to their electrical properties. Moreover, it offers a high degree of reliability in accurately detecting and analyzing various liquid samples within a short timeframe. The development of a self-powered portable triboelectric E-tongue prototype is a notable advancement in the field and is one that can greatly enhance the feasibility of rapid on-site detection of liquid samples in various settings.
Collapse
Affiliation(s)
- Jiaming Liu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instruments, School of Instrumental Science and Optoelectronics Engineering, Hefei University of Technology, 230009 Hefei, Anhui China
| | - Jingui Qian
- Anhui Province Key Laboratory of Measuring Theory and Precision Instruments, School of Instrumental Science and Optoelectronics Engineering, Hefei University of Technology, 230009 Hefei, Anhui China
| | - Murtazt Adil
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, 510006 Guangzhou, Guangdong China
| | - Yali Bi
- Anhui Province Key Laboratory of Measuring Theory and Precision Instruments, School of Instrumental Science and Optoelectronics Engineering, Hefei University of Technology, 230009 Hefei, Anhui China
| | - Haoyi Wu
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, 510006 Guangzhou, Guangdong China
| | - Xuefeng Hu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instruments, School of Instrumental Science and Optoelectronics Engineering, Hefei University of Technology, 230009 Hefei, Anhui China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnical University, Hong Kong SAR, China
| | - Wei Zhang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, 510006 Guangzhou, Guangdong China
| |
Collapse
|
6
|
Sun E, Zhu Q, Rehman HU, Wu T, Cao X, Wang N. Magnetic Material in Triboelectric Nanogenerators: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:826. [PMID: 38786783 PMCID: PMC11124044 DOI: 10.3390/nano14100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Nowadays, magnetic materials are also drawing considerable attention in the development of innovative energy converters such as triboelectric nanogenerators (TENGs), where the introduction of magnetic materials at the triboelectric interface not only significantly enhances the energy harvesting efficiency but also promotes TENG entry into the era of intelligence and multifunction. In this review, we begin from the basic operating principle of TENGs and then summarize the recent progress in applications of magnetic materials in the design of TENG magnetic materials by categorizing them into soft ferrites and amorphous and nanocrystalline alloys. While highlighting key role of magnetic materials in and future opportunities for improving their performance in energy conversion, we also discuss the most promising choices available today and describe emerging approaches to create even better magnetic TENGs and TENG-based sensors as far as intelligence and multifunctionality are concerned. In addition, the paper also discusses the integration of magnetic TENGs as a power source for third-party sensors and briefly explains the self-powered applications in a wide range of related fields. Finally, the paper discusses the challenges and prospects of magnetic TENGs.
Collapse
Affiliation(s)
- Enqi Sun
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (E.S.); (Q.Z.); (H.U.R.)
| | - Qiliang Zhu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (E.S.); (Q.Z.); (H.U.R.)
| | - Hafeez Ur Rehman
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (E.S.); (Q.Z.); (H.U.R.)
| | - Tong Wu
- National Institute of Metrology China, Beijing 100029, China;
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (E.S.); (Q.Z.); (H.U.R.)
| |
Collapse
|
7
|
Lv J, Wang Y, Fu H, Pei Y, Xie Z. Deep-Learning-Assisted Sensor with Multiple Perception Capabilities for an Intelligent Driver Assistance Monitoring System. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13651-13661. [PMID: 38447140 DOI: 10.1021/acsami.3c15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Driver assistance systems can help drivers achieve better control of their vehicles while driving and reduce driver fatigue and errors. However, the current driver assistance devices have a complex structure and severely violate the privacy of drivers, hindering the development of driver assistance technology. To address these limitations, this article proposes an intelligent driver assistance monitoring system (IDAMS), which combines a Kresling origami structure-based triboelectric sensor (KOS-TS) and a convolutional neural network (CNN)-based data analysis. For different driving behaviors, the output signals of the KOS-TSs contain various features, such as a driver's pressing force, pressing time, and sensor triggering sequence. This study develops a multiscale CNN that employs different pooling methods to process KOS-TS data and analyze temporal information. The proposed IDAMS is verified by driver identification experiments, and the results show that the accuracy of the IDAMS in discriminating eight different users is improved from 96.25% to 99.38%. In addition, the results indicate that IDAMS can successfully monitor driving behaviors and can accurately distinguish between different driving behaviors. Finally, the proposed IDAMS has excellent hands-off detection (HOD), identification, and driving behavior monitoring capabilities and shows broad potential for application in the fields of safety warning, personalization, and human-computer interaction.
Collapse
Affiliation(s)
- Jingliang Lv
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150042, China
| | - Yu Wang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150042, China
| | - Haiyue Fu
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150042, China
| | - Yulong Pei
- College of Civil and Transportation Engineering, Northeast Forestry University, Harbin 150042, China
| | - Zhijie Xie
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150042, China
| |
Collapse
|
8
|
Wang B, Wei X, Zhou H, Cao X, Zhang E, Wang ZL, Wu Z. Viscoelastic blood coagulation testing system enabled by a non-contact triboelectric angle sensor. EXPLORATION (BEIJING, CHINA) 2024; 4:20230073. [PMID: 38854489 PMCID: PMC10867393 DOI: 10.1002/exp.20230073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/31/2023] [Indexed: 06/11/2024]
Abstract
Thromboelastography (TEG) remains a convenient and effective viscoelastic blood coagulation testing device for guiding blood component transfusion and assessing the risk of thrombosis. Here, a TEG enabled by a non-contact triboelectric angle sensor (NTAS) with a small size (∼7 cm3) is developed for assessing the blood coagulation system. With the assistance of a superelastic torsion wire structure, the NTAS-TEG realizes the detection of blood viscoelasticity. Benefiting from a grating and convex design, the NTAS holds a collection of compelling features, including accurate detection of rotation angles from -2.5° to 2.5°, high linearity (R 2 = 0.999), and a resolution of 0.01°. Besides, the NTAS exhibits merits of low cost and simplified fabrication. Based on the NTAS-TEG, a viscoelastic blood coagulation detection and analysis system is successfully constructed, which can provide a graph and parameters associated with clot initiation, formation, and stability for clinicians by using 0.36 mL of whole blood. The system not only validates the feasibility of the triboelectric coagulation testing sensor, but also further expands the application of triboelectric sensors in healthcare.
Collapse
Affiliation(s)
- Baocheng Wang
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Xuelian Wei
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Hanlin Zhou
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
| | - Xiaole Cao
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Enyang Zhang
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
- Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Zhiyi Wu
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
Qiao W, Zhou L, Zhao Z, Yang P, Liu D, Liu X, Liu J, Liu D, Wang ZL, Wang J. MXene Lubricated Tribovoltaic Nanogenerator with High Current Output and Long Lifetime. NANO-MICRO LETTERS 2023; 15:218. [PMID: 37804464 PMCID: PMC10560292 DOI: 10.1007/s40820-023-01198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/27/2023] [Indexed: 10/09/2023]
Abstract
Tribovoltaic nanogenerators (TVNGs) have the characteristics of high current density, low matched impedance and continuous output, which is expected to solve the problem of power supply for small electronic devices. However, wear occurrence in friction interface will seriously reduce the performance of TVNGs as well as lifetime. Here, we employ MXene solution as lubricate to improve output current density and lifetime of TVNG simultaneously, where a high value of 754 mA m-2 accompanied with a record durability of 90,000 cycles were achieved. By comparing multiple liquid lubricates with different polarity, we show that conductive polar liquid with MXene as additive plays a crucial role in enhancing the electrical output performance and durability of TVNG. Moreover, the universality of MXene solution is well demonstrated in various TVNGs with Cu and P-type Si, and Cu and N-GaAs as material pairs. This work may guide and accelerates the practical application of TVNG in future.
Collapse
Affiliation(s)
- Wenyan Qiao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Linglin Zhou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhihao Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Peiyuan Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Di Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaoru Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jiaqi Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Dongyang Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jie Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
10
|
Liu D, Zhang J, Cui S, Zhou L, Gao Y, Wang ZL, Wang J. Recent Progress of Advanced Materials for Triboelectric Nanogenerators. SMALL METHODS 2023; 7:e2300562. [PMID: 37330665 DOI: 10.1002/smtd.202300562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Triboelectric nanogenerators (TENGs) have received intense attention due to their broad application prospects in the new era of internet of things (IoTs) as distributed power sources and self-powered sensors. Advanced materials are vital components for TENGs, which decide their comprehensive performance and application scenarios, opening up the opportunity to develop efficient TENGs and expand their potential applications. In this review, a systematic and comprehensive overview of the advanced materials for TENGs is presented, including materials classifications, fabrication methods, and the properties required for applications. In particular, the triboelectric, friction, and dielectric performance of advanced materials is focused upon and their roles in designing the TENGs are analyzed. The recent progress of advanced materials used in TENGs for mechanical energy harvesting and self-powered sensors is also summarized. Finally, an overview of the emerging challenges, strategies, and opportunities for research and development of advanced materials for TENGs is provided.
Collapse
Affiliation(s)
- Di Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiayue Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Shengnan Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Linglin Zhou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yikui Gao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jie Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Zhao J, Wang Y, Wang B, Sun Y, Lv H, Wang Z, Zhang W, Jiang Y. A flexible and stretchable triboelectric nanogenerator based on a medical conductive hydrogel for biomechanical energy harvesting and electronic switches. NANOSCALE 2023; 15:6812-6821. [PMID: 36951747 DOI: 10.1039/d2nr05706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With the development of intelligent wearable electronic products, new requirements are put forward for large-scale production and durable power supplies and sensors. Herein, a flexible and stretchable single-electrode triboelectric nanogenerator (TENG) based on a medical conductive hydrogel (MCH) has been fabricated for biomechanical energy harvesting and electronic switches. The obtained MCH-TENG encapsulated by silicone rubber as an electrification layer demonstrated high electrical output performances. The size of the fabricated MCH-TENG was 40 × 60 mm2, which can generate an open-circuit voltage of 400 V, a power density of 444.44 mW m-2, and power 240 LEDs in series at a contact frequency of 3.0 Hz. The device can act not only as a power supply to drive electronic devices, but also as an energy collector to collect the energy of human movements. Particularly, as an electronic switch, the device enabled a high current amplification through the Darlington transistor circuit. Consequently, this work provides a new perspective of flexible and stretchable MCH-TENGs for wearable electronic devices.
Collapse
Affiliation(s)
- Junwei Zhao
- Henan Key Laboratory of Special Protective Materials, Materials Science and Engineering School, Luoyang Institute of Science and Technology, Luoyang, 471023, P. R. China.
| | - Yujiang Wang
- Henan Key Laboratory of Special Protective Materials, Materials Science and Engineering School, Luoyang Institute of Science and Technology, Luoyang, 471023, P. R. China.
| | - Bo Wang
- Henan Key Laboratory of Special Protective Materials, Materials Science and Engineering School, Luoyang Institute of Science and Technology, Luoyang, 471023, P. R. China.
| | - Yuetan Sun
- Henan Key Laboratory of Special Protective Materials, Materials Science and Engineering School, Luoyang Institute of Science and Technology, Luoyang, 471023, P. R. China.
| | - Haoqiang Lv
- Henan Key Laboratory of Special Protective Materials, Materials Science and Engineering School, Luoyang Institute of Science and Technology, Luoyang, 471023, P. R. China.
| | - Zijian Wang
- Henan Key Laboratory of Special Protective Materials, Materials Science and Engineering School, Luoyang Institute of Science and Technology, Luoyang, 471023, P. R. China.
| | - Wenqing Zhang
- Henan Key Laboratory of Special Protective Materials, Materials Science and Engineering School, Luoyang Institute of Science and Technology, Luoyang, 471023, P. R. China.
| | - Yongdong Jiang
- Henan Key Laboratory of Special Protective Materials, Materials Science and Engineering School, Luoyang Institute of Science and Technology, Luoyang, 471023, P. R. China.
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808, P. R. China.
| |
Collapse
|
12
|
Wang W, Yang D, Yan X, Wang L, Hu H, Wang K. Triboelectric nanogenerators: the beginning of blue dream. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
13
|
Jing T, Wang S, Yuan H, Yang Y, Xue M, Xu B. Interfacial Roughness Enhanced Gel/Elastomer Interfacial Bonding Enables Robust and Stretchable Triboelectric Nanogenerator for Reliable Energy Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206528. [PMID: 36587974 DOI: 10.1002/smll.202206528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Gel-based triboelectric nanogenerator (TENG) has demonstrated promising potentials in stretchable electronics owing to gel electrodes' intrinsic softness, stretchability, and conductivity. However, delamination between gel and elastomer layers in deformations remains a considerable challenge for gel-based TENG, which most often induces structure failure. Herein, gels are regarded as adhesives and further effectively enhances interfacial bonding strength by a rough interface in adhesives' view, which exploits gels' liquid-to-solid transformation. This method just needs surface roughness of elastomer, which avoids chemical modification. Moreover, this method is effective to both organogel with good stickiness and hydrogel with weak stickiness, demonstrating wide applicability to different gels. Owing to the tough gel/elastomer interfacial bonding, TENG-Rough largely solves delamination problem under various deformations and the corresponding output performances of TENG-Rough are also maintained, implying a robust stretchable TENG device for reliable energy harvesting. This work demonstrates a general and facile method to enhance interfacial bonding in an adhesives' way, which provides a view for addressing delamination problem in gel-based TENGs and other kinds of gel-based devices.
Collapse
Affiliation(s)
- Titao Jing
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Shuchang Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Haiyuan Yuan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Yujue Yang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Ming Xue
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
14
|
Gao K, Chen J, Zhao M, Hu R, Chen S, Xue X, Shao Z, Hou H. 3D nanocrystalline metal-organic framework materials for the improved output performance of triboelectric nanogenerators. Dalton Trans 2023; 52:444-451. [PMID: 36524722 DOI: 10.1039/d2dt03477h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Triboelectric nanogenerators (TENGs) based on contact electrification and electrostatic induction can effectively convert low-frequency mechanical energy into electrical energy and has attracted considerable attention. However, the low current output performance seriously hinders the wide application of TENGs. Herein, a 3D nanocrystalline metal-organic framework (Cd-MOF) with a specific structure and morphology was reasonably designed as a high-performance triboelectric positive electrode material. The triboelectric test results showed that the maximum instantaneous short-circuit current of Cd-MT was 55.32 μA and the stable output performance maintained a long-term continuous operation for 10 000 s. The peak values of the charge density and electric power density were 102.39 μC m-2 and 2451.04 mW m-2, respectively. In addition, the Cd-MT could quickly fully charge commercial capacitors and light a large number of LED lamps. This work provides a new idea for the development and design of functional MOF triboelectric materials.
Collapse
Affiliation(s)
- Kexin Gao
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Junshuai Chen
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Mengting Zhao
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Rentang Hu
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Shiheng Chen
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Xiaojing Xue
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| | - Zhichao Shao
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Hongwei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| |
Collapse
|
15
|
AC/DC dual-type pressure and movement sensor based on the nanoresistance network. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Cao J, Fu X, Zhu H, Qu Z, Qi Y, Zhang Z, Zhang Z, Cheng G, Zhang C, Ding J. Self-Powered Non-Contact Motion Vector Sensor for Multifunctional Human-Machine Interface. SMALL METHODS 2022; 6:e2200588. [PMID: 35733078 DOI: 10.1002/smtd.202200588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Sensors as the significant units of the Internet of Things play an important role in the field of information interaction. Non-contact sensors have the advantages of flexible manipulation and a longer lifespan but it is constrained in motion detection due to their relative single detection function. Herein, a self-powered non-contact motion vector sensor (NMVS) for the multifunctional human-machine interface is reported. Based on the electrostatic induction effect, the motion vector is measured according to the output electrical signals from the non-contact triboelectric nanogenerator (NC-TENG). By simulation analysis and experimental validation, the output characteristics of NC-TENG dependence on structural and motion parameters are investigated in detail. On this basis, the resolution of NMVS is improved and exhibits for non-contact micro-vibration monitoring, rehabilitation gait detection, contactless smart lock, and the non-contact limit alarm. This work not only proposes an ingenious strategy for non-contact motion vector detection but also demonstrates the promising prospects of a multifunctional human-machine interface in intelligent electronics, health rehabilitation, and industrial inspection.
Collapse
Affiliation(s)
- Jie Cao
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang, 212013, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Xianpeng Fu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Zhu
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Zhaoqi Qu
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Youchao Qi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhongqiang Zhang
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang, 212013, P. R. China
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Guanggui Cheng
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang, 212013, P. R. China
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Chi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianning Ding
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang, 212013, P. R. China
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| |
Collapse
|