1
|
Zhao Z, Wang W, Xiang G, Jiang L, Jiang X. Capillary-Assisted Confinement Assembly for Advanced Sensor Fabrication: From Superwetting Interfaces to Capillary Bridge Patterning. ACS NANO 2025; 19:3019-3036. [PMID: 39814369 DOI: 10.1021/acsnano.4c17499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Precise patterning of sensing materials, particularly the long-range-ordered assembly of micro/nanostructures, is pivotal for improving sensor performance, facilitating miniaturization, and enabling seamless integration. This paper examines the importance of interfacial confined assembly in sensor patterning, including gas-liquid and liquid-liquid confined assembly, wettability-assisted or microstructure-assisted solid-liquid interfacial confined assembly, and tip-induced confined assembly. The application of capillary bridge confined assembly technology in chemical sensors, flexible electronics, and optoelectronics is highlighted. The advantages of capillary bridge confined assembly technology include the ability to achieve high-resolution patterning, scalability, and material arrangement in long-range order. It is, therefore, an ideal processing platform for next-generation sensors. Finally, the broad prospects of this technology in the miniaturization and integration of high-performance multifunctional sensors are discussed.
Collapse
Affiliation(s)
- Zhihao Zhao
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Weijie Wang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Gongmo Xiang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Lei Jiang
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangyu Jiang
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Tan Y, Huang Y, Wu D, Wang Y, Sun XW, Choi HW, Wang K. Low-threshold surface-emitting colloidal quantum-dot circular Bragg laser array. LIGHT, SCIENCE & APPLICATIONS 2025; 14:36. [PMID: 39762257 PMCID: PMC11704271 DOI: 10.1038/s41377-024-01714-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Colloidal quantum dots (CQDs) are attractive gain media due to their wavelength-tunability and low optical gain threshold. Consequently, CQD lasers, especially the surface-emitting ones, are promising candidates for display, sensing and communication. However, it remains challenging to achieve a low-threshold surface-emitting CQD laser array with high stability and integration density. For this purpose, it is necessary to combine the improvement of CQD material and laser cavity. Here, we have developed high-quality CQD material with core/interlayer/graded shell structure to achieve a low gain threshold and high stability. Subsequently, surface-emitting lasers based on CQD-integrated circular Bragg resonator (CBR) have been achieved, wherein the near-unity mode confinement factor (Γ of 89%) and high Purcell factor of 22.7 attributed to the strong field confinement of CBR enable a low lasing threshold of 17 μJ cm-2, which is 70% lower than that (56 μJ cm-2) of CQD vertical-cavity surface-emitting laser. Benefiting from the high quality of CQD material and laser cavity, the CQD CBR laser is capable of continuous stable operation for 1000 hours (corresponding to 3.63 × 108 pulses) at room temperature. This performance is the best among solution-processed lasers composed of nanocrystals. Moreover, the miniaturized mode volume in CBR allows the integration of CQD lasers with an unprecedentedly high density above 2100 pixels per inch. Overall, the proposed low-threshold, stable and compactly integrated CQD CBR laser array would advance the development of CQD laser for practical applications.
Collapse
Affiliation(s)
- Yangzhi Tan
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Yitong Huang
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dan Wu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, China.
| | - Yunjun Wang
- Suzhou Xingshuo Nanotech Co., Ltd. (Mesolight), Suzhou, China
| | - Xiao Wei Sun
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Hoi Wai Choi
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
| | - Kai Wang
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Yang Z, Zhou J, Liu F, Chai Y, Zhang P, Yuan R. CsPbBr 3 Perovskite Quantum Dots Encapsulated by a Polymer Matrix for Ultrasensitive Dynamic Imaging of Intracellular MicroRNA. Anal Chem 2024; 96:10738-10747. [PMID: 38898770 DOI: 10.1021/acs.analchem.4c01833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Herein, CsPbBr3 perovskite quantum dots (CPB PQDs)@poly(methyl methacrylate) (PMMA) (CPB@PMMA) nanospheres were used as energy donors with high Förster resonance energy transfer (FRET) efficiency and exceptional biocompatibility for ultrasensitive dynamic imaging of tiny amounts of microRNAs in living cells. Impressively, compared with traditional homogeneous single QDs as energy donors, CPB@PMMA obtained by encapsulating numerous CPB PQDs into PMMA as energy donors could not only significantly increase the efficiency of FRET via improving the local concentration of CPB PQDs but also distinctly avoid the problem of cytotoxicity caused by divulged heavy metal ions entering living cells. Most importantly, in the presence of target miRNA-21, DNA dendrimer-like nanostructures labeled with 6-carboxy-tetramethylrhodamine (TAMRA) were generated by the exposed tether interhybridization of the Y-shape structure, which could wrap around the surface of CPB@PMMA nanospheres to remarkably bridge the distance of FRET and increase the opportunity for effective energy transfer, resulting in excellent precision and accuracy for ultrasensitive and dynamic imaging of miRNAs. As proof of concept, the proposed strategy exhibited ultrahigh sensitivity with a detection limit of 45.3 aM and distinctly distinguished drug-irritative miRNA concentration abnormalities with living cells. Hence, the proposed enzyme-free CPB@PMMA biosensor provides convincing evidence for supplying accurate information, which could be expected to be a powerful tool for bioanalysis, diagnosis, and prognosis of human diseases.
Collapse
Affiliation(s)
- Zezhou Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jie Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Fang Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Pu Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
4
|
Han Q, Wang J, Tian S, Hu S, Wu X, Bai R, Zhao H, Zhang DW, Sun Q, Ji L. Inorganic perovskite-based active multifunctional integrated photonic devices. Nat Commun 2024; 15:1536. [PMID: 38378620 PMCID: PMC10879536 DOI: 10.1038/s41467-024-45565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
The development of highly efficient active integrated photonic circuits is crucial for advancing information and computing science. Lead halide perovskite semiconductors, with their exceptional optoelectronic properties, offer a promising platform for such devices. In this study, active micro multifunctional photonic devices were fabricated on monocrystalline CsPbBr3 perovskite thin films using a top-down etching technique with focused ion beams. The etched microwire exhibited a high-quality micro laser that could serve as a light source for integrated devices, facilitating angle-dependent effective propagation between coupled perovskite-microwire waveguides. Employing this strategy, multiple perovskite-based active integrated photonic devices were realized for the first time. These devices included a micro beam splitter that coherently separated lasing signals, an X-coupler performing transfer matrix functions with two distinguishable light sources, and a Mach-Zehnder interferometer manipulating the splitting and coalescence of coherent light beams. These results provide a proof-of-concept for active integrated functionalized photonic devices based on perovskite semiconductors, representing a promising avenue for practical applications in integrated optical chips.
Collapse
Affiliation(s)
- Qi Han
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Jun Wang
- Department of Optical Science and Engineering, School of Information Science and Technology, Key Laboratory of Micro & Nano Photonic Structures, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, and Shanghai Ultra-precision Optical Manufacturing Engineering Research Center, Fudan University, Shanghai, 200433, China.
| | - Shuangshuang Tian
- Department of Optical Science and Engineering, School of Information Science and Technology, Key Laboratory of Micro & Nano Photonic Structures, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, and Shanghai Ultra-precision Optical Manufacturing Engineering Research Center, Fudan University, Shanghai, 200433, China
| | - Shen Hu
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
- Jiashan Fudan Institute, Jiaxing, 314110, China.
| | - Xuefeng Wu
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai, 201210, China
| | - Rongxu Bai
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Haibin Zhao
- Department of Optical Science and Engineering, School of Information Science and Technology, Key Laboratory of Micro & Nano Photonic Structures, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, and Shanghai Ultra-precision Optical Manufacturing Engineering Research Center, Fudan University, Shanghai, 200433, China
| | - David W Zhang
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China
- Jiashan Fudan Institute, Jiaxing, 314110, China
- Zhangjiang Fudan International Innovation Center, Shanghai, 201210, China
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China
| | - Qingqing Sun
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
- Jiashan Fudan Institute, Jiaxing, 314110, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, 201210, China.
| | - Li Ji
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
- Jiashan Fudan Institute, Jiaxing, 314110, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, 201210, China.
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China.
| |
Collapse
|
5
|
Li H, Zhao Y, Qiu Y, Gao H, He K, Yang J, Zhao Y, OuYang G, Ma N, Wei X, Du Z, Jiang L, Wu Y. Multi-Interfacial Confined Assembly of Colloidal Quantum Dots Quasisuperlattice Microcavities for High-Resolution Full-Color Microlaser Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314061. [PMID: 38350441 DOI: 10.1002/adma.202314061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Indexed: 02/15/2024]
Abstract
Colloidal quantum dots (CQDs) are considered a promising material for the next generation of integrated display devices due to their designable optical bandgap and low energy consumption. Owing to their dispersibility in solvents, CQD micro/nanostructures are generally fabricated by solution-processing methods. However, the random mass transfer in liquid restricts the programmable construction in macroscopy and ordered assembly in microscopy for the integration of CQD optical structures. Herein, a multi-interfacial confined assembly strategy is developed to fabricate CQDs programmable microstructure arrays with a quasisuperlattice configuration through controlling the dynamics of three-phase contact lines (TPCLs). The motion of TPCLs dominates the division of liquid film for precise positioning of CQD microstructures, while pinned TPCLs control the solvent evaporation and concentration gradient to directionally drive the mass transfer and packing of CQDs. Owing to their long-range order and adjustable structural dimensions, CQD microring arrays function as high-quality-factor (high-Q) lasing resonant cavities with low thresholds and tunable lasing emission modes. Through the further surface treatment and liquid dynamics control, the on-chip integration of red (R), green (G), and blue (B) multicomponent CQD microlaser arrays are demonstrated. The technique establishes a new route to fabricate large-area, ultrahigh-definition, and full-color CQD laser displays.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, Kaifeng, 475004, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuyan Zhao
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Yuchen Qiu
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hanfei Gao
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Ke He
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Junchuan Yang
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Yingjie Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Guangwen OuYang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, Kaifeng, 475004, P. R. China
| | - Na Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, Kaifeng, 475004, P. R. China
| | - Xiao Wei
- Ji Hua Laboratory Foshan, Guangdong, 528200, P. R. China
| | - Zuliang Du
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, Kaifeng, 475004, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Yuchen Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, Kaifeng, 475004, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Feng J, Qiu Y, Gao H, Wu Y. Crystal Self-Assembly under Confinement: Bridging Nanomaterials to Integrated Devices. Acc Chem Res 2024; 57:222-233. [PMID: 38170611 DOI: 10.1021/acs.accounts.3c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
ConspectusSelf-assembly, a spontaneous process that organizes disordered constituents into ordered structures, has revolutionized our fundamental understanding of living matter, nanotechnology, and molecular science. From the perspective of nanomaterials, self-assembly serves as a bottom-up method for creating long-range-ordered materials. This is accomplished by tailoring the geometry, chemistry, and interactions of the components, thereby facilitating the efficient fabrication of high-quality materials and high-performance functional devices. Over the past few decades, we have seen controllable organization and diverse phases in self-assembled materials, such as organic crystals, biomolecular structures, and colloidal nanoparticle supercrystals. However, most self-assembled ordered materials and their assembly mechanisms are derived from constituents in a liquid bulk medium, where the effects of boundaries and interfaces are negligible. In the context of nanostructure patterning, self-assembly occurs in confined spaces, with feature sizes ranging from a few to hundreds of nanometers. In such settings, ubiquitous boundaries and interfaces can trap the system in a kinetically favored but metastable state, devoid of long-range order. This makes it extremely difficult to achieve ordered structures in micro/nano-patterning techniques that rely on sessile microdroplets, such as inkjet printing, dip-pen lithography, and contact printing.In stark contrast to sessile droplets, capillary bridges─formed by liquids confined between two solid surfaces─provide unique opportunities for understanding the long-range-ordered self-assembly of crystalline materials under spatial confinement. Because capillary bridges are stabilized by Laplace pressure, which is inversely proportional to the feature size, the confinement and manipulation of solutions or suspensions of functional materials at the nanoscale become accessible through the rational design of surface chemistry and geometry. Although global thermodynamic equilibrium is unattainable in evaporative systems, ordered nucleation and packing of constituent components can be locally realized at the contact line of capillary bridges. This enables the unprecedented fabrication of long-range-ordered micro/nanostructures with deterministic patterns.In this Account, we review the advancements in long-range-ordered self-assembly of crystalline micro/nanostructures under confinement. First, we briefly introduce crystalline materials characterized by strong intramolecular interactions and relatively weak intermolecular forces, analyzing both the opportunities and challenges inherent to self-assembled nanomaterials. Next, we delve into the construction and manipulation of confined liquids, focusing especially on capillary bridges controlled by engineered chemistry and geometry to regulate Laplace pressure. Through this approach, we have achieved capillary bridges with thicknesses on the order of a few nanometers and wafer-scale homogeneity, facilitating the self-assembly of ordered structures. Supported by factors such as local free-volume entropy, electrostatic interactions, curvilinear geometry, directional microfluidics, and nanoconfinement, we have achieved long-range-ordered, deterministic patterning of organic semiconductors, metal-halide perovskites, and colloidal nanocrystal superlattices using this capillary-bridge platform. These long-range microstructures serve as a bridge between nanomaterials and integrated devices, enabling emergent functionalities like intrinsic stretchability, giant photoconductivity, propagating and interacting exciton polaritons, and spin-valley-locked lasing, which are otherwise unattainable in disordered materials. Finally, we discuss potential directions for both the fundamental understanding and practical applications of confined self-assembly.
Collapse
Affiliation(s)
- Jiangang Feng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yuchen Qiu
- College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Hanfei Gao
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|