1
|
Fonseca D, Neto P. Electrically-driven phase transition actuators to power soft robot designs. Nat Commun 2025; 16:3920. [PMID: 40280926 PMCID: PMC12032282 DOI: 10.1038/s41467-025-59023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
In the quest for electrically-driven soft actuators, the focus has shifted away from liquid-gas phase transition, commonly associated with reduced strain rates and actuation delays, in favour of electrostatic and other electrothermal actuation methods. This prevented the technology from capitalizing on its unique characteristics, particularly: low voltage operation, controllability, scalability, and ease of integration into robots. Here, we introduce a liquid-gas phase transition electric soft actuator that uses water as the working fluid and is powered by a coil-type flexible heating element. It achieves strain rates of over 16%/s and pressurization rates of 100 kPa/s. Blocked forces exceeding 50 N were achieved while operating at voltages up to 24 V. We propose a method for selecting working fluids which allows for application-specific optimization, together with a nonlinear control approach that reduces both parasitic vibrations and control lag. We demonstrate the integration of this technology in soft robotic systems, including a cable-driven biomimetic hand and a quadruped robot powered by liquid-gas phase transition.
Collapse
Affiliation(s)
- D Fonseca
- University of Coimbra, CEMMPRE, Department of Mechanical Engineering, Coimbra, Portugal
| | - P Neto
- University of Coimbra, CEMMPRE, Department of Mechanical Engineering, Coimbra, Portugal.
| |
Collapse
|
2
|
Lee S, Jaseem SA, Atar N, Wang M, Kim JY, Zare M, Kim S, Bartlett MD, Jeong JW, Dickey MD. Connecting the Dots: Sintering of Liquid Metal Particles for Soft and Stretchable Conductors. Chem Rev 2025; 125:3551-3585. [PMID: 40036064 DOI: 10.1021/acs.chemrev.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
This review focuses on the sintering of liquid metal particles (LMPs). Here, sintering means the partial merging or connecting of particles (or droplets) to form a network of percolated and, thus, conductive electrical pathways. LMPs are attractive materials because they can be suspended in a carrier fluid to create printable inks or distributed in an elastomer to create soft, stretchable composites. However, films and traces of LMPs are not typically conductive as fabricated due to the native oxide that forms on the surface of the particles. In the case of composites, polymers can also get between particles, making sintering more challenging. Sintering can be done via a variety of ways, such as mechanical, thermal, and chemical processing. This review discusses the mechanisms to sinter these particles, patterning techniques that use sintering, unique properties of sintered LMPs, and their practical applications in fields such as stretchable electronics, soft robotics, and active materials.
Collapse
Affiliation(s)
- Simok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Syed Ahmed Jaseem
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Nurit Atar
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Meixiang Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Jeong Yong Kim
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Mohammadreza Zare
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Sooyoung Kim
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Michael D Bartlett
- Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Daejeon 34141, Republic of Korea
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| |
Collapse
|
3
|
Ahmad M, Shukla D, Zhu Y, Velev OD. Biodegradable Chitosan-Based Stretchable Electronics with Recyclable Silver Nanowires. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17316-17329. [PMID: 39968770 DOI: 10.1021/acsami.4c20193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The combination of biodegradability and biocompatibility makes chitosan a principal bioresourced material in biomedical engineering, wearable technology, and medical diagnostics, particularly for integration in human interfaces for soft electronic applications. However, this requires the introduction of soft electronic circuits with the capability of recycling the functional materials, while biodegrading the substrate. This paper presents the development and characterization of biodegradable soft circuits that are constructed using stretchable and flexible substrates from plasticized chitosan and conductive functional wiring from recyclable silver nanowires (AgNWs). The chitosan substrate demonstrates tunable mechanical properties with a maximum stretchability of ∼116%, in addition to desirable characteristics such as transparency, breathability, and controlled degradation. The plasticizing effect of glycerol reduces the rigidity associated with pure chitosan and imparts flexibility and stretchability to the AgNW-chitosan-glycerol (AgNW-Chi-Gly) composite. The AgNWs embedded in the Chi-Gly matrix are highly conductive, and their functionality in soft electronic devices such as strain sensors and electromyography (EMG) sensors is demonstrated. We show that the soft chitosan-based substrates can be subject to biodegradation at the end of their operational lifespan. The AgNWs can be recycled and reused, enhancing the overall sustainability of such soft electronic devices.
Collapse
Affiliation(s)
- Mesbah Ahmad
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Darpan Shukla
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Cui S, Han D, Chen G, Liu S, Xu Y, Yu Y, Peng L. Toward Stretchable Flexible Integrated Sensor Systems. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11397-11414. [PMID: 39644227 DOI: 10.1021/acsami.4c12429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Skin-like flexible sensors hold great potential as the next generation of intelligent electronic devices owing to their broad applications in environmental monitoring, human-machine interfaces, the Internet of Things, and artificial intelligence. Flexible electronics inspired by human skin play a vital role in continuous and real-time health monitoring. This review summarizes recent progress in skin-mountable electronics developed by designing flexible electrodes and substrates into different structures, including serpentine, microcrack, wrinkle, and kirigami. Furthermore, this review briefly discusses advances in wearable integrated sensor systems that mimic the flexibility of human skin, as well as multisensing functions. In the future, innovations in stretchable integrated sensor systems will be crucial to develop next-generation intelligent skin-based sensors for practical applications such as medical diagnosis, treatment, and environment monitoring.
Collapse
Affiliation(s)
- Songya Cui
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Dongxue Han
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Guang Chen
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Shuting Liu
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Yuhong Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yufeng Yu
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Liang Peng
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|
5
|
Hajalilou A. Liquid Metal-Polymer Hydrogel Composites for Sustainable Electronics: A Review. Molecules 2025; 30:905. [PMID: 40005215 PMCID: PMC11858249 DOI: 10.3390/molecules30040905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Hydrogels, renowned for their hydrophilic and viscoelastic properties, have emerged as key materials for flexible electronics, including electronic skins, wearable devices, and soft sensors. However, the application of pure double network hydrogel-based composites is limited by their poor chemical stability, low mechanical stretchability, and low sensitivity. Recent research has focused on overcoming these limitations by incorporating conductive fillers, such as liquid metals (LMs), into hydrogel matrices or creating continuous conductive paths through LMs within the polymer matrix. LMs, including eutectic gallium and indium (EGaIn) alloys, offer exceptional electromechanical, electrochemical, thermal conductivity, and self-repairing properties, making them ideal candidates for diverse soft electronic applications. The integration of LMs into hydrogels improves conductivity and mechanical performance while addressing the challenges posed by rigid fillers, such as mismatched compliance with the hydrogel matrix. This review explores the incorporation of LMs into hydrogel composites, the challenges faced in achieving optimal dispersion, and the unique functionalities introduced by these composites. We also discuss recent advances in the use of LM droplets for polymerization processes and their applications in various fields, including tissue engineering, wearable devices, biomedical applications, electromagnetic shielding, energy harvesting, and storage. Additionally, 3D-printable hydrogels are highlighted. Despite the promise of LM-based hydrogels, challenges such as macrophase separation, weak interfacial interactions between LMs and polymer networks, and the difficulty of printing LM inks onto hydrogel substrates limit their broader application. However, this review proposes solutions to these challenges.
Collapse
Affiliation(s)
- Abdollah Hajalilou
- Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa (Nova FCT), 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
Zhang T, Bainbridge A, Harwell J, Zhang S, Wagih M, Kettle J. Life cycle assessment (LCA) of circular consumer electronics based on IC recycling and emerging PCB assembly materials. Sci Rep 2024; 14:29183. [PMID: 39587208 PMCID: PMC11589699 DOI: 10.1038/s41598-024-79732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
As consumer microelectronics become ever more ubiquitous, there are growing concerns about their environmental impact. However, the diversity of designs and components used in modern devices makes a coherent mitigation strategy hard to formulate. In this work, we perform a quantitative life cycle assessment (LCA) of the environmental profiles of both high-value (a smartwatch) and low-value (a TV remote) devices and find that the optimal mitigation strategy varies substantially between these two extremes. We find that the impact of the smartwatch is dominated by the production costs of its integrated circuits (ICs), and so a priority on device lifetime and design-for-recycling of the ICs is the best path to minimizing impact. On the other hand, the TV remote's impact is dominated by the cost of its fiberglass (FR4) substrate, with the much simpler ICs playing a much smaller role. Our results show that the impact of low-cost devices is best mitigated by incorporating eco-friendly substrates and additive manufacturing techniques, while also minimizing the use of critical raw materials (CRMs). These results will help guide future industrial strategies, and we provide a list of challenges and opportunities in making electronics green.
Collapse
Affiliation(s)
- Tianwei Zhang
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Andrew Bainbridge
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jonathon Harwell
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Shoushou Zhang
- Bangor College, Central South University of Forestry and Technology, Changsha, China
| | - Mahmoud Wagih
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jeff Kettle
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
7
|
Hajalilou A, Parvini E, Morgado TA, Alhais Lopes P, Melo Jorge ME, Freitas M, Tavakoli M. Replacing the Gallium Oxide Shell with Conductive Ag: Toward a Printable and Recyclable Composite for Highly Stretchable Electronics, Electromagnetic Shielding, and Thermal Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61157-61168. [PMID: 39469861 DOI: 10.1021/acsami.4c17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Liquid metal (LM)-based composites hold promise for soft electronics due to their high conductivity and fluidic nature. However, the presence of α-Ga2O3 and GaOOH layers around LM droplets impairs conductivity and performance. We tackle this issue by replacing the oxide layer with conductive silver (Ag) using an ultrasonic-assisted galvanic replacement reaction. The Ag-coated nanoparticles form aggregated, porous microparticles that are mixed with styrene-isoprene-styrene (SIS) polymers, resulting in a digitally printable composite with superior electrical conductivity and electromechanical properties compared to conventional fillers. Adding more LM enhances these properties further. The composite achieves EMI shielding effectiveness (SE) exceeding 75 dB in the X-band frequency range, even at 200% strain, meeting stringent military and medical standards. It is applicable in wireless communications and Bluetooth signal blocking and as a thermal interface material (TIM). Additionally, we highlight its recyclability using a biodegradable solvent, underscoring its eco-friendly potential. This composite represents a significant advancement in stretchable electronics and EMI shielding, with implications for wearable and bioelectronic applications.
Collapse
Affiliation(s)
- Abdollah Hajalilou
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - Elahe Parvini
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - Tiago A Morgado
- Instituto de Telecomunicações and Department of Electrical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal
| | - Pedro Alhais Lopes
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - M Estrela Melo Jorge
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Marta Freitas
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| |
Collapse
|
8
|
Wang J, Wang R, Nie S, Guo S, Zhang X. Reversible Adhesive Film with Ultralow Dielectric Loss in High Frequency via Surface Anchoring of Catechol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54645-54651. [PMID: 39333046 DOI: 10.1021/acsami.4c12258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Debonding of the dielectric adhesive material will make the high-frequency communication equipment unusable, leading to resource wasting and electronic waste. Reversible adhesive is an ideal strategy to realize the reuse of debonding devices, but the low dielectric loss requirement of the dielectric adhesive materials in high-frequency devices limits its development. Here, the surface anchoring design of catechol was proposed to prepare a reversible adhesive film with ultralow dielectric loss in high frequency. The catechol structure was linked to the end of polybutadiene (PB) macromolecule to synthesize catechol-terminated PB (PB-D). The PB-based adhesive film (PB-F) with ultralow dielectric loss was used as the base film, and then PB-D was sprayed on PB-F to form a thin layer. In the subsequent curing process, the catechol group on the surface of PB-F could be anchored by the cross-linking reaction between the heterogeneous PB segments. The surface modification transforms the interface debonding between PB-F and copper foil into cohesive failure within the PB-D layer, showing a strong adhesion of more than 1.1 N/mm. More importantly, relying on the reversible hydrogen bonding of catechol structures, the debonding material can regain stable bonding in a mild way. Because the catechol group is only distributed on the film surface, the reversible adhesive film kept an ultralow dielectric loss (Df = 2.5-2.9 × 10-3) at 10 GHz. In this work, an ultralow dielectric loss and reversible adhesive film with commercial prospects was prepared for the first time, which is expected to be used for simple recovery of communication substrate bonding failure.
Collapse
Affiliation(s)
- Jiading Wang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Ruikun Wang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shengqiang Nie
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xianlong Zhang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Wang X, Guo L, Bezsmertna O, Wu Y, Makarov D, Xu R. Printed magnetoresistive sensors for recyclable magnetoelectronics. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 12:24906-24915. [PMID: 39234481 PMCID: PMC11367592 DOI: 10.1039/d4ta02765e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
We have developed an innovative recyclable printed magnetoresistive sensor using GMR microflakes and AMR microparticles as functional fillers, with PECH as the elastomer binder. Under saturation magnetic fields of 100 mT and 30 mT, these sensors respectively exhibit magnetoresistance values of 4.7% and 0.45%. The excellent mechanical properties and thermal stability of the PECH elastomer binder endow these sensors with outstanding flexibility and temperature stability. This flexibility, low cost, and scalability make these sensors highly suitable for integration into flexible electronic devices, such as smart security systems and home automation. Moreover, these sensors are fully recyclable and reusable, allowing the materials to be separated, reused, and remanufactured without loss of performance. The low energy consumption of the production process and the recyclability of the materials significantly reduce the environmental impact of these magnetic field sensors.
Collapse
Affiliation(s)
- Xiaotao Wang
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Lin Guo
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Olha Bezsmertna
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Yuhan Wu
- School of Environmental and Chemical Engineering, Shenyang University of Technology Shenyang China
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Rui Xu
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research Bautzner Landstrasse 400 01328 Dresden Germany
| |
Collapse
|
10
|
Woodman SJ, Shah DS, Landesberg M, Agrawala A, Kramer-Bottiglio R. Stretchable Arduinos embedded in soft robots. Sci Robot 2024; 9:eadn6844. [PMID: 39259780 DOI: 10.1126/scirobotics.adn6844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
To achieve real-world functionality, robots must have the ability to carry out decision-making computations. However, soft robots stretch and therefore need a solution other than rigid computers. Examples of embedding computing capacity into soft robots currently include appending rigid printed circuit boards to the robot, integrating soft logic gates, and exploiting material responses for material-embedded computation. Although promising, these approaches introduce limitations such as rigidity, tethers, or low logic gate density. The field of stretchable electronics has sought to solve these challenges, but a complete pipeline for direct integration of single-board computers, microcontrollers, and other complex circuitry into soft robots has remained elusive. We present a generalized method to translate any complex two-layer circuit into a soft, stretchable form. This enabled the creation of stretchable single-board microcontrollers (including Arduinos) and other commercial circuits (including SparkFun circuits), without design simplifications. As demonstrations of the method's utility, we embedded highly stretchable (>300% strain) Arduino Pro Minis into the bodies of multiple soft robots. This makes use of otherwise inert structural material, fulfilling the promise of the stretchable electronic field to integrate state-of-the-art computational power into robust, stretchable systems during active use.
Collapse
Affiliation(s)
- Stephanie J Woodman
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave., New Haven, CT 06511, USA
| | - Dylan S Shah
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave., New Haven, CT 06511, USA
| | - Melanie Landesberg
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave., New Haven, CT 06511, USA
| | - Anjali Agrawala
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave., New Haven, CT 06511, USA
| | - Rebecca Kramer-Bottiglio
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave., New Haven, CT 06511, USA
| |
Collapse
|
11
|
Parvini E, Hajalilou A, Gonçalves Vilarinho JP, Alhais Lopes P, Maranha M, Tavakoli M. Gallium-Carbon: A Universal Composite for Sustainable 3D Printing of Integrated Sensor-Heater-Battery Systems in Wearable and Recyclable Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32812-32823. [PMID: 38878000 PMCID: PMC11212025 DOI: 10.1021/acsami.4c02706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/19/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
This study presents a novel three-dimensional (3D) printable gallium-carbon black-styrene isoprene styrene block copolymer (Ga-CB-SIS), offering a versatile solution for the rapid fabrication of stretchable and integrated sensor-heater-battery systems in wearable and recyclable electronics. The composite exhibits sinter-free characteristics, allowing for printing on various substrates, including heat-sensitive materials. Unlike traditional conductive inks, the Ga-CB-SIS composite, composed of gallium, carbon black, and styrene isoprene block copolymers, combines electrical conductivity, stretchability, and digital printability. By introducing carbon black as a filler material, the composite achieves promising electromechanical behavior, making it suitable for low-resistance heaters, batteries, and electrical interconnects. The fabrication process involves a simultaneous mixing and ball-milling technique, resulting in a homogeneous composition with a CB/Ga ratio of 4.3%. The Ga-CB-SIS composite showcases remarkable adaptability for digital printing on various substrates. Its self-healing property and efficient recycling technique using a deep eutectic solvent contribute to an environmentally conscious approach to electronic waste, with a high gallium recovery efficiency of ∼98%. The study's innovation extends to applications, presenting a fully digitally printed stretchable Ga-CB-SIS battery integrated with strain sensors and heaters, representing a significant leap in LM-based composites. This multifunctional and sustainable Ga-CB-SIS composite emerges as a key player in the future of wearable electronics, offering integrated circuits with sensing, heating, and energy storage elements.
Collapse
Affiliation(s)
- Elahe Parvini
- Soft and Printed Microelectronics
Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra 3030-290, Portugal
| | - Abdollah Hajalilou
- Soft and Printed Microelectronics
Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra 3030-290, Portugal
| | - João Pedro Gonçalves Vilarinho
- Soft and Printed Microelectronics
Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra 3030-290, Portugal
| | - Pedro Alhais Lopes
- Soft and Printed Microelectronics
Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra 3030-290, Portugal
| | - Miguel Maranha
- Soft and Printed Microelectronics
Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra 3030-290, Portugal
| | - Mahmoud Tavakoli
- Soft and Printed Microelectronics
Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra 3030-290, Portugal
| |
Collapse
|
12
|
Straubinger D, Koltay P, Zengerle R, Kartmann S, Shu Z. Bulge-Free and Homogeneous Metal Line Jet Printing with StarJet Technology. MICROMACHINES 2024; 15:743. [PMID: 38930714 PMCID: PMC11206140 DOI: 10.3390/mi15060743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
The technology to jet print metal lines with precise shape fidelity on diverse substrates is gaining higher interest across multiple research fields. It finds applications in additively manufactured flexible electronics, environmentally friendly and sustainable electronics, sensor devices for medical applications, and fabricating electrodes for solar cells. This paper provides an experimental investigation to deepen insights into the non-contact printing of solder lines using StarJet technology, eliminating the need for surface activation, substrate heating, curing, or post-processing. Moreover, it employs bulk metal instead of conventional inks or pastes, leading to cost-effective production and enhanced conductivity. The effect of molten metal temperature, substrate temperature, standoff distance, and printing velocity was investigated on polymer foils (i.e., PET sheets). Robust printing parameters were derived to print uniform, bulge-free, bulk metal lines suitable for additive manufacturing applications. The applicability of the derived parameters was extended to 3D-printed PLA, TPU, PA-GF, and PETG substrates having a much higher surface roughness. Additionally, a high aspect ratio of approx. 16:1 wall structure has been demonstrated by printing multiple metal lines on top of each other. While challenges persist, this study contributes to advancing additively manufactured electronic devices, highlighting the capabilities of StarJet metal jet-printing technology.
Collapse
Affiliation(s)
- Dániel Straubinger
- Hahn-Schickard, Georges-Koehler-Allee 103, D-79110 Freiburg, Germany (Z.S.)
| | - Peter Koltay
- Actome GmbH, Georges-Köhler-Allee 103, D-79110 Freiburg, Germany
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, D-79110 Freiburg, Germany (Z.S.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, D-79110 Freiburg, Germany
| | - Sabrina Kartmann
- Hahn-Schickard, Georges-Koehler-Allee 103, D-79110 Freiburg, Germany (Z.S.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, D-79110 Freiburg, Germany
| | - Zhe Shu
- Hahn-Schickard, Georges-Koehler-Allee 103, D-79110 Freiburg, Germany (Z.S.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, D-79110 Freiburg, Germany
| |
Collapse
|
13
|
Ji D, Liu J, Zhao J, Li M, Rho Y, Shin H, Han TH, Bae J. Sustainable 3D printing by reversible salting-out effects with aqueous salt solutions. Nat Commun 2024; 15:3925. [PMID: 38724512 PMCID: PMC11082145 DOI: 10.1038/s41467-024-48121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Achieving a simple yet sustainable printing technique with minimal instruments and energy remains challenging. Here, a facile and sustainable 3D printing technique is developed by utilizing a reversible salting-out effect. The salting-out effect induced by aqueous salt solutions lowers the phase transition temperature of poly(N-isopropylacrylamide) (PNIPAM) solutions to below 10 °C. It enables the spontaneous and instant formation of physical crosslinks within PNIPAM chains at room temperature, thus allowing the PNIPAM solution to solidify upon contact with a salt solution. The PNIPAM solutions are extrudable through needles and can immediately solidify by salt ions, preserving printed structures, without rheological modifiers, chemical crosslinkers, and additional post-processing steps/equipment. The reversible physical crosslinking and de-crosslinking of the polymer through the salting-out effect demonstrate the recyclability of the polymeric ink. This printing approach extends to various PNIPAM-based composite solutions incorporating functional materials or other polymers, which offers great potential for developing water-soluble disposable electronic circuits, carriers for delivering small materials, and smart actuators.
Collapse
Affiliation(s)
- Donghwan Ji
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Liu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiayu Zhao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Minghao Li
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yumi Rho
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hwansoo Shin
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Hee Han
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jinhye Bae
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
14
|
Freitas MC, Sanati AL, Lopes PA, Silva AF, Tavakoli M. 3D Printed Gallium Battery with Outstanding Energy Storage: Toward Fully Printed Battery-on-the-Board Soft Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304716. [PMID: 38335309 DOI: 10.1002/smll.202304716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/25/2023] [Indexed: 02/12/2024]
Abstract
The last decade observed rapid progress in soft electronics. Yet, the ultimate desired goal for many research fields is to fabricate fully integrated soft-matter electronics with sensors, interconnects, and batteries, at the ease of pushing a print button. In this work, an important step is taken toward this by demonstrating an ultra-stretchable thin-film Silver-Gallium (Ag-Ga) battery with an unprecedented combination of areal capacity and mechanical strain tolerance. The Biphasic Gallium-Carbon anode electrode demonstrates a record-breaking areal capacity of 78.7 mAh cm-2, and an exceptional stretchability of 170%, showing clear progress over state-of-the-art. The exceptional theoretical capacity of gallium, along with its natural liquid phase self-healing, and its dendrite-free operation permits excellent electromechanical cycling. All composites of the battery including liquid-metal-based current collectors, and electrodes are sinter-free and digitally printable at room temperature, enabling the use of a wide range of substrates, including heat-sensitive polymer films. Consequently, it is demonstrated for the first time multi-layer, and multi-material digital printing of complex battery-on-the-board stretchable devices that integrate printed sensor, multiple cells of printed battery, highly conductive interconnects, and silicone chips, and demonstrate a tailor-made patch for body-worn electrophysiological monitoring.
Collapse
Affiliation(s)
- Marta Calisto Freitas
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Afsaneh L Sanati
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Pedro Alhais Lopes
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-790, Portugal
| | - André F Silva
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Mahmoud Tavakoli
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-790, Portugal
| |
Collapse
|
15
|
Azad R, Lenßen P, Jia Y, Strauch M, Bener BA, Merhof D, Wöll D. Modeling the Temperature-Dependent Size Change of Polydisperse Nano-objects using a Deep Generative Model. NANO LETTERS 2024; 24:4447-4453. [PMID: 38588344 DOI: 10.1021/acs.nanolett.4c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Modern microscopy techniques can be used to investigate soft nano-objects at the nanometer scale. However, time-consuming microscopy measurements combined with low numbers of observable polydisperse objects often limit the statistics. We propose a method for identifying the most representative objects from their respective point clouds. These point cloud data are obtained, for example, through the localization of single emitters in super-resolution fluorescence microscopy. External stimuli, such as temperature, can cause changes in the shape and properties of adaptive objects. Due to the demanding and time-consuming nature of super-resolution microscopy experiments, only a limited number of temperature steps can be performed. Therefore, we propose a deep generative model that learns the underlying point distribution of temperature-dependent microgels, enabling the reliable generation of unlimited samples with an arbitrary number of localizations. Our method greatly cuts down the data collection effort across diverse experimental conditions, proving invaluable for soft condensed matter studies.
Collapse
Affiliation(s)
- Reza Azad
- Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Pia Lenßen
- Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Yiwei Jia
- Institute of Imaging and Computer Vision, RWTH Aachen University, 52056 Aachen, Germany
| | - Martin Strauch
- Institute of Imaging and Computer Vision, RWTH Aachen University, 52056 Aachen, Germany
| | - Berk Alperen Bener
- Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Dorit Merhof
- Institute of Image Analysis and Computer Vision, University of Regensburg, 93040 Regensburg, Germany
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
16
|
Peng Y, Peng H, Chen Z, Zhang J. Ultrasensitive Soft Sensor from Anisotropic Conductive Biphasic Liquid Metal-Polymer Gels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305707. [PMID: 38053434 DOI: 10.1002/adma.202305707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Subtle vibrations, such as sound and ambient noises, are common mechanical waves that can transmit energy and signals for modern technologies such as robotics and health management devices. However, soft electronics cannot accurately distinguish ultrasmall vibrations owing to their extremely small pressure, complex vibration waveforms, and high noise susceptibility. This study successfully recognizes signals from subtle vibrations using a highly flexible anisotropic conductive gel (ACG) based on biphasic liquid metals. The relationships between the anisotropic structure, subtle vibrations, and electrical performance are investigated using rheological-electrical experiments. The refined anisotropic design successfully realized low-cost flexible electronics with ultrahigh sensitivity (Gauge Factor: 12787), extremely low detection limit (strain: 0.01%), and excellent frequency recognition accuracy (>99%), significantly surpassing those of current flexible sensors. The ultrasensitive flexible electronics in this study are beneficial for diverse advanced technologies such as acoustic engineering, wearable electronics, and intelligent robotics.
Collapse
Affiliation(s)
- Yan Peng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
- Center for Advanced Electronic Materials Research, Wuxi Campus, Southeast University, Wuxi, 214061, P. R. China
| | - Hao Peng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zixun Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Jiuyang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
- Center for Advanced Electronic Materials Research, Wuxi Campus, Southeast University, Wuxi, 214061, P. R. China
| |
Collapse
|
17
|
Ran L, Ma X, Qiu L, Sun F, Zhao L, Yi L, Ji X. Liquid metal assisted fabrication of MXene-based films: Toward superior electromagnetic interference shielding and thermal management. J Colloid Interface Sci 2023; 652:705-717. [PMID: 37524621 DOI: 10.1016/j.jcis.2023.07.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
The development of thin and flexible films that possess both electromagnetic interference (EMI) shielding and thermal management capabilities has always been an intriguing pursuit, but itisnevertheless a crucialproblemtoaddress. Inspired by the deformability of liquid metal (LM) and film forming capacity of MXene, here we present a series of ternary compositing films prepared via cellulose nanofiber (CNF) assisted vacuum filtration technology. Originating from the highly conductive LM/MXene network, the MLMC film presents a maximum EMI shielding effectiness (EMI SE) of 78 dB at a tiny thickness of 45 μm, together with a high specific EMI SE of 3046 dB mm-1. Meanwhile, these compositing films also deliver excellent flexibility and mechanical reliability, showing no obvious decline in EMI shielding performance even after 1000 bending and 500 folding cycles, respectively. Moreover, notable anisotropic thermal conductive property was successfully achieved, allowing for a highly desirable in-plane thermal conductivity of 7.8 W m-1 K-1. This accomplishment also yielded an exceptional electro-thermal conversion capacity, enabling efficient low-voltage (3 V) heating capabilities. These captivating features are expected to greatly drive the widespread adoption of LM-based films in future flexible electronic and wearable technologies.
Collapse
Affiliation(s)
- Linxin Ran
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China
| | - Xinguo Ma
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China
| | - Lijuan Qiu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China
| | - Furong Sun
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China
| | - Longfei Yi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, PR China.
| | - Xiaoying Ji
- Cigar Technology Innovation Center of China Tobacco, Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610100, PR China.
| |
Collapse
|
18
|
Morita L, Jalali S, Vaheb A, Elsersawy R, Golwala K, Asad A, Dolez PI, Hogan JD, Khondoker MAH, Sameoto D. Towards High Efficiency and Rapid Production of Room-Temperature Liquid Metal Wires Compatible with Electronic Prototyping Connectors. MICROMACHINES 2023; 14:2227. [PMID: 38138396 PMCID: PMC10745818 DOI: 10.3390/mi14122227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
We present in this work new methodologies to produce, refine, and interconnect room-temperature liquid-metal-core thermoplastic elastomer wires that have extreme extendibility (>500%), low production time and cost at scale, and may be integrated into commonly used electrical prototyping connectors like a Japan Solderless Terminal (JST) or Dupont connectors. Rather than focus on the development of a specific device, the aim of this work is to demonstrate strategies and processes necessary to achieve scalable production of liquid-metal-enabled electronics and address several key challenges that have been present in liquid metal systems, including leak-free operation, minimal gallium corrosion of other electrode materials, low liquid metal consumption, and high production rates. The ultimate goal is to create liquid-metal-enabled rapid prototyping technologies, similar to what can be achieved with Arduino projects, where modification and switching of components can be performed in seconds, which enables faster iterations of designs. Our process is focused primarily on fibre-based liquid metal wires contained within thermoplastic elastomers. These fibre form factors can easily be integrated with wearable sensors and actuators as they can be sewn or woven into fabrics, or cast within soft robotic components.
Collapse
Affiliation(s)
- Luka Morita
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (L.M.); (S.J.); (K.G.); (A.A.); (J.D.H.)
| | - Shima Jalali
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (L.M.); (S.J.); (K.G.); (A.A.); (J.D.H.)
| | - Abolfazl Vaheb
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (L.M.); (S.J.); (K.G.); (A.A.); (J.D.H.)
| | - Rawan Elsersawy
- Industrial Systems Engineering, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Kunj Golwala
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (L.M.); (S.J.); (K.G.); (A.A.); (J.D.H.)
| | - Asad Asad
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (L.M.); (S.J.); (K.G.); (A.A.); (J.D.H.)
| | - Patricia I. Dolez
- Department of Human Ecology, University of Alberta, Edmonton, AB T6G 2N1, Canada;
| | - James D. Hogan
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (L.M.); (S.J.); (K.G.); (A.A.); (J.D.H.)
| | | | - Dan Sameoto
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (L.M.); (S.J.); (K.G.); (A.A.); (J.D.H.)
| |
Collapse
|
19
|
Ai L, Lin W, Cao C, Li P, Wang X, Lv D, Li X, Yang Z, Yao X. Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies. Nat Commun 2023; 14:7723. [PMID: 38001116 PMCID: PMC10673831 DOI: 10.1038/s41467-023-43574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The rapid-developing soft robots and wearable devices require flexible conductive materials to maintain electric functions over a large range of deformations. Considerable efforts are made to develop stretchable conductive materials; little attention is paid to the frequent failures of integrated circuits caused by the interface mismatch of soft substrates and rigid silicon-based microelectronics. Here, we present a stretchable solder with good weldability that can strongly bond with electronic components, benefiting from the hierarchical assemblies of liquid metal particles, small-molecule modulators, and non-covalently crosslinked polymer matrix. Our self-solder shows high conductivity (>2×105 S m-1), extreme stretchability (~1000%, and >600% with chip-integrated), and high toughness (~20 MJ m-3). Additionally, the dynamic interactions within our solder's surface and interior enable a range of unique features, including ease of integration, component substitution, and circuit recyclability. With all these features, we demonstrated an application as thermoforming technology for three-dimensional (3D) conformable electronics, showing potential in reducing the complexity of microchip interfacing, as well as scalable fabrication of chip-integrated stretchable circuits and 3D electronics.
Collapse
Affiliation(s)
- Liqing Ai
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Weikang Lin
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Chunyan Cao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Pengyu Li
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Xuejiao Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Dong Lv
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Zhengbao Yang
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
20
|
Zhang J, Zeng F, Liu B, Wang Z, Lin X, Zhao H, Wang Y. A biomimetic closed-loop recyclable, long-term durable, extreme-condition resistant, flame-retardant nanocoating synthesized by reversible flocculation assembly. MATERIALS HORIZONS 2023; 10:4551-4561. [PMID: 37564015 DOI: 10.1039/d3mh00720k] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Flame-retardant coatings have attracted increasing attention in mitigating the fire threat of flammable polymer materials. Their durable application inevitably provides high resistance to various complex environments, however, discarded stable materials will turn into another man-made waste disaster. The paradigm shift toward a sustainable future is to combine durability and recyclability of coatings. Herein, we demonstrate a biomimetic coating that reversibly captures active flame-retardant nanomaterials by flocculation assembly using anionic polyacrylamide covering the polyurethane foam surface. Strong hydrogen bonding and microstructural interlocking provide the coating with high durability under complex harsh conditions (underwater, chemical exposure, hydrothermal aging, long-term external extrusion, etc.). Meanwhile, the disassembly/reorganization of the coating can be easily repeated in response to pH stimulation with a recycling rate of 97%. The experiments and theoretical calculations reveal the mechanism of the reversible flocculation assembly. This biomimetic strategy of responsive flocculation assembly opens the way for functional coatings with integrated durability and recyclability.
Collapse
Affiliation(s)
- Jiayan Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Sichuan 610064, China.
| | - Furong Zeng
- The Collaborative Innovation Center for Eco-Friendly and Fire-safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Sichuan 610064, China.
| | - Bowen Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Sichuan 610064, China.
| | - Zihao Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Sichuan 610064, China.
| | - Xincen Lin
- The Collaborative Innovation Center for Eco-Friendly and Fire-safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Sichuan 610064, China.
| | - Haibo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Sichuan 610064, China.
| | - Yuzhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Sichuan 610064, China.
| |
Collapse
|
21
|
Reis Carneiro M, de Almeida AT, Tavakoli M, Majidi C. Recyclable Thin-Film Soft Electronics for Smart Packaging and E-Skins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301673. [PMID: 37436091 PMCID: PMC10502858 DOI: 10.1002/advs.202301673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/12/2023] [Indexed: 07/13/2023]
Abstract
Despite advances in soft, sticker-like electronics, few efforts have dealt with the challenge of electronic waste. Here, this is addressed by introducing an eco-friendly conductive ink for thin-film circuitry composed of silver flakes and a water-based polyurethane dispersion. This ink uniquely combines high electrical conductivity (1.6 × 105 S m-1 ), high resolution digital printability, robust adhesion for microchip integration, mechanical resilience, and recyclability. Recycling is achieved with an ecologically-friendly processing method to decompose the circuits into constituent elements and recover the conductive ink with a decrease of only 2.4% in conductivity. Moreover, adding liquid metal enables stretchability of up to 200% strain, although this introduces the need for more complex recycling steps. Finally, on-skin electrophysiological monitoring biostickers along with a recyclable smart package with integrated sensors for monitoring safe storage of perishable foods are demonstrated.
Collapse
Affiliation(s)
- Manuel Reis Carneiro
- Soft Machines LabDepartment of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- Institute of Systems and RoboticsDepartment of Electrical and Computer EngineeringUniversity of CoimbraCoimbra3030‐290Portugal
| | - Aníbal T. de Almeida
- Institute of Systems and RoboticsDepartment of Electrical and Computer EngineeringUniversity of CoimbraCoimbra3030‐290Portugal
| | - Mahmoud Tavakoli
- Institute of Systems and RoboticsDepartment of Electrical and Computer EngineeringUniversity of CoimbraCoimbra3030‐290Portugal
| | - Carmel Majidi
- Soft Machines LabDepartment of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| |
Collapse
|
22
|
Zhao S, Zheng J, Fang L, Zhang Y, Zhang L, Xia Y, Jiang Y. Ultra-robust, Highly Stretchable, and Conductive Nanocomposites with Self-healable Asymmetric Structures Prepared by a Simple Green Method. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37433744 DOI: 10.1021/acsami.3c02970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Flexible conductive polymer nanocomposites based on silver nanowires (AgNWs) have been extensively studied to develop the next generation of flexible electronic devices. Fiber materials with high strength and large stretching are an important part of high-performance wearable electronics. However, manufacturing conductive composites with both high mechanical strength and good stability remains challenging. In addition, the process of effectively dispersing conductive fillers into substrates is relatively complex, which greatly hampers its widespread application. Here, a simple green self-assembly preparation method in water is reported. The AgNW is evenly dispersed in aqueous, i.e., water-borne polyurethane (WPU) with water as the solvent, and a AgNW/WPU conductive nanocomposite film with an asymmetric structure is formed by self-assembly in one step. The film has high strength (≈49.2 MPa) and high strain (≈910%), low initial resistance (99.9 mΩ/sq), high conductivity (9968.1 S/cm), and excellent self-healing (93%) and adhesion. With good self-healing performance, fibers with a conductive filler spiral structure are formed. At the same time, the application of the conductive composite material with an asymmetric structure in intelligent wearability is demonstrated.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Jie Zheng
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Liu Fang
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Yuying Zhang
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Liming Zhang
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Yanzhi Xia
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Yijun Jiang
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| |
Collapse
|
23
|
Carvalho R, Brito-Pereira R, Pereira N, Lima AC, Ribeiro C, Correia V, Lanceros-Mendez S, Martins P. Improving the Performance of Paper-Based Dipole Antennas by Electromagnetic Flux Concentration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11234-11243. [PMID: 36802478 PMCID: PMC9982821 DOI: 10.1021/acsami.2c19889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
One of the essential issues in modern advanced materials science is to design and manufacture flexible devices, in particular in the framework of the Internet of Things (IoT), to improve integration into applications. An antenna is an essential component of wireless communication modules and, in addition to flexibility, compact dimensions, printability, low cost, and environmentally friendlier production strategies, also represent relevant functional challenges. Concerning the antenna's performance, the optimization of the reflection coefficient and maximum range remain the key goals. In this context, this work reports on screen-printed paper@Ag-based antennas and optimizes their functional properties, with improvements in the reflection coefficient (S11) from -8 to -56 dB and maximum transmission range from 208 to 256 m, with the introduction of a PVA-Fe3O4@Ag magnetoactive layer into the antenna's structure. The incorporated magnetic nanostructures allow the optimization of the functional features of antennas with possible applications ranging from broadband arrays to portable wireless devices. In parallel, the use of printing technologies and sustainable materials represents a step toward more sustainable electronics.
Collapse
Affiliation(s)
- R. Carvalho
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratory
of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - R. Brito-Pereira
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratory
of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
- Centre
for MicroElectroMechanics Systems (CMEMS), University of Minho, 4710-057 Braga, Portugal
| | - N. Pereira
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratory
of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - A. C. Lima
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratory
of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - C. Ribeiro
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratory
of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - V. Correia
- Centre
for MicroElectroMechanics Systems (CMEMS), University of Minho, 4710-057 Braga, Portugal
| | - S. Lanceros-Mendez
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratory
of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - P. Martins
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratory
of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
- IB-S
Institute
of Science and Innovation for Sustainability, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
24
|
Kim M, Lim H, Ko SH. Liquid Metal Patterning and Unique Properties for Next-Generation Soft Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205795. [PMID: 36642850 PMCID: PMC9951389 DOI: 10.1002/advs.202205795] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/27/2022] [Indexed: 05/28/2023]
Abstract
Room-temperature liquid metal (LM)-based electronics is expected to bring advancements in future soft electronics owing to its conductivity, conformability, stretchability, and biocompatibility. However, various difficulties arise when patterning LM because of its rheological features such as fluidity and surface tension. Numerous attempts are made to overcome these difficulties, resulting in various LM-patterning methods. An appropriate choice of patterning method based on comprehensive understanding is necessary to fully utilize the unique properties. Therefore, the authors aim to provide thorough knowledge about patterning methods and unique properties for LM-based future soft electronics. First, essential considerations for LM-patterning are investigated. Then, LM-patterning methods-serial-patterning, parallel-patterning, intermetallic bond-assisted patterning, and molding/microfluidic injection-are categorized and investigated. Finally, perspectives on LM-based soft electronics with unique properties are provided. They include outstanding features of LM such as conformability, biocompatibility, permeability, restorability, and recyclability. Also, they include perspectives on future LM-based soft electronics in various areas such as radio frequency electronics, soft robots, and heterogeneous catalyst. LM-based soft devices are expected to permeate the daily lives if patterning methods and the aforementioned features are analyzed and utilized.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| | - Hyungjun Lim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Department of Mechanical EngineeringPohang University of Science and Technology77 Chungam‐ro, Nam‐guPohang37673South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Institute of Advanced Machinery and Design/Institute of Engineering ResearchSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| |
Collapse
|
25
|
Dong L, Wang M, Wu J, Zhang C, Shi J, Oh K, Yao L, Zhu C, Morikawa H. Fully biofriendly, biodegradable and recyclable hydrogels based on covalent-like hydrogen bond engineering towards multimodal transient electronics. CHEMICAL ENGINEERING JOURNAL 2023; 457:141276. [DOI: 10.1016/j.cej.2023.141276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Zhu T, Ni Y, Biesold GM, Cheng Y, Ge M, Li H, Huang J, Lin Z, Lai Y. Recent advances in conductive hydrogels: classifications, properties, and applications. Chem Soc Rev 2023; 52:473-509. [PMID: 36484322 DOI: 10.1039/d2cs00173j] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogel-based conductive materials for smart wearable devices have attracted increasing attention due to their excellent flexibility, versatility, and outstanding biocompatibility. This review presents the recent advances in multifunctional conductive hydrogels for electronic devices. First, conductive hydrogels with different components are discussed, including pure single network hydrogels based on conductive polymers, single network hydrogels with additional conductive additives (i.e., nanoparticles, nanowires, and nanosheets), double network hydrogels based on conductive polymers, and double network hydrogels with additional conductive additives. Second, conductive hydrogels with a variety of functionalities, including self-healing, super toughness, self-growing, adhesive, anti-swelling, antibacterial, structural color, hydrophobic, anti-freezing, shape memory and external stimulus responsiveness are introduced in detail. Third, the applications of hydrogels in flexible devices are illustrated (i.e., strain sensors, supercapacitors, touch panels, triboelectric nanogenerator, bioelectronic devices, and robot). Next, the current challenges facing hydrogels are summarized. Finally, an imaginative but reasonable outlook is given, which aims to drive further development in the future.
Collapse
Affiliation(s)
- Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Yimeng Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yan Cheng
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang 325000, P. R. China
| | - Mingzheng Ge
- School of Textile and Clothing, Nantong University, Nantong 226019, P. R. China
| | - Huaqiong Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang 325000, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| |
Collapse
|
27
|
Liu S, Duan R, He S, Liu H, Huang M, Liu X, Liu W, Zhu C. Research progress on dielectric properties of PU and its application on capacitive sensors and OTFTs. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
28
|
Parvini E, Hajalilou A, Lopes PA, Tiago MSM, de Almeida AT, Tavakoli M. Triple crosslinking conductive hydrogels with digitally printable and outstanding mechanical stability for high-resolution conformable bioelectronics. SOFT MATTER 2022; 18:8486-8503. [PMID: 36321471 DOI: 10.1039/d2sm01103d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Soft, conductive, and stretchable hydrogels offer a broad variety of applications, including skin-interfacing electrodes, biomonitoring patches, and electrostimulation. Despite rapid developments over the last decades, a combination of good electrical and mechanical properties, low-cost fabrication, and biocompatibility is yet to be demonstrated. Also, the current methods for deposition and patterning of these hydrogels are manual, and there is a need toward autonomous and digital fabrication techniques. In this work, we demonstrate a novel Gallium (Ga) embedded sodium-alginate-polyacrylamide-LAPONITE® (Ga-SA-PAAM-La) hydrogel, that is ultra-stretchable (Maximum strain tolerance of∼985%), tough (toughness ∼30 kJ m-3), bio-adhesive (adhesion energy ∼216 J m-2), conductive, and digitally printable. Ga nanoparticles are used as radical initiators. By adjusting the sonication parameters, we control the solution viscosity and curing time, thus allowing us to prepare pre-polymers with the desired properties for casting, or digital printing. These hydrogels benefit from a triple-network structure due to the role of Ga droplets as crosslinkers besides BIS (N,N'-methylene-bis-acrylamide) and LAPONITE®, thus resulting in tough composite hydrogels. The inclusion of LAPONITE® into the hydrogel network improved its electrical conductivity, adhesion, digital printability, and its mechanical properties, (>6× compared to the same hydrogel without LAPONITE®). As electrodes in the electrocardiogram, the signal-to-noise ratio was surprisingly higher than the medical-grade Ag/AgCl electrodes, which are applied for monitoring muscles, heart, respiration, and body joint angle through EMG, ECG, and bioimpedance measurements. The results obtained prove that such digitally printed conductive and tough hydrogels can be used as potential electrodes and sensors in practical applications in the next generation of printed wearable computing devices.
Collapse
Affiliation(s)
- Elahe Parvini
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Abdollah Hajalilou
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Pedro Alhais Lopes
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Miguel Soares Maranha Tiago
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Anibal T de Almeida
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra, 3030-290, Portugal.
| |
Collapse
|
29
|
Xia Q, Li W, Zou X, Zheng S, Liu Z, Li L, Yan F. Metal-organic framework (MOF) facilitated highly stretchable and fatigue-resistant ionogels for recyclable sensors. MATERIALS HORIZONS 2022; 9:2881-2892. [PMID: 36097959 DOI: 10.1039/d2mh00880g] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ionogel-based flexible sensors are widely applied in wearable biomedical devices and soft robots. However, the abandoned ionic sensors are rapidly turning into e-waste. Here, we harness the porosity and the coordination of metal sites of metal-organic frameworks (MOFs) to develop physically crosslinked ionogels, which are composed of polymer chains that coordinate with the MOF metal sites. The covalent crosslinking of the host material transformed into reversible bond interactions that significantly enhance the mechanical properties of the MOF-ionogels. The obtained ionogels can endure an 11 000% stretch and exhibit Young's modulus and toughness of 58 MPa and 25 MJ m-3, respectively. In addition, the fracture energy is as high as 125 kJ m-2, outperforming most reported ionogels. Furthermore, the UiO-66-ionogels are fully recyclable and both the mechanical and electrical properties can be restored. The results of this work provide a new vision for the development of future "green" sensors.
Collapse
Affiliation(s)
- Qunmeng Xia
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Lingling Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|