1
|
Cui Z, Qi C, Zhou T, Yu Y, Wang Y, Zhang Z, Zhang Y, Wang W, Liu Y. Artificial intelligence and food flavor: How AI models are shaping the future and revolutionary technologies for flavor food development. Compr Rev Food Sci Food Saf 2025; 24:e70068. [PMID: 39783879 DOI: 10.1111/1541-4337.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 01/12/2025]
Abstract
The food flavor science, traditionally reliant on experimental methods, is now entering a promising era with the help of artificial intelligence (AI). By integrating existing technologies with AI, researchers can explore and develop new flavor substances in a digital environment, saving time and resources. More and more research will use AI and big data to enhance product flavor, improve product quality, meet consumer needs, and drive the industry toward a smarter and more sustainable future. In this review, we elaborate on the mechanisms of flavor recognition and their potential impact on nutritional regulation. With the increase of data accumulation and the development of internet information technology, food flavor databases and food ingredient databases have made great progress. These databases provide detailed information on the nutritional content, flavor molecules, and chemical properties of various food compounds, providing valuable data support for the rapid evaluation of flavor components and the construction of screening technology. With the popularization of AI in various fields, the field of food flavor has also ushered in new development opportunities. This review explores the mechanisms of flavor recognition and the role of AI in enhancing food flavor analysis through high-throughput omics data and screening technologies. AI algorithms offer a pathway to scientifically improve product formulations, thereby enhancing flavor and customized meals. Furthermore, it discusses the safety challenges of integrating AI into the food flavor industry.
Collapse
Affiliation(s)
- Zhiyong Cui
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chengliang Qi
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tianxing Zhou
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
- Department of Bioinformatics, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yanyang Yu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yueming Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| |
Collapse
|
2
|
Kim KH, Kwak J, Seo SE, Ha S, Kim GJ, Lee S, Sim SJ, Lee YK, Tran NL, Oh SJ, Kim WK, Song HS, Kwon OS. TRPA1 nanovesicle-conjugated receptonics for rapid biocide screening. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135282. [PMID: 39088952 DOI: 10.1016/j.jhazmat.2024.135282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/07/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024]
Abstract
Although biocides are important materials in modern society and help protect human health and the environment, increasing exposure to combined biocides can cause severe side effects in the human body, such as lung fibrosis. In this study, we developed a receptonics system to screen for biocides in combined household chemical products based on biocides. The system contains transient receptor potential ankyrin 1 (TRPA1) nanovesicles (NVs) to sense biocides based on pain receptors and a side-gated field-effect transistor (SGFET) using a single-layer graphene (SLG) micropattern channel. The binding affinities between the TRPA1 receptor and the various biocides were estimated by performing biosimulation and using a calcium ion (Ca2+) assay, and the sensitivity of the system was compared with that of TRPA1 NV receptonics systems. Based on the results of the TRPA1 NV receptonics system, the antagonistic and potentiation effects of combined biocides and household chemical products depended on the concentration. Finally, the TRPA1 NV receptonics system was applied to screen for biocides in real products, and its performance was successful. Based on these results, the TRPA1 NV receptonics system can be utilized to perform risk evaluations and identify biocides in a simple and rapid manner.
Collapse
Affiliation(s)
- Kyung Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jisung Kwak
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sung Eun Seo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Siyoung Ha
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Gyeong-Ji Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yeon Kyung Lee
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Biomicrosystem Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Na Ly Tran
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Seung Ja Oh
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Woo-Keun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Oh Seok Kwon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Seo SE, Kim KH, Ha S, Oh H, Kim J, Kim S, Kim L, Seo M, An JE, Park YM, Lee KG, Kim YK, Kim WK, Hong JJ, Song HS, Kwon OS. Synchronous Diagnosis of Respiratory Viruses Variants via Receptonics Based on Modeling Receptor-Ligand Dynamics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303079. [PMID: 37487578 DOI: 10.1002/adma.202303079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/19/2023] [Indexed: 07/26/2023]
Abstract
The transmission and pathogenesis of highly contagious fatal respiratory viruses are increasing, and the need for an on-site diagnostic platform has arisen as an issue worldwide. Furthermore, as the spread of respiratory viruses continues, different variants have become the dominant circulating strains. To prevent virus transmission, the development of highly sensitive and accurate on-site diagnostic assays is urgently needed. Herein, a facile diagnostic device is presented for multi-detection based on the results of detailed receptor-ligand dynamics simulations for the screening of various viral strains. The novel bioreceptor-treated electronics (receptonics) device consists of a multichannel graphene transistor and cell-entry receptors conjugated to N-heterocyclic carbene (NHC). An ultrasensitive multi-detection performance is achieved without the need for sample pretreatment, which will enable rapid diagnosis and prevent the spread of pathogens. This platform can be applied for the diagnosis of variants of concern in clinical respiratory virus samples and primate models. This multi-screening platform can be used to enhance surveillance and discriminate emerging virus variants before they become a severe threat to public health.
Collapse
Affiliation(s)
- Sung Eun Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyung Ho Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Siyoung Ha
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Hanseul Oh
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jinyeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Soomin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Lina Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Minah Seo
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jai Eun An
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoo Min Park
- Center for NanoBio Development, National NanoFab Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyoung G Lee
- Center for NanoBio Development, National NanoFab Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yu Kyung Kim
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Woo-Keun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34141, Republic of Korea
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Oh Seok Kwon
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
4
|
Wang P, Ye X, Liu J, Xiao Y, Tan M, Deng Y, Yuan M, Luo X, Zhang D, Xie X, Han X. Recent advancements in the taste transduction mechanism, identification, and characterization of taste components. Food Chem 2024; 433:137282. [PMID: 37696093 DOI: 10.1016/j.foodchem.2023.137282] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
In the realm of human nutrition, the phenomenon known as taste refers to a distinctive sensation elicited by the consumption of food and various compounds within the oral cavity and on the tongue. Moreover, taste affects the overall comfort in the oral cavity, and is a fundamental attribute for the assessment of food items. Accordingly, clarifying the material basis of taste would be conducive to deepening the cognition of taste, investigating the mechanism of taste presentation, and accurately covering up unpleasant taste. In this paper, the basic biology and physiology of transduction of bitter, umami, sweet, sour, salty, astringent, as well as spicy tastes are reviewed. Furthermore, the detection process of taste components is summarized. Particularly, the applications, advantages, and distinctions of various isolation, identification, and evaluation methods are discussed in depth. In conclusion, the future of taste component detection is discussed.
Collapse
Affiliation(s)
- Pinhu Wang
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China
| | - Xiang Ye
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Jun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yao Xiao
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China
| | - Min Tan
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China
| | - Yue Deng
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China
| | - Mulan Yuan
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China
| | - Xingmei Luo
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xingliang Xie
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China
| | - Xue Han
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, PR China.
| |
Collapse
|