1
|
Wu W, Shi Z, Ozerov M, Du Y, Wang Y, Ni XS, Meng X, Jiang X, Wang G, Hao C, Wang X, Zhang P, Pan C, Pan H, Sun Z, Yang R, Xu Y, Hou Y, Yan Z, Zhang C, Lu HZ, Chu J, Yuan X. The discovery of three-dimensional Van Hove singularity. Nat Commun 2024; 15:2313. [PMID: 38485978 PMCID: PMC10940667 DOI: 10.1038/s41467-024-46626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Arising from the extreme/saddle point in electronic bands, Van Hove singularity (VHS) manifests divergent density of states (DOS) and induces various new states of matter such as unconventional superconductivity. VHS is believed to exist in one and two dimensions, but rarely found in three dimension (3D). Here, we report the discovery of 3D VHS in a topological magnet EuCd2As2 by magneto-infrared spectroscopy. External magnetic fields effectively control the exchange interaction in EuCd2As2, and shift 3D Weyl bands continuously, leading to the modification of Fermi velocity and energy dispersion. Above the critical field, the 3D VHS forms and is evidenced by the abrupt emergence of inter-band transitions, which can be quantitatively described by the minimal model of Weyl semimetals. Three additional optical transitions are further predicted theoretically and verified in magneto-near-infrared spectra. Our results pave the way to exploring VHS in 3D systems and uncovering the coordination between electronic correlation and the topological phase.
Collapse
Affiliation(s)
- Wenbin Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200241, Shanghai, China
- Key Laboratory of Polar Materials and Devices, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China
- Shanghai Center of Brain-Inspired Intelligent Materials and Devices, East China Normal University, 200241, Shanghai, China
| | - Zeping Shi
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200241, Shanghai, China
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Yuhan Du
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200241, Shanghai, China
| | - Yuxiang Wang
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, 200433, Shanghai, China
| | - Xiao-Sheng Ni
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Xianghao Meng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200241, Shanghai, China
| | - Xiangyu Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200241, Shanghai, China
| | - Guangyi Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200241, Shanghai, China
| | - Congming Hao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200241, Shanghai, China
| | - Xinyi Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200241, Shanghai, China
| | - Pengcheng Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200241, Shanghai, China
| | - Chunhui Pan
- Multifunctional Platform for Innovation Precision Machining Center, East China Normal University, 200241, Shanghai, China
| | - Haifeng Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200241, Shanghai, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200241, Shanghai, China
| | - Run Yang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, 211189, Nanjing, China
| | - Yang Xu
- Key Laboratory of Polar Materials and Devices, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China
| | - Yusheng Hou
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Zhongbo Yan
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Cheng Zhang
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, 200433, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Fudan University, 201210, Shanghai, China
| | - Hai-Zhou Lu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
| | - Junhao Chu
- Key Laboratory of Polar Materials and Devices, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China
- Institute of Optoelectronics, Fudan University, 200438, Shanghai, China
| | - Xiang Yuan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 200241, Shanghai, China.
- Key Laboratory of Polar Materials and Devices, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China.
- Shanghai Center of Brain-Inspired Intelligent Materials and Devices, East China Normal University, 200241, Shanghai, China.
| |
Collapse
|