1
|
Guo H, Li K, Priimagi A, Zeng H. Emergent Locomotion in Self-Sustained, Mechanically Connected Soft Matter Ringsf. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503519. [PMID: 40304142 DOI: 10.1002/adma.202503519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/02/2025] [Indexed: 05/02/2025]
Abstract
In nature, the interplay between individual organisms often leads to the emergence of complex belabours, of which sophistication has been refined through millions of years of evolution. Synthetic materials research has focused on mimicking the natural complexity, e.g., by harnessing non-equilibrium states to drive self-assembly processes. However, it is highly challenging to understand the interaction dynamics between non-equilibrium entities and to obtain collective behavior that can arise autonomously through interaction. In this study, thermally fueled, twisted rings exhibiting self-sustained movements are used as fundamental units and their interactive behaviors and emergent functions are investigated. The rings are fabricated from connected thermoresponsive liquid crystal elastomers (LCEs) strips that undergo zero-elastic-energy-mode, autonomous motions upon a heat gradient. Single-ring structures with various twisting numbers and nontrivial links, and connected knots where several LCE rings (N = 2,3,4,5) are studied and linked. The observations uncover that controlled locomotion of the structures can emerge when N ≥ 3. The locomotion can be programmed by controlling the handedness at the connection points between the individual rings. These findings illustrate how group activity emerges from individual responsive material components through mechanical coupling, offering a model for programming autonomous locomotion in soft matter constructs.
Collapse
Affiliation(s)
- Hongshuang Guo
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Kai Li
- Department of Civil Engineering, Anhui Jianzhu University, Hefei, 230601, China
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Hao Zeng
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| |
Collapse
|
2
|
Qi F, Zhou C, Qing H, Sun H, Yin J. Aerial Track-Guided Autonomous Soft Ring Robot. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503288. [PMID: 40279520 DOI: 10.1002/advs.202503288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Indexed: 04/27/2025]
Abstract
Navigating in three-dimensional (3D) environments with precise motion control is challenging for soft robots due to their inherent flexibility. Inspired by aerial trams, here, an autonomous soft twisted ring robot is reported capable of navigating pre-defined tracks in 3D space under constant photothermal actuation, without requiring spatiotemporal control of actuation sources. Made of liquid crystal elastomers, the ring robot, suspended on thread-based tracks, self-flips around its centerline when exposed to constant infrared light. Curling the twisted ring around tracks converts its self-rotary motion into autonomous linear movement via screw theory. This mechanism enables the autonomous robot to adapt to tracks of various materials and micron-to-millimeter sizes, overcome obstacles like knots on tracks, transport loads over 12 times its weight, ascend and descend steep slopes up to 80°, and navigate complex paths, including circular, polygonal, and 3D spiral tracks, as well as loose threads with dynamically changing shapes.
Collapse
Affiliation(s)
- Fangjie Qi
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Caizhi Zhou
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Haitao Qing
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Haoze Sun
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
3
|
Zang T, Muhetaer R, Zhang C, Fu S, Cheng J, Lu X, Hu J, Xia H, Zhao Y. Self-Sustained Liquid Crystal Elastomer Actuators with Geometric Zero-Elastic-Energy Modes. Macromol Rapid Commun 2025:e2500134. [PMID: 40249475 DOI: 10.1002/marc.202500134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/30/2025] [Indexed: 04/19/2025]
Abstract
Recently, a novel and fascinating actuation mode of liquid crystal elastomers (LCEs), known as geometric zero-elastic-energy modes (ZEEMs), has drawn intensive research interest. Based on this actuation mechanism, LCE actuators exhibit untethered, autonomous movements under external stimulations, demonstrating significant potential for applications in intelligent soft robots, autonomous energy conversion systems, and smart optical tuning components. This perspective provides a timely summary of the current research on LCE actuators based on ZEEMs and highlights their future development trends and prospects, which will be of great interest to broad communities of researchers in fields of LCEs, biomimetic smart materials, soft robotics, and actuators.
Collapse
Affiliation(s)
- Tongzhi Zang
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, China
| | - Reyihanguli Muhetaer
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Chun Zhang
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Shuang Fu
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Junpeng Cheng
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xili Lu
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, China
| | - Hesheng Xia
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Yue Zhao
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| |
Collapse
|
4
|
Polat DS, Chen Z, Weima SAM, Aya S, Liu D. An autonomous snapper featuring adaptive actuation and embodied intelligence. SCIENCE ADVANCES 2025; 11:eadu4268. [PMID: 40184466 PMCID: PMC11970476 DOI: 10.1126/sciadv.adu4268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/03/2025] [Indexed: 04/06/2025]
Abstract
Developing artificial systems with autonomous motion is essential for creating devices that emulate nature's adaptive mechanisms. Here, we introduce a light-driven liquid crystalline network snapper that integrates both sensing and actuation capabilities, enabling adaptive responses to environmental conditions. Under constant light illumination, the snapper undergoes spontaneous snap-through transformation driven by the elastic instability embedded within the material. The snapper achieves out-of-equilibrium motion through continuous energy transfer with the environment, enabling it to sustain dynamic, reversible cycles of snapping without external control. We demonstrate the ability of the liquid crystalline network snapper to detect environmental changes-such as shifts in temperature, surface roughness, and color-demonstrating a form of embodied intelligence. This work offers a distinctive strategy for designing biomimetic devices that merge embodied intelligence with autonomous motion, opening pathways for advanced, adaptive systems for soft robotics.
Collapse
Affiliation(s)
- Duygu S. Polat
- Human Interactive Materials, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands
| | - Zihua Chen
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Samüel A. M. Weima
- Human Interactive Materials, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands
| | - Satoshi Aya
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, China
| | - Danqing Liu
- Human Interactive Materials, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands
| |
Collapse
|
5
|
Su J, He K, Li Y, Tu J, Chen X. Soft Materials and Devices Enabling Sensorimotor Functions in Soft Robots. Chem Rev 2025. [PMID: 40163535 DOI: 10.1021/acs.chemrev.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sensorimotor functions, the seamless integration of sensing, decision-making, and actuation, are fundamental for robots to interact with their environments. Inspired by biological systems, the incorporation of soft materials and devices into robotics holds significant promise for enhancing these functions. However, current robotics systems often lack the autonomy and intelligence observed in nature due to limited sensorimotor integration, particularly in flexible sensing and actuation. As the field progresses toward soft, flexible, and stretchable materials, developing such materials and devices becomes increasingly critical for advanced robotics. Despite rapid advancements individually in soft materials and flexible devices, their combined applications to enable sensorimotor capabilities in robots are emerging. This review addresses this emerging field by providing a comprehensive overview of soft materials and devices that enable sensorimotor functions in robots. We delve into the latest development in soft sensing technologies, actuation mechanism, structural designs, and fabrication techniques. Additionally, we explore strategies for sensorimotor control, the integration of artificial intelligence (AI), and practical application across various domains such as healthcare, augmented and virtual reality, and exploration. By drawing parallels with biological systems, this review aims to guide future research and development in soft robots, ultimately enhancing the autonomy and adaptability of robots in unstructured environments.
Collapse
Affiliation(s)
- Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiaqi Tu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
6
|
Ding L, Xiao H, Wang Y, Zhao Y, Zhu J, Du B, Chen S, Wang Y. Self-flickering bioinspired actuator with autonomous motion and structural color switching. J Colloid Interface Sci 2025; 678:684-692. [PMID: 39265339 DOI: 10.1016/j.jcis.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
Color-tunable actuators with motion and color-changing functions have attracted considerable attention in recent years, yet it remains a challenge to achieve the autonomous regulation of motion and color. Inspired by Apatura ilia butterfly with dynamic structural color and Pelargonium carnosum plant with moisture responsive bilayer structure, an automatic color-tunable actuator is developed by integrating photonic crystals layer and hygroscopic layer. Taking advantage of the asymmetric hygroscopicity between two layers and the angle-dependent structural color of photonic crystals, this actuator can continuously self-flicker in humid environment by visual switching in structural color due to automated cyclic motion. The actuator is assembled into the self-flapping biomimetic butterfly with switchable color and the self-reporting information array with dynamic visual display, demonstrating its autoregulatory motion and color. This work provides a new strategy for developing automatic color-tunable actuator and suggests its potential in the intelligent robot and optical display.
Collapse
Affiliation(s)
- Lei Ding
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haoyuan Xiao
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuqi Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuanfang Zhao
- College of Art and Design, Shenzhen University, Shenzhen 518060, China
| | - Jingshuai Zhu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bing Du
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shiguo Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuanfeng Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong 271000, China.
| |
Collapse
|
7
|
Feng W, He Q, Zhang L. Embedded Physical Intelligence in Liquid Crystalline Polymer Actuators and Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312313. [PMID: 38375751 PMCID: PMC11733722 DOI: 10.1002/adma.202312313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/27/2024] [Indexed: 02/21/2024]
Abstract
Responsive materials possess the inherent capacity to autonomously sense and respond to various external stimuli, demonstrating physical intelligence. Among the diverse array of responsive materials, liquid crystalline polymers (LCPs) stand out for their remarkable reversible stimuli-responsive shape-morphing properties and their potential for creating soft robots. While numerous reviews have extensively detailed the progress in developing LCP-based actuators and robots, there exists a need for comprehensive summaries that elucidate the underlying principles governing actuation and how physical intelligence is embedded within these systems. This review provides a comprehensive overview of recent advancements in developing actuators and robots endowed with physical intelligence using LCPs. This review is structured around the stimulus conditions and categorizes the studies involving responsive LCPs based on the fundamental control and stimulation logic and approach. Specifically, three main categories are examined: systems that respond to changing stimuli, those operating under constant stimuli, and those equip with learning and logic control capabilities. Furthermore, the persisting challenges that need to be addressed are outlined and discuss the future avenues of research in this dynamic field.
Collapse
Affiliation(s)
- Wei Feng
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
| | - Qiguang He
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
| | - Li Zhang
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
8
|
Deng Z, Li K, Priimagi A, Zeng H. Light-steerable locomotion using zero-elastic-energy modes. NATURE MATERIALS 2024; 23:1728-1735. [PMID: 39367165 PMCID: PMC11599032 DOI: 10.1038/s41563-024-02026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024]
Abstract
Driving synthetic materials out of equilibrium via dissipative mechanisms paves the way towards autonomous, self-sustained robotic motions. However, obtaining agile movement in diverse environments with dynamic steerability remains a challenge. Here we report a light-fuelled soft liquid crystal elastomer torus with self-sustained out-of-equilibrium movement. Under constant light excitation, the torus undergoes spontaneous rotation arising from the formation of zero-elastic-energy modes. By exploiting dynamic friction or drag, the zero-elastic-energy-mode-based locomotion direction can be optically controlled in various dry and fluid environments. We demonstrate the ability of the liquid crystal elastomer torus to laterally and vertically swim in the Stokes regime. The torus navigation can be extended to three-dimensional space with full steerability of the swimming direction. These results demonstrate the possibilities enabled by prestrained topological structures towards robotic functions of out-of-equilibrium soft matter.
Collapse
Affiliation(s)
- Zixuan Deng
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Kai Li
- Department of Civil Engineering, Anhui Jianzhu University, Hefei, China
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Hao Zeng
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| |
Collapse
|
9
|
Ge D, Hong Q, Liu X, Liang H. Self-Oscillation of Liquid Crystal Elastomer Fiber-Slide System Driven by Self-Flickering Light Source. Polymers (Basel) 2024; 16:3298. [PMID: 39684043 DOI: 10.3390/polym16233298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Self-oscillation, a control approach inspired by biological systems, demonstrates an autonomous, continuous, and regular response to constant external environmental stimuli. Until now, most self-oscillation systems have relied on a static external environment that continuously supplies energy, while materials typically absorb ambient energy only intermittently. In this article, we propose an innovative self-oscillation of liquid crystal elastomer (LCE) fiber-slide system driven by a self-flickering light source, which can efficiently regulate the energy input in sync with the self-oscillating behavior under constant voltage. This system primarily consists of a photo-responsive LCE fiber, a slider that includes a conductive segment and an insulating segment, a light source, and a conductive track. Using the dynamic LCE model, we derive the governing equation for the motion of the LCE fiber-slider system. Numerical simulations show that the LCE fiber-slide system under constant voltage exhibits two distinct motion phases, namely the stationary phase and the self-oscillation phase. The self-oscillation occurs due to the photo-induced contraction of the LCE fiber when the light source is activated. We also investigate the critical conditions required to initiate self-oscillation, and examine key system parameters influencing its frequency and amplitude. Unlike the continuous energy release from the static environmental field in most self-oscillation systems, our LCE fiber-slide self-oscillation system is driven by a self-flickering light source, which dynamically adjusts the energy input under a constant voltage to synchronize with the self-oscillating behavior. Our design features advantages such as spontaneous periodic lighting, a simple structure, energy efficiency, and ease of operation. It shows significant promise for dynamic circuit systems, monitoring devices, and optical applications.
Collapse
Affiliation(s)
- Dali Ge
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Institute of Advanced Technology, University of Science and Technology of China, Hefei 241200, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Qingrui Hong
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Xin Liu
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Haiyi Liang
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Institute of Advanced Technology, University of Science and Technology of China, Hefei 241200, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Xu Z, Zhu Y, Ai Y, Zhou D, Wu F, Li C, Chen L. Programmable, Self-Healable, and Photochromic Liquid Crystal Elastomers Based on Dynamic Hindered Urea Bonds for Biomimetic Flowers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400520. [PMID: 38733234 DOI: 10.1002/smll.202400520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Indexed: 05/13/2024]
Abstract
Recently, researchers have been exploring the use of dynamic covalent bonds (DCBs) in the construction of exchangeable liquid crystal elastomers (LCEs) for biomimetic actuators and devices. However, a significant challenge remains in achieving LCEs with both excellent dynamic properties and superior mechanical strength and stability. In this study, a diacrylate-functionalized monomer containing dynamic hindered urea bonds (DA-HUB) is employed to prepare exchangeable LCEs through a self-catalytic Michael addition reaction. By incorporating DA-HUB, the LCE system benefits from DCBs and hydrogen bonding, leading to materials with high mechanical strength and a range of dynamic properties such as programmability, self-healing, and recyclability. Leveraging these characteristics, bilayer LCE actuators with controlled reversible thermal deformation and outstanding dimensional stability are successfully fabricated using a simple welding method. Moreover, a biomimetic triangular plum, inspired by the blooming of flowers, is created to showcase reversible color and shape changes triggered by light and heat. This innovative approach opens new possibilities for the development of biomimetic and smart actuators and devices with multiple functionalities.
Collapse
Affiliation(s)
- Zhentian Xu
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yangyang Zhu
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yun Ai
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Feiyan Wu
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Chunquan Li
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Lie Chen
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
11
|
Dai CF, Zhu QL, Khoruzhenko O, Thelen M, Bai H, Breu J, Du M, Zheng Q, Wu ZL. Reversible Snapping of Constrained Anisotropic Hydrogels Upon Light Stimulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402824. [PMID: 38704682 PMCID: PMC11234394 DOI: 10.1002/advs.202402824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Indexed: 05/07/2024]
Abstract
Creatures, such as Venus flytrap and hummingbirds, capable of rapid predation through snap-through transition, provide paradigms for the design of soft actuators and robots with fast actions. However, these artificial "snappers" usually need contact stimulations to trigger the flipping. Reported here is a constrained anisotropic poly(N-isopropylacrylamide) hydrogel showing fast snapping upon light stimulation. This hydrogel is prepared by flow-induced orientation of nanosheets (NSs) within a rectangular tube. The precursor containing gold nanoparticles is immediately exposed to UV light for photopolymerization to fix the ordered structure of NSs. Two ends of the slender gel are clamped to form a buckle with bistability nature, which snaps to the other side upon laser irradiation. Systematic experiments are conducted to investigate the influences of power intensity and irradiation angle of the laser, as well as thickness and buckle height of the gel, on the snapping behaviors. The fast snapping is further used to kick a plastic bead and control the switch state. Furthermore, synergetic or oscillated snapping of the gel with two buckles of opposite directions is realized by inclined irradiation of a laser or horizontal irradiation with two lasers, respectively. Such light-steered snapping of hydrogels should merit designing soft robots, energy harvests, etc.
Collapse
Affiliation(s)
- Chen Fei Dai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qing Li Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Olena Khoruzhenko
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Michael Thelen
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Huiying Bai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Josef Breu
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Miao Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
12
|
Gu M, Echtermeyer TJ. A Graphene-Mica-Based Photo-Thermal Actuator for Small-Scale Soft Robots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311001. [PMID: 38342582 DOI: 10.1002/smll.202311001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/22/2024] [Indexed: 02/13/2024]
Abstract
Small-scale soft robots demonstrate intricate life-like behavior and allow navigation through arduous terrains and confined spaces. However, the primary challenges in soft robotics are 1) creating actuators capable of quick, reversible 22D-to-3D shape morphing with adjustable stiffness, 2) improving actuation force and robustness for wider applications, and 3) designing holistic systems for untethered manipulation and flexible multimodality in practical scenarios. Here, mechanically compliant paper-like robots are presented with multiple functionalities. The robots are based on photothermally activated polymer bimorph actuators that incorporate graphene for the photo-thermal conversion of energy and muscovite mica, with its high Young's modulus, providing the required stiffness. Conversion of light into heat leads to thermal expansion and bending of the stress-mismatched structures. The actuators are designed on the basis of a modified Timoshenko model, and numerical simulations are employed to evaluate their actuation performance. The membranes can be utilized for light-driven programmable shape-morphing. Localized control allows the implementation of active hinges at arbitrary positions within the membrane. Integrated into small-scale soft robots in mass production, the membrane facilitates locomotion, rolling, and flipping of the robots. Further, grasping and kicking mechanisms are demonstrated, highlighting the potential of such actuators for future applications.
Collapse
Affiliation(s)
- Ming Gu
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK
- Photon Science Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Tim J Echtermeyer
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK
- Photon Science Institute, University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
13
|
Zhou X, Chen G, Jin B, Feng H, Chen Z, Fang M, Yang B, Xiao R, Xie T, Zheng N. Multimodal Autonomous Locomotion of Liquid Crystal Elastomer Soft Robot. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402358. [PMID: 38520731 PMCID: PMC11187929 DOI: 10.1002/advs.202402358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Self-oscillation phenomena observed in nature serve as extraordinary inspiration for designing synthetic autonomous moving systems. Converting self-oscillation into designable self-sustained locomotion can lead to a new generation of soft robots that require minimal/no external control. However, such locomotion is typically constrained to a single mode dictated by the constant surrounding environment. In this study, a liquid crystal elastomer (LCE) robot capable of achieving self-sustained multimodal locomotion, with the specific motion mode being controlled via substrate adhesion or remote light stimulation is presented. Specifically, the LCE is mechanically trained to undergo repeated snapping actions to ensure its self-sustained rolling motion in a constant gradient thermal field atop a hotplate. By further fine-tuning the substrate adhesion, the LCE robot exhibits reversible transitions between rolling and jumping modes. In addition, the rolling motion can be manipulated in real time through light stimulation to perform other diverse motions including turning, decelerating, stopping, backing up, and steering around complex obstacles. The principle of introducing an on-demand gate control offers a new venue for designing future autonomous soft robots.
Collapse
Affiliation(s)
- Xiaorui Zhou
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Guancong Chen
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Binjie Jin
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Haijun Feng
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Zike Chen
- State Key Laboratory of Fluid Power and Mechatronic SystemsKey Laboratory of Soft Machines and Smart Devices of Zhejiang ProvinceDepartment of Engineering MechanicsZhejiang UniversityHangzhou310027China
| | - Mengqi Fang
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Bo Yang
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Rui Xiao
- State Key Laboratory of Fluid Power and Mechatronic SystemsKey Laboratory of Soft Machines and Smart Devices of Zhejiang ProvinceDepartment of Engineering MechanicsZhejiang UniversityHangzhou310027China
| | - Tao Xie
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Ning Zheng
- State Key Laboratory of Chemical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| |
Collapse
|
14
|
Kim YB, Yang S, Kim DS. Sidewinder-Inspired Self-Adjusting, Lateral-Rolling Soft Robots for Autonomous Terrain Exploration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308350. [PMID: 38286667 PMCID: PMC11005722 DOI: 10.1002/advs.202308350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Indexed: 01/31/2024]
Abstract
Helical structures of liquid crystal elastomers (LCEs) hold promise in soft robotics for self-regulated rolling motions. The understanding of their motion paths and potentials for terrain exploration remains limited. This study introduces a self-adjusting, lateral-rolling soft robot inspired by sidewinder snakes. The spring-like LCE helical filaments (HFs) autonomously respond to thermal cues, demonstrating dynamic and sustainable locomotion with adaptive rolling along non-linear paths. By fine-tuning the diameter, pitch, and modulus of the LCE HFs, and the environmental temperature, the movements of the LCE HFs, allowing for exploration of diverse terrains over a 600 cm2 area within a few minutes, can be programmed. LCE HFs are showcased to navigate through over nine obstacles, including maze escaping, terrain exploration, target hunting, and successfully surmounting staircases through adaptable rolling.
Collapse
Affiliation(s)
- Young Been Kim
- Department of Polymer EngineeringPukyong National University45 Yongso‐ro, Nam‐guBusan48513South Korea
| | - Shu Yang
- Department of Materials Science and EngineeringUniversity of Pennsylvania3231 Walnut StreetPhiladelphiaPA19104USA
| | - Dae Seok Kim
- Department of Polymer EngineeringPukyong National University45 Yongso‐ro, Nam‐guBusan48513South Korea
| |
Collapse
|
15
|
Nie ZZ, Wang M, Yang H. Self-sustainable autonomous soft actuators. Commun Chem 2024; 7:58. [PMID: 38503863 PMCID: PMC10951225 DOI: 10.1038/s42004-024-01142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Self-sustainable autonomous locomotion is a non-equilibrium phenomenon and an advanced intelligence of soft-bodied organisms that exhibit the abilities of perception, feedback, decision-making, and self-sustainment. However, artificial self-sustaining architectures are often derived from algorithms and onboard modules of soft robots, resulting in complex fabrication, limited mobility, and low sensitivity. Self-sustainable autonomous soft actuators have emerged as naturally evolving systems that do not require human intervention. With shape-morphing materials integrating in their structural design, soft actuators can direct autonomous responses to complex environmental changes and achieve robust self-sustaining motions under sustained stimulation. This perspective article discusses the recent advances in self-sustainable autonomous soft actuators. Specifically, shape-morphing materials, motion characteristics, built-in negative feedback loops, and constant stimulus response patterns used in autonomous systems are summarized. Artificial self-sustaining autonomous concepts, modes, and deformation-induced functional applications of soft actuators are described. The current challenges and future opportunities for self-sustainable actuation systems are also discussed.
Collapse
Affiliation(s)
- Zhen-Zhou Nie
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Institute of Advanced Materials, Southeast University, Nanjing, 211189, China
| | - Meng Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Institute of Advanced Materials, Southeast University, Nanjing, 211189, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Institute of Advanced Materials, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
16
|
Qi F, Li Y, Hong Y, Zhao Y, Qing H, Yin J. Defected twisted ring topology for autonomous periodic flip-spin-orbit soft robot. Proc Natl Acad Sci U S A 2024; 121:e2312680121. [PMID: 38194462 PMCID: PMC10801889 DOI: 10.1073/pnas.2312680121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
Periodic spin-orbit motion is ubiquitous in nature, observed from electrons orbiting nuclei to spinning planets orbiting the Sun. Achieving autonomous periodic orbiting motions, along circular and noncircular paths, in soft mobile robotics is crucial for adaptive and intelligent exploration of unknown environments-a grand challenge yet to be accomplished. Here, we report leveraging a closed-loop twisted ring topology with a defect for an autonomous soft robot capable of achieving periodic spin-orbiting motions with programmed circular and re-programmed irregular-shaped trajectories. Constructed by bonding a twisted liquid crystal elastomer ribbon into a closed-loop ring topology, the robot exhibits three coupled periodic self-motions in response to constant temperature or constant light sources: inside-out flipping, self-spinning around the ring center, and self-orbiting around a point outside the ring. The coupled spinning and orbiting motions share the same direction and period. The spinning or orbiting direction depends on the twisting chirality, while the orbital radius and period are determined by the twisted ring geometry and thermal actuation. The flip-spin and orbiting motions arise from the twisted ring topology and a bonding site defect that breaks the force symmetry, respectively. By utilizing the twisting-encoded autonomous flip-spin-orbit motions, we showcase the robot's potential for intelligently mapping the geometric boundaries of unknown confined spaces, including convex shapes like circles, squares, triangles, and pentagons and concaves shapes with multi-robots, as well as health monitoring of unknown confined spaces with boundary damages.
Collapse
Affiliation(s)
- Fangjie Qi
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27695
| | - Yanbin Li
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27695
| | - Yaoye Hong
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27695
| | - Yao Zhao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27695
| | - Haitao Qing
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27695
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27695
| |
Collapse
|
17
|
Zhao Y, Hong Y, Li Y, Qi F, Qing H, Su H, Yin J. Physically intelligent autonomous soft robotic maze escaper. SCIENCE ADVANCES 2023; 9:eadi3254. [PMID: 37682998 PMCID: PMC10491293 DOI: 10.1126/sciadv.adi3254] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
Autonomous maze navigation is appealing yet challenging in soft robotics for exploring priori unknown unstructured environments, as it often requires human-like brain that integrates onboard power, sensors, and control for computational intelligence. Here, we report harnessing both geometric and materials intelligence in liquid crystal elastomer-based self-rolling robots for autonomous escaping from complex multichannel mazes without the need for human-like brain. The soft robot powered by environmental thermal energy has asymmetric geometry with hybrid twisted and helical shapes on two ends. Such geometric asymmetry enables built-in active and sustained self-turning capabilities, unlike its symmetric counterparts in either twisted or helical shapes that only demonstrate transient self-turning through untwisting. Combining self-snapping for motion reflection, it shows unique curved zigzag paths to avoid entrapment in its counterparts, which allows for successful self-escaping from various challenging mazes, including mazes on granular terrains, mazes with narrow gaps, and even mazes with in situ changing layouts.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yaoye Hong
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yanbin Li
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Fangjie Qi
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Haitao Qing
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Hao Su
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Joint NCSU/UNC Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
18
|
Ge D, Dai Y, Li K. Self-Oscillating Liquid Crystal Elastomer Helical Spring Oscillator with Combined Tension and Torsion. Polymers (Basel) 2023; 15:3294. [PMID: 37571189 PMCID: PMC10422366 DOI: 10.3390/polym15153294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/23/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Self-oscillation is the autonomous maintenance of continuous periodic motion through energy absorption from non-periodic external stimuli, making it particularly attractive for fabricating soft robots, energy-absorbing devices, mass transport devices, and so on. Inspired by the self-oscillating system that presents high degrees of freedom and diverse complex oscillatory motions, we created a self-oscillating helical spring oscillator with combined tension and torsion under steady illumination, among which a mass block and a liquid crystal elastomer (LCE) helical spring made with LCE wire are included. Considering the well-established helical spring model and the dynamic LCE model, a nonlinear dynamic model of the LCE helical spring oscillator under steady illumination is proposed. From numerical calculation, the helical spring oscillator upon exposure to steady illumination possesses two motion regimes, which are the static regime and the self-tension-torsion regime. Contraction of the LCE wire under illumination is necessary to generate the self-tension-torsion of the helical spring oscillator, with its continuous periodic motion being maintained by the mutual balance between light energy input and damping dissipation. Additionally, the critical conditions for triggering the self-tension-torsion, as well as the vital system parameters affecting its frequencies and amplitudes of the translation and the rotation, were investigated in detail. This self-tension-torsion helical spring oscillator is unique in its customizable mechanical properties via its structural design, small material strain but large structural displacement, and ease of manufacture. We envision a future of novel designs for soft robotics, energy harvesters, active machinery, and so on.
Collapse
Affiliation(s)
- Dali Ge
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (D.G.); (Y.D.)
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230001, China
| | - Yuntong Dai
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (D.G.); (Y.D.)
| | - Kai Li
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; (D.G.); (Y.D.)
| |
Collapse
|
19
|
He Q, Yin R, Hua Y, Jiao W, Mo C, Shu H, Raney JR. A modular strategy for distributed, embodied control of electronics-free soft robots. SCIENCE ADVANCES 2023; 9:eade9247. [PMID: 37418520 DOI: 10.1126/sciadv.ade9247] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 06/02/2023] [Indexed: 07/09/2023]
Abstract
Robots typically interact with their environments via feedback loops consisting of electronic sensors, microcontrollers, and actuators, which can be bulky and complex. Researchers have sought new strategies for achieving autonomous sensing and control in next-generation soft robots. We describe here an electronics-free approach for autonomous control of soft robots, whose compositional and structural features embody the sensing, control, and actuation feedback loop of their soft bodies. Specifically, we design multiple modular control units that are regulated by responsive materials such as liquid crystal elastomers. These modules enable the robot to sense and respond to different external stimuli (light, heat, and solvents), causing autonomous changes to the robot's trajectory. By combining multiple types of control modules, complex responses can be achieved, such as logical evaluations that require multiple events to occur in the environment before an action is performed. This framework for embodied control offers a new strategy toward autonomous soft robots that operate in uncertain or dynamic environments.
Collapse
Affiliation(s)
- Qiguang He
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rui Yin
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yucong Hua
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weijian Jiao
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengyang Mo
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hang Shu
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jordan R Raney
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Kim DS, Lee YJ, Kim YB, Wang Y, Yang S. Autonomous, untethered gait-like synchronization of lobed loops made from liquid crystal elastomer fibers via spontaneous snap-through. SCIENCE ADVANCES 2023; 9:eadh5107. [PMID: 37196078 DOI: 10.1126/sciadv.adh5107] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
The transition from one equilibrium state to another via rapid snap-through can store elastic energy and release it as kinetic energy for rapid motion as seen in Venus flytrap and hummingbird to catch insects mid-flight. They are explored in soft robotics for repeated and autonomous motions. In this study, we synthesize curved liquid crystal elastomer (LCE) fibers as the building blocks that can undergo buckling instability upon heated on a hot surface, leading to autonomous snap-through and rolling behaviors. When they are connected into lobed loops, where each fiber is geometrically constrained by the neighboring ones, they demonstrate autonomous, self-regulated, and repeated synchronization with a frequency of ~1.8 Hz. By adding a rigid bead on the fiber, we can fine-tune the actuation direction and speed (up to ~2.4 mm/s). Last, we demonstrate various gait-like locomotion patterns using the loops as the robot's legs.
Collapse
Affiliation(s)
- Dae Seok Kim
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA
- Pukyong National University, Department of Polymer Engineering, 45 Yongso-ro, Nam-gu, Busan, South Korea
| | - Young-Joo Lee
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA
| | - Young Been Kim
- Pukyong National University, Department of Polymer Engineering, 45 Yongso-ro, Nam-gu, Busan, South Korea
| | - Yuchen Wang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|