1
|
Ogawa T, Tanaka M, Kawashima N, Ito T, Nakayama K, Kato T, Kitaoka S. Controllable Crystalline Phases of Multi-Cation Oxides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412280. [PMID: 40285617 PMCID: PMC12120718 DOI: 10.1002/advs.202412280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/21/2025] [Indexed: 04/29/2025]
Abstract
Multi-cation oxides have been extensively studied over the past decade for various solid-state applications. The source of their functionality lies in a wide compositional search space derived from countless cation combinations and diverse crystal structures formed in metal oxides. However, due to the vast space and complexity of structure control, material exploration has been limited to dispersed compositions under different synthesis conditions, hindering their systematic understanding and rational design. Here, a crystalline-phase map of multi-cation rare-earth titanates is reported, where three types of crystals, i.e., cubic and hexagonal, and orthorhombic phases, emerge depending on the composition and temperature and exhibit systematic changes. The crystal structures of each phase are thoroughly characterized with X-ray diffraction, electron microscopy, and first-principles calculations. The configurational entropies calculated from the crystallographic information support the phase-boundary shift between hexagonal and orthorhombic phases observed in the phase map. Further, a machine learning procedure is proposed for constructing the map from sparse experimental data, allowing predictive exploration for stable crystalline phases across a large compositional space. These findings may facilitate the design of multi-cation oxides with a desired structure dispersed in a large search space.
Collapse
Affiliation(s)
- Takafumi Ogawa
- Nanostructures Research LaboratoryJapan Fine Ceramics Center2‐4‐1 Mutsuno, Atsuta‐kuNagoyaAichi456‐8587Japan
| | - Makoto Tanaka
- Materials Research and Development LaboratoryJapan Fine Ceramics Center2‐4‐1 Mutsuno, Atsuta‐kuNagoyaAichi456‐8587Japan
| | - Naoki Kawashima
- Materials Research and Development LaboratoryJapan Fine Ceramics Center2‐4‐1 Mutsuno, Atsuta‐kuNagoyaAichi456‐8587Japan
| | - Taishi Ito
- Nanostructures Research LaboratoryJapan Fine Ceramics Center2‐4‐1 Mutsuno, Atsuta‐kuNagoyaAichi456‐8587Japan
| | - Kei Nakayama
- Nanostructures Research LaboratoryJapan Fine Ceramics Center2‐4‐1 Mutsuno, Atsuta‐kuNagoyaAichi456‐8587Japan
| | - Takeharu Kato
- Nanostructures Research LaboratoryJapan Fine Ceramics Center2‐4‐1 Mutsuno, Atsuta‐kuNagoyaAichi456‐8587Japan
| | - Satoshi Kitaoka
- Materials Research and Development LaboratoryJapan Fine Ceramics Center2‐4‐1 Mutsuno, Atsuta‐kuNagoyaAichi456‐8587Japan
- Tokyo University of Technology1404‐1, KatakuraHachiojiTokyo192‐0982Japan
| |
Collapse
|
2
|
Bhattacharya N, Joshi SC, Patel RK, Zhang J, Saha A, Mandal P, Ojha SK, Gloskovskii A, Schlueter C, Freeland JW, Zhang Z, Zhou H, Yang Z, Middey S. Nanoscale Inhomogeneity and Epitaxial Strain Control Metallicity in Single Crystalline Thin Films of High Entropy Oxide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418490. [PMID: 40223369 DOI: 10.1002/adma.202418490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/21/2025] [Indexed: 04/15/2025]
Abstract
Understanding the electronic transport properties of thin films of high-entropy oxide (HEO), having multiple elements at the same crystallographic site, is crucial for their potential electronic applications. However, very little is known about the metallic phase of HEOs even in bulk form. This work delves into the interplay between global and local structural distortion and electronic properties of single crystalline thin films of (La0.2Pr0.2Nd0.2Sm0.2Eu0.2)NiO3, which exhibit metal-insulator transition under tensile strain. Employing electron microscopy and elemental resolved electron energy loss spectroscopy, we provide direct evidence of nanoscale chemical inhomogeneities at the rare-earth site, leading to a broad distribution of Ni-O-Ni bond angles. However, the octahedral rotation pattern remains the same throughout. The metallic phase consists of insulating patches with more distorted Ni-O-Ni bond angles, responsible for higher resistance exponents with increased compositional complexity. Moreover, a rare, fully metallic state of HEO thin film is achieved under compressive strain. We further demonstrate a direct correlation between the suppression of the insulating behavior and increased electronic hopping. Our findings provide a foundation for exploring Mott-Anderson electron localization physics in the high-entropy regime.
Collapse
Affiliation(s)
| | | | - Ranjan Kumar Patel
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Jianwei Zhang
- Key Laboratory of Polar Materials and Devices, East China Normal University, Shanghai, 200241, China
| | - Akash Saha
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Prithwijit Mandal
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Shashank Kumar Ojha
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | | | | | - John W Freeland
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Zhan Zhang
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Hua Zhou
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Zhenzhong Yang
- Key Laboratory of Polar Materials and Devices, East China Normal University, Shanghai, 200241, China
| | - Srimanta Middey
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
3
|
Sun H, Xu J, Wu R, Chen J, Liu Y, Li K, Chang A, Zhang B. Synergistic Entropy Engineering with Oxygen Vacancy: Modulating Microstructure for Extraordinary Thermosensitive Property in ReNbO 4 Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408952. [PMID: 39887548 DOI: 10.1002/smll.202408952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/09/2025] [Indexed: 02/01/2025]
Abstract
The pursuit of high precision and stability simultaneously in high-temperature thermistor fields is longstanding. However, most spinel or perovskite-structured thermosensitive materials struggle to tolerate prolonged high-temperature environments at the expense of sensitivity and stability. Here, a novel entropy engineering strategy involving vacancies is proposed to balance sensitivity and stability for fergusonite-structured ReNbO4 (Re is a rare earth element) material in extreme environments. The synergistic effect of entropy stabilization and allovalent substitution on the A-site generates unusually high concentrations of oxygen vacancy that improves the electronic structure and structural stability. Moreover, entropy engineering involving oxygen vacancies introduces potent and stable microstructural features including twinned domains, lattice distortion, and lattice reconfigurations, which facilitate stability and accuracy at a wide temperature range, thereby synergistically contributing to excellent thermosensitive properties. As-prepared high-entropy ceramics show low aging drift rates and high-temperature measurement accuracy over the extended temperature range of 223-1423 K, exhibiting a competitive temperature coefficient of resistivity of 0.223%/K at 1423 K. This work not only provides valuable insights into the design of high-temperature thermosensitive sensors but also establishes an effective paradigm for entropy engineering involving vacancies.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianan Xu
- State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruifeng Wu
- State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Chen
- State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafei Liu
- State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi, 830011, China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry of CAS, Changchun, 130022, China
| | - Aimin Chang
- State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi, 830011, China
| | - Bo Zhang
- State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi, 830011, China
| |
Collapse
|
4
|
Zou J, Tang L, He W, Zhang X. High-Entropy Oxides: Pioneering the Future of Multifunctional Materials. ACS NANO 2024; 18:34492-34530. [PMID: 39666001 DOI: 10.1021/acsnano.4c12538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The high-entropy concept affords an effective method to design and construct customized materials with desired characteristics for specific applications. Extending this concept to metal oxides, high-entropy oxides (HEOs) can be fabricated, and the synergistic elemental interactions result in the four core effects, i.e., the high-entropy effect, sluggish-diffusion effect, severe-lattice-distortion effect, and cocktail effect. All these effects greatly enhance the functionalities of this vast material family, surpassing conventional low- and medium-entropy metal oxides. For instance, the high phase stability, excellent electrochemical performance, and fast ionic conductivity make HEOs one of the hot next-generation candidate materials for electrochemical energy conversion and storage devices. Significantly, the extraordinary mechanical, electrical, optical, thermal, and magnetic properties of HEOs are very attractive for applications beyond catalysts and batteries, such as electronic devices, optic equipment, and thermal barrier coatings. This review will overview the entropy-stabilized composition and structure of HEOs, followed by a comprehensive introduction to the electrical, optical, thermal, and magnetic properties. Then, several typical applications, i.e., transistor, memristor, artificial synapse, transparent glass, photodetector, light absorber and emitter, thermal barrier coating, and cooling pigment, are synoptically presented to show the broad application prospect of HEOs. Lastly, the intelligence-guided design and high-throughput screening of HEOs are briefly introduced to point out future development trends, which will become powerful tools to realize the customized design and synthesis of HEOs with optimal composition, structure, and performance for specific applications.
Collapse
Affiliation(s)
- Jingyun Zou
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lei Tang
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Weiwei He
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Xiaohua Zhang
- College of Textiles, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Gu X, Guo XB, Li WH, Jiang YP, Liu QX, Tang XG. High-Entropy Materials for Application: Electricity, Magnetism, and Optics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53372-53392. [PMID: 39324826 DOI: 10.1021/acsami.4c11898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
High-entropy materials (HEMs) have recently emerged as a prominent research focus in materials science, gaining considerable attention because of their complex composition and exceptional properties. These materials typically comprise five or more elements mixed approximately in equal atomic ratios. The resultant high-entropy effects, lattice distortions, slow diffusion, and cocktail effects contribute to their unique physical, chemical, and optical properties. This study reviews the electrical, magnetic, and optical properties of HEMs and explores their potential applications. Additionally, it discusses the theoretical calculation methods and preparation techniques for HEMs, thereby offering insights and prospects for their future development.
Collapse
Affiliation(s)
- Xuan Gu
- School of Physics & Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Bin Guo
- School of Physics & Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wen-Hua Li
- School of Physics & Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan-Ping Jiang
- School of Physics & Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qiu-Xiang Liu
- School of Physics & Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xin-Gui Tang
- School of Physics & Optoelectric Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
6
|
Sen S, Palabathuni M, Ryan KM, Singh S. High Entropy Oxides: Mapping the Landscape from Fundamentals to Future Vistas: Focus Review. ACS ENERGY LETTERS 2024; 9:3694-3718. [PMID: 39144813 PMCID: PMC11320657 DOI: 10.1021/acsenergylett.4c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 08/16/2024]
Abstract
High-entropy materials (HEMs) are typically crystalline, phase-pure and configurationally disordered materials that contain at least five elements evenly blended into a solid-solution framework. The discovery of high-entropy alloys (HEAs) and high-entropy oxides (HEOs) disrupted traditional notions in materials science, providing avenues for the exploration of new materials, property optimization, and the pursuit of advanced applications. While there has been significant research on HEAs, the creative breakthroughs in HEOs are still being revealed. This focus review aims at developing a structured framework for expressing the concept of HEM, with special emphasis on the crystal structure and functional properties of HEOs. Insights into the recent synthetic advances, that foster prospective outcomes and their current applications in electrocatalysis, and battery, are comprehensively discussed. Further, it sheds light on the existing constraints in HEOs, highlights the adoption of theoretical and experimental tools to tackle challenges, while delineates potential directions for exploration in energy application.
Collapse
Affiliation(s)
- Suvodeep Sen
- Department of Chemical Sciences
and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Manoj Palabathuni
- Department of Chemical Sciences
and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Kevin M. Ryan
- Department of Chemical Sciences
and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Shalini Singh
- Department of Chemical Sciences
and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
7
|
Zhang L, Jia J, Yan J. Challenges and Strategies for Synthesizing High Performance Micro and Nanoscale High Entropy Oxide Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309586. [PMID: 38348913 DOI: 10.1002/smll.202309586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/22/2024] [Indexed: 07/13/2024]
Abstract
High-entropy oxide micro/nano materials (HEO MNMs) have shown broad application prospects and have become hot materials in recent years. This review comprehensively provides an overview of the latest developments and covers key aspects of HEO MNMs, by discussing design principles, computer-aided structural design, synthesis challenges and strategies, as well as application areas. The analysis of the synthesis process includes the role of high-throughput process in large-scale synthesis of HEOs MNMs, along with the effects of temperature elevation and undercooling on the formation of HEO MNMs. Additionally, the article summarizes the application of high-precision and in situ characterization devices in the field of HEO MNMs, offering robust support for related research. Finally, a brief introduction to the main applications of HEO MNMs is provided, emphasizing their key performances. This review offers valuable guidance for future research on HEO MNMs, outlining critical issues and challenges in the current field.
Collapse
Affiliation(s)
- Liang Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jiru Jia
- School of Textile Garment and Design, Changshu Institute of Technology, Suzhou, Jiangsu Province, 215500, China
| | - Jianhua Yan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
8
|
Sun H, Wang Y, Liu Y, Wu R, Chang A, Zhao P, Zhang B. Enhanced Thermal Stability and Broad Temperature Range in High-Entropy (La 0.2Ce 0.2Nd 0.2Sm 0.2Eu 0.2)NbO 4 Ceramics. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38416064 DOI: 10.1021/acsami.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Next-generation high-temperature applications increasingly rely heavily on advanced thermistor materials with enhanced thermal stability and electrical performance. However, thus far, the great challenge of realizing high thermal stability and precision in a wide temperature range has become a key bottleneck restricting the high-temperature application. Here, we propose a high-entropy strategy to design novel high-temperature thermistor ceramics (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)NbO4. Differences in atomic size, mass, and electronegativity in this high-entropy system cause high lattice distortion, substantial grain boundaries, and high dislocation density. These enhance the charge carrier transport and reduce the grain boundary resistance, thus synergistically broadening the temperature range. Our samples maintain high precision and thermal stability over a wide temperature range from room temperature to 1523 K (ΔT = 1250 K) with an aging value as low as 0.42% after 1000 h at 1173 K, showing breakthrough progress in high-temperature thermistor ceramics. This study establishes an effective approach to enhancing the performance of high-temperature thermistor materials through high-entropy strategies.
Collapse
Affiliation(s)
- Hao Sun
- Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi 830011, China
| | - Yunfei Wang
- Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi 830011, China
| | - Yafei Liu
- Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi 830011, China
| | - Ruifeng Wu
- Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi 830011, China
| | - Aimin Chang
- Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi 830011, China
| | - Pengjun Zhao
- Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi 830011, China
| | - Bo Zhang
- Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi 830011, China
| |
Collapse
|
9
|
Fu H, Jiang Y, Zhang M, Zhong Z, Liang Z, Wang S, Du Y, Yan C. High-entropy rare earth materials: synthesis, application and outlook. Chem Soc Rev 2024; 53:2211-2247. [PMID: 38240305 DOI: 10.1039/d2cs01030e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Recently, high-entropy (HE) materials have attracted increasing interest in various fields due to their unique characteristics. Rare earth (RE) elements have a similar atomic radius and gradually occupied 4f orbitals, endowing them with abundant optical, electric, and magnetic properties. Furthermore, HE-RE materials exhibit good structural and thermal stability and various functional properties, emerging as an important class of HE materials, which are on the verge of rapid development. However, a comprehensive review focusing on the introduction and in-depth understanding of HE-RE materials has not been reported to date. Thus, this review endeavors to provide a comprehensive summary of the development and research status of HE-RE materials, including alloys and ceramics, ranging from their structure, synthesis, and properties to applications. In addition, some distinctive issues of HR-RE materials related to the special electronic structure of RE are also discussed. Finally, we put forward the current challenges and future development directions of HE-RE materials. We hope that this review will provide inspiration for new design ideas and valuable references in this emerging field in the future.
Collapse
Affiliation(s)
- Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Mengzhen Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ziyun Zhong
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Siyuan Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Chunhua Yan
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Huangfu S, Austin AC, Guguchia Z, Fjellvåg ØS, Knorpp AJ, Luetkens H, Schilling A, Stuer M. Tuneable Short-Range Antiferromagnetic Correlation in Fe-Containing Entropy Stabilized Oxides. Inorg Chem 2024; 63:247-255. [PMID: 38101323 DOI: 10.1021/acs.inorgchem.3c03028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
To elucidate the impact of a high entropy elemental distribution of the lattice site on the magnetic properties in oxide compounds, a series of complex perovskites BaBO3 (B = Y, Fe, Ti, Zr, Hf, Nb, and Ta) with different Fe content ratios (0, 0.2, 0.3, and 0.4) have been synthesized and thoroughly characterized. In this complex oxide series, superconducting quantum interference device magnetometry reveals a gradual change of a well-defined magnetic phase transition and B-site magnetic moment, which correlates with the Fe content. More importantly, a comprehensive analysis of the sample with a 0.4-Fe content (40% on the B-site) including magnetization, heat capacity, neutron diffraction, and muon-spin rotation measurements suggests that in the low-temperature state, a short-range antiferromagnetic correlation may exist, which could result from the magnetic interaction of Fe ions and consequent redistribution of associated d-electrons.
Collapse
Affiliation(s)
- Shangxiong Huangfu
- Laboratory for High Performance Ceramics, Empa, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Alexandra C Austin
- Laboratory for High Performance Ceramics, Empa, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
- Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Zurab Guguchia
- Laboratory for Muon Spin Spectroscopy (LMU), Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen CH-5232, Switzerland
| | - Øystein S Fjellvåg
- Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen CH-5232, Switzerland
- Department for Hydrogen Technology, Institute for Energy Technology, Kjeller NO-2027, Norway
| | - Amy J Knorpp
- Laboratory for High Performance Ceramics, Empa, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Hubertus Luetkens
- Laboratory for Muon Spin Spectroscopy (LMU), Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen CH-5232, Switzerland
| | - Andreas Schilling
- Department of Physics, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Michael Stuer
- Laboratory for High Performance Ceramics, Empa, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| |
Collapse
|