1
|
Tang X, Ge S, Lv Y, Sun G, Wang Z, Xie J, Peng M, Xu Y, Zhang J, Yao B, He Q, Guo Y, Zhan W, Wang L, Zhou L, Xu B, Dai S, Guo Y, Ma D. Blocking the Operando Formation of Single-Atom Spectators by Interfacial Engineering. Angew Chem Int Ed Engl 2025; 64:e202505507. [PMID: 40178203 DOI: 10.1002/anie.202505507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/05/2025]
Abstract
Aside from activity and selectivity, catalyst stability is a key focus in heterogeneous catalysis research. Although sintering of metal species has been considered the primary cause for deactivation of metal catalysts, our study reveals that the loss of activity at low reaction temperatures in the CeO2-supported Pt (Pt/CeO2) catalyst in complete propane oxidation is due to the dispersion of Pt ensemble sites (nanoclusters) and their subsequent operando conversion into Pt single atoms under reaction conditions. These Pt single-atom species exhibit low reactivity and act as spectators in the low-temperature reaction region. To address this issue, we engineered the surface of CeO2 by introducing NbOx, which does not directly interact with Pt. Instead, NbOx blocks the strong binding sites for Pt on CeO2, thereby preventing Pt redispersion/fragmentation and preserving reactive Pt ensembles. This strategy led to a remarkable 37-fold increase in the reaction rate compared to the Pt/CeO2 catalyst. Our findings emphasize the importance of suppressing the formation of noble metal single-atom spectators through innovative surface engineering strategy. These mechanistic insights not only advance the understanding of the materials science of Pt/CeO2 but also extend to critical technological fields such as energy conversion systems and environmental remediation technologies.
Collapse
Affiliation(s)
- Xuan Tang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Shasha Ge
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Yao Lv
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Geng Sun
- Chongqing Key Laboratory of Chemical Theory and Mechanism, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P.R. China
| | - Zhaohua Wang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Junzhong Xie
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Yao Xu
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Bingqing Yao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Qian He
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Yanglong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Wangcheng Zhan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Li Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Lihui Zhou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Bingjun Xu
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| |
Collapse
|
2
|
Yu Z, Lin H, Zhang H, Han Y. Exploring guest species in zeolites using transmission electron microscopy: a review and outlook. Chem Soc Rev 2025; 54:4763-4789. [PMID: 40237072 DOI: 10.1039/d5cs00159e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Zeolites, with their well-defined microporous frameworks, accommodate diverse guest species, including metal ions, atoms, clusters, complexes, and organic molecules. Direct imaging of these species and their interactions with the framework is crucial for understanding their structural and functional roles. Transmission electron microscopy (TEM), particularly aberration-corrected scanning TEM (STEM), has become an indispensable tool, offering atomic-resolution real-space insights. This review summarizes key (S)TEM techniques for probing guest species in zeolites, with a focus on low-dose strategies to minimize beam damage. We discuss the principles, applications, and limitations of various imaging modalities and highlight recent advances in visualizing metallic and organic species. Finally, we explore future directions for (S)TEM in zeolite research, emphasizing the opportunities and challenges of in situ, three-dimensional, and cryogenic imaging for resolving host-guest interactions with greater precision.
Collapse
Affiliation(s)
- Zhiling Yu
- Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China.
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
| | - Huang Lin
- Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China.
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
| | - Hui Zhang
- Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China.
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 511442, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 511442, China
| | - Yu Han
- Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China.
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 511442, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Zhang J, Ding H, Hui H, Yao Q, Feng W, Chen TX, Lo TWB, Ren Y, Ye L, Yue B, He H. Confined Cu Single Sites in ZSM-5 for Photocatalytic Hydroxylation of Benzene to Phenol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405150. [PMID: 39301975 DOI: 10.1002/smll.202405150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Zeolites with band-like charge transport properties have exhibited their potential activities in sensing, optics, and electronics. Herein, a precisely designed Cu@ZSM-5 catalyst is presented with an ultra-wide bandgap of 4.27 eV, showing excellent photocatalytic activity in hydroxylation of benzene with benzene conversion 27.9% and phenol selectivity 97.6%. The SXRD and Rietveld refinement results illustrate that Cu@ZSM-5 has an average of 0.8 Cu atoms per unit cell and the single Cu atoms located in the cross-section of the sinusoidal and straight channels. XANES and EXAFS further demonstrate that the Cu atoms have an oxidation state of +2, coordinated with three OMFI-framework atoms and one ─OH group. Detailed characterizations demonstrate that the Cu@ZSM-5 with tailored bandgap is able to enhance the photoinduced electron-hole separation and hence promote selective hydroxylation of benzene to phenol via the superoxide radical route. This work may open a new way for designing electrically conductive zeolite-supported photocatalysts.
Collapse
Affiliation(s)
- Jinwen Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Hongxin Ding
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Hehua Hui
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Qingying Yao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Wenhua Feng
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Tian-Xiang Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Tsz Woon Benedict Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yuanhang Ren
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Lin Ye
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Bin Yue
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Heyong He
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
4
|
Li R, Chen J, Zhang WX, Teng W. The beginning of iron corrosion - high-resolution visualization with 3D electron tomography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175774. [PMID: 39187076 DOI: 10.1016/j.scitotenv.2024.175774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Understanding the genesis and early-phase reactions of iron corrosion is essential for the early detection, mitigation and prevention of metal degradation. In this work, high-resolution 3D tomography of metallic iron oxidation was acquired using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). In particular, dendritic capillaries (<0.5 nm) were observed during the initial oxidation of fresh nanoscale zero-valent iron due to the differential oxygen diffusion and iron atoms migration. This observation led to the proposal of a nanoscale "pothole" model for early-phase corrosion, wherein hollowing out of the metal nanoparticle and formation of nanovoids beneath the iron/oxide interface through Kirkendall effect. Coalescence of the nanocapillaries results in the ultimate collapse of metal structure and/or functional failure. Using nanoscale zero-valent iron as a research model, this work provides unprecedented insights into the nano- and atomic-scale mechanisms of iron oxidation, paving the way for advanced detection and prevention strategies for iron corrosion.
Collapse
Affiliation(s)
- Ruofan Li
- State Key Laboratory for of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiayu Chen
- State Key Laboratory for of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei-Xian Zhang
- State Key Laboratory for of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Teng
- State Key Laboratory for of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
5
|
Lv Y, Li A, Ye J, Wang H, Hu P, Wang KW, Guo Y, Tang X, Dai S. Exploring the Facet-Dependent Structural Evolution of Pt/CeO 2 Catalysts Induced by Typical Pretreatments for CO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43556-43564. [PMID: 39132739 DOI: 10.1021/acsami.4c07578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Atomic-scale insights into the interactions between metals and supports play a crucial role in optimizing catalyst design, understanding catalytic mechanisms, and enhancing chemical conversion processes. The effects of oxide support on the dynamic behavior of supported metal species during pretreatments or reactions have been attracting a lot of attention; however, very less systematic integrations are carried out experimentally using real catalysts. In this study, we here utilized facet-controlled CeO2 as examples to explore their influence on the supported Pt species (1.0 wt %) during the reducing and oxidizing pretreatments that are typically applied in heterogeneous catalysts. By employing a combination of microscopy, spectroscopy, and first-principles calculations, it is demonstrated that the exposed crystal facets of CeO2 govern the evolution behavior of supported Pt species under different environmental conditions. This leads to distinct local coordinations and charge states of the Pt species, which directly influence the catalytic reactivity and can be leveraged to control the catalytic performance for CO oxidation reactions.
Collapse
Affiliation(s)
- Yao Lv
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Aoran Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiajie Ye
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haifeng Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Peijun Hu
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, BelfastBT9 5AG, U.K
| | - Kuan-Wen Wang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuan Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
6
|
De Tovar J, Leblay R, Wang Y, Wojcik L, Thibon-Pourret A, Réglier M, Simaan AJ, Le Poul N, Belle C. Copper-oxygen adducts: new trends in characterization and properties towards C-H activation. Chem Sci 2024; 15:10308-10349. [PMID: 38994420 PMCID: PMC11234856 DOI: 10.1039/d4sc01762e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024] Open
Abstract
This review summarizes the latest discoveries in the field of C-H activation by copper monoxygenases and more particularly by their bioinspired systems. This work first describes the recent background on copper-containing enzymes along with additional interpretations about the nature of the active copper-oxygen intermediates. It then focuses on relevant examples of bioinorganic synthetic copper-oxygen intermediates according to their nuclearity (mono to polynuclear). This includes a detailed description of the spectroscopic features of these adducts as well as their reactivity towards the oxidation of recalcitrant Csp3 -H bonds. The last part is devoted to the significant expansion of heterogeneous catalytic systems based on copper-oxygen cores (i.e. within zeolite frameworks).
Collapse
Affiliation(s)
- Jonathan De Tovar
- Université Grenoble-Alpes, CNRS, Département de Chimie Moléculaire Grenoble France
| | - Rébecca Leblay
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Yongxing Wang
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Laurianne Wojcik
- Université de Brest, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique Brest France
| | | | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Nicolas Le Poul
- Université de Brest, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique Brest France
| | - Catherine Belle
- Université Grenoble-Alpes, CNRS, Département de Chimie Moléculaire Grenoble France
| |
Collapse
|
7
|
Ye J, Zhang S, Guo Y, Zhan W, Wang L, Dai S, Tang X, Guo Y. Enabling direct oxidation of ethane to acetaldehyde with oxygen using supported PdO nanoparticles. Chem Commun (Camb) 2024; 60:6067-6070. [PMID: 38804169 DOI: 10.1039/d4cc01734j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Industrial-scale production of acetaldehyde relies heavily on homogeneous catalysts. Here, we used ethane as the feedstock and developed ZSM-5-supported PdO nanoparticles for the direct oxidation of ethane to acetaldehyde by utilizing O2 and CO. PdO nanoparticles clearly demonstrate effective activity and prevent the further deep oxidation of acetaldehyde.
Collapse
Affiliation(s)
- Jiajie Ye
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Shoujie Zhang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yanglong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Wangcheng Zhan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Li Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuan Tang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
8
|
Ye J, Tang X, Cheng L, Zhang S, Zhan W, Guo Y, Wang L, Cao XM, Wang KW, Dai S, Guo Y. Solvent-Free Synthesis Enables Encapsulation of Subnanometric FeO x Clusters in Pure Siliceous Zeolites for Efficient Catalytic Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38693896 DOI: 10.1021/acsami.4c03083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Metal/metal oxide clusters possess a higher count of unsaturated coordination sites than nanoparticles, providing multiatomic sites that single atoms do not. Encapsulating metal/metal oxide clusters within zeolites is a promising approach for synthesizing and stabilizing these clusters. The unique feature endows the metal clusters with an exceptional catalytic performance in a broad range of catalytic reactions. However, the encapsulation of stable FeOx clusters in zeolite is still challenging, which limits the application of zeolite-encapsulated FeOx clusters in catalysis. Herein, we design a modified solvent-free method to encapsulate FeOx clusters in pure siliceous MFI zeolites (Fe@MFI). It is revealed that the 0.3-0.4 nm subnanometric FeOx clusters are stably encapsulated in the 5/6-membered rings intersectional voids of the pure siliceous MFI zeolites. The encapsulated Fe@MFI catalyst with a Fe loading of 1.4 wt % demonstrates remarkable catalytic activity and recycle stability in the direct oxidation of methane, while also promoting the direct oxidation of cyclohexane, surpassing the performance of conventional zeolite-supported Fe catalysts.
Collapse
Affiliation(s)
- Jiajie Ye
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuan Tang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lu Cheng
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shoujie Zhang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wangcheng Zhan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanglong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Li Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Ming Cao
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Kuan-Wen Wang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
9
|
Wang Q, Sang K, Liu C, Zhang Z, Chen W, Ji T, Li L, Lian C, Qian G, Zhang J, Zhou X, Yuan W, Duan X. Nanoparticles as an antidote for poisoned gold single-atom catalysts in sustainable propylene epoxidation. Nat Commun 2024; 15:3249. [PMID: 38627484 PMCID: PMC11021464 DOI: 10.1038/s41467-024-47538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
The development of sustainable and anti-poisoning single-atom catalysts (SACs) is essential for advancing their research from laboratory to industry. Here, we present a proof-of-concept study on the poisoning of Au SACs, and the antidote of Au nanoparticles (NPs), with trace addition shown to reinforce and sustain propylene epoxidation. Multiple characterizations, kinetics investigations, and multiscale simulations reveal that Au SACs display remarkable epoxidation activity at a low propylene coverage, but become poisoned at higher coverages. Interestingly, Au NPs can synergistically cooperate with Au SACs by providing distinct active sites required for H2/O2 and C3H6 activations, as well as hydroperoxyl radical to restore poisoned SACs. The difference in reaction order between C3H6 and H2 (nC3H6-nH2) is identified as the descriptor for establishing the volcano curves, which can be fine-tuned by the intimacy and composition of SACs and NPs to achieve a rate-matching scenario for the formation, transfer, and consumption of hydroperoxyl. Consequently, only trace addition of Au NPs antidote (0.3% ratio of SACs) stimulates significant improvements in propylene oxide formation rate, selectivity, and H2 efficiency compared to SACs alone, offering a 56-fold, 3-fold, and 22-fold increase, respectively, whose performances can be maintained for 150 h.
Collapse
Affiliation(s)
- Qianhong Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Keng Sang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Changwei Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhihua Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenyao Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Te Ji
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201210, China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201210, China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
10
|
Wang C, Sombut P, Puntscher L, Jakub Z, Meier M, Pavelec J, Bliem R, Schmid M, Diebold U, Franchini C, Parkinson GS. CO-Induced Dimer Decay Responsible for Gem-Dicarbonyl Formation on a Model Single-Atom Catalyst. Angew Chem Int Ed Engl 2024; 63:e202317347. [PMID: 38294119 DOI: 10.1002/anie.202317347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
The ability to coordinate multiple reactants at the same active site is important for the wide-spread applicability of single-atom catalysis. Model catalysts are ideal to investigate the link between active site geometry and reactant binding, because the structure of single-crystal surfaces can be precisely determined, the adsorbates imaged by scanning tunneling microscopy (STM), and direct comparisons made to density functional theory. In this study, we follow the evolution of Rh1 adatoms and minority Rh2 dimers on Fe3O4(001) during exposure to CO using time-lapse STM at room temperature. CO adsorption at Rh1 sites results exclusively in stable Rh1CO monocarbonyls, because the Rh atom adapts its coordination to create a stable pseudo-square planar environment. Rh1(CO)2 gem-dicarbonyl species are also observed, but these form exclusively through the breakup of Rh2 dimers via an unstable Rh2(CO)3 intermediate. Overall, our results illustrate how minority species invisible to area-averaging spectra can play an important role in catalytic systems, and show that the decomposition of dimers or small clusters can be an avenue to produce reactive, metastable configurations in single-atom catalysis.
Collapse
Affiliation(s)
- Chunlei Wang
- Institute of Applied Physics, TU Wien, Vienna, 1040, Austria
| | - Panukorn Sombut
- Institute of Applied Physics, TU Wien, Vienna, 1040, Austria
| | - Lena Puntscher
- Institute of Applied Physics, TU Wien, Vienna, 1040, Austria
| | - Zdenek Jakub
- Institute of Applied Physics, TU Wien, Vienna, 1040, Austria
- Central European Institute of Technology (CEITEC), Brno University of Technology, Brno, 612 00, Czechia
| | - Matthias Meier
- Institute of Applied Physics, TU Wien, Vienna, 1040, Austria
- Faculty of Physics, Center for Computational Materials Science, University of Vienna, Vienna, 1090, Austria
| | - Jiri Pavelec
- Institute of Applied Physics, TU Wien, Vienna, 1040, Austria
| | - Roland Bliem
- Advanced Research Center for Nanolithography, 1098XG, Amsterdam, Netherlands
| | - Michael Schmid
- Institute of Applied Physics, TU Wien, Vienna, 1040, Austria
| | - Ulrike Diebold
- Institute of Applied Physics, TU Wien, Vienna, 1040, Austria
| | - Cesare Franchini
- Faculty of Physics, Center for Computational Materials Science, University of Vienna, Vienna, 1090, Austria
- Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, 40127, Italy
| | | |
Collapse
|
11
|
Wang W, Wang S, Gu Y, Zhou J, Zhang J. Contact-separation-induced self-recoverable mechanoluminescence of CaF 2:Tb 3+/PDMS elastomer. Nat Commun 2024; 15:2014. [PMID: 38443411 PMCID: PMC10914845 DOI: 10.1038/s41467-024-46432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Centrosymmetric-oxide/polydimethylsiloxane elastomers emit ultra-strong non-pre-irradiation mechanoluminescence under stress and are considered one of the most ideal mechanoluminescence materials. However, previous centrosymmetric-oxide/polydimethylsiloxane elastomers show severe mechanoluminescence degradation under stretching, which limits their use in applications. Here we show an elastomer based on centrosymmetric fluoride CaF2:Tb3+ and polydimethylsiloxane, with mechanoluminescence that can self-recover after each stretching. Experimentation indicates that the self-recoverable mechanoluminescence of the CaF2:Tb3+/polydimethylsiloxane elastomer occurs essentially due to contact electrification arising from contact-separation interactions between the centrosymmetric phosphors and the polydimethylsiloxane. Accordingly, a contact-separation cycle model of the phosphor-polydimethylsiloxane couple is established, and first-principles calculations are performed to model state energies in the contact-separation cycle. The results reveal that the fluoride-polydimethylsiloxane couple helps to induce contact electrification and maintain the contact-separation cycle at the interface, resulting in the self-recoverable mechanoluminescence of the CaF2:Tb3+/polydimethylsiloxane elastomer. Therefore, it would be a good strategy to develop self-recoverable mechanoluminescence elastomers based on centrosymmetric fluoride phosphors and polydimethylsiloxane.
Collapse
Affiliation(s)
- Wenxiang Wang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Shanwen Wang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Yan Gu
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Jinyu Zhou
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Jiachi Zhang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China.
| |
Collapse
|
12
|
Tang X, Yu A, Yang Q, Yuan H, Wang Z, Xie J, Zhou L, Guo Y, Ma D, Dai S. Significance of Epitaxial Growth of PtO 2 on Rutile TiO 2 for Pt/TiO 2 Catalysts. J Am Chem Soc 2024; 146:3764-3772. [PMID: 38304977 DOI: 10.1021/jacs.3c10659] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
TiO2-supported Pt species have been widely applied in numerous critical reactions involving photo-, thermo-, and electrochemical-catalysis for decades. Manipulation of the state of the Pt species in Pt/TiO2 catalysts is crucial for fine-tuning their catalytic performance. Here, we report an interesting discovery showing the epitaxial growth of PtO2 atomic layers on rutile TiO2, potentially allowing control of the states of active Pt species in Pt/TiO2 catalysts. The presence of PtO2 atomic layers could modulate the geometric configuration and electronic state of the Pt species under reduction conditions, resulting in a spread of the particle shape and obtaining a Pt/PtO2/TiO2 structure with more positive valence of Pt species. As a result, such a catalyst exhibits exceptional electrocatalytic activity and stability toward hydrogen evolution reaction, while also promoting the thermocatalytic CO oxidation, surpassing the performance of the Pt/TiO2 catalyst with no epitaxial structure. This novel epitaxial growth of the PtO2 structure on rutile TiO2 in Pt/TiO2 catalysts shows its potential in the rational design of highly active and economical catalysts toward diverse catalytic reactions.
Collapse
Affiliation(s)
- Xuan Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Anwen Yu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qianqian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haiyang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhaohua Wang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Junzhong Xie
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Lihui Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
13
|
Li Z, Yao B, Cheng C, Song M, Qin Y, Wan Y, Du J, Zheng C, Xiao L, Li S, Yin PF, Guo J, Liu Z, Zhao M, Huang W. Versatile Structural Engineering of Metal-Organic Frameworks Enabling Switchable Catalytic Selectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308427. [PMID: 38109695 DOI: 10.1002/adma.202308427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/26/2023] [Indexed: 12/20/2023]
Abstract
The structure engineering of metal-organic frameworks (MOFs) forms the cornerstone of their applications. Nonetheless, realizing the simultaneous versatile structure engineering of MOFs remains a significant challenge. Herein, a dynamically mediated synthesis strategy to simultaneously engineer the crystal structure, defect structure, and nanostructure of MOFs is proposed. These include amorphous Zr-ODB nanoparticles, crystalline Zr-ODB-hz (ODB = 4,4'-oxalyldibenzoate, hz = hydrazine) nanosheets, and defective d-Zr-ODB-hz nanosheets. Aberration-corrected scanning transmission electron microscopy combined with low-dose high-angle annular dark-field imaging technique vividly portrays these engineered structures. Concurrently, the introduced hydrazine moieties confer self-reduction properties to the respective MOF structures, allowing the in situ installation of catalytic Pd nanoparticles. Remarkably, in the hydrogenation of vanillin-like biomass derivatives, Pd/Zr-ODB-hz yields partially hydrogenated alcohols as the primary products, whereas Pd/d-Zr-ODB-hz exclusively produces fully hydrogenated alkanes. Density functional theory calculations, coupled with experimental evidence, uncover the catalytic selectivity switch triggered by the change in structure type. The proposed strategy of versatile structure engineering of MOFs introduces an innovative pathway for the development of high-performance MOF-based catalysts for various reactions.
Collapse
Affiliation(s)
- Zhixi Li
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Bingqing Yao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Chuanqi Cheng
- Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Meina Song
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Yutian Qin
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Yue Wan
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Jing Du
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Chaoyang Zheng
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Liyun Xiao
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Shaopeng Li
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Peng-Fei Yin
- Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Zhengqing Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Meiting Zhao
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| |
Collapse
|
14
|
Ahmad I, Idrees A, Alatawi NS, Ahmed SB, Shaban M, Ghadi YY. Sn-based materials in photocatalysis: A review. Adv Colloid Interface Sci 2023; 321:103032. [PMID: 37883848 DOI: 10.1016/j.cis.2023.103032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Development and the application of Sn-based materials have become more prevalent in recent years due to concerns regarding the energy crisis, environmental pollution, and the urgent need of constructing inexpensive and highly effective photocatalysis. The recent advancement in Sn-based materials for efficient photocatalysts, such as Sn alloys, Sn oxides, Sn sulfides, Sn selenides, Sn niobates, Sn tantalites, and Sn tungstates, is summarized in this study. Several design ideas for increasing the photoactivity of Sn-based materials in various photocatalytic applications are emphasized. In addition, we considered their present applications in energy generation (H2 evolution, CO2 reduction, and N2 fixation) and environmental remediation (air purification and wastewater treatment). As a result, the current review will deepen the reader's understanding of the properties and potential uses of Sn-based materials in photocatalysis. Hence, this paper will serve as a guide in promoting the domain of Sn-based materials for future photocatalytic technologies.
Collapse
Affiliation(s)
- Irshad Ahmad
- Department of Physics, University of Agriculture, 38040 Faisalabad, Pakistan.
| | - Asim Idrees
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Samia Ben Ahmed
- Department of Chemistry College of Science, King Khalid University, Abha, P.O. Box 9004, Saudi Arabia
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; Nanophotonics and Applications (NPA), Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Yazeed Yasin Ghadi
- Department of Computer Science and Software Engineering, Al Ain University, United Arab Emirates
| |
Collapse
|
15
|
Flores-Valenzuela J, Leal-Perez JE, Almaral-Sanchez JL, Hurtado-Macias A, Borquez-Mendivil A, Vargas-Ortiz RA, Garcia-Grajeda BA, Duran-Perez SA, Cortez-Valadez M. Structural Analysis of Cu + and Cu 2+ Ions in Zeolite as a Nanoreactor with Antibacterial Applications. ACS OMEGA 2023; 8:30563-30568. [PMID: 37636981 PMCID: PMC10448675 DOI: 10.1021/acsomega.3c03869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023]
Abstract
In this work, we report the structural analysis of Cu+ and Cu2+ ions in zeolite as a nanoreactor with antibacterial applications. A simple one-step process was implemented to obtain Cu ions in zeolite A (ZA4) by controlling the temperature in the solutions to guarantee the ions' stability. Samples were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy, showing the characteristic zeolite elements as well as the characteristic bands with slight modifications in the chemical environment of the zeolite nanoreactor attributed to Cu ions by FT-IR spectroscopy. In addition, a shift of the characteristic peaks of ZA4 in X-ray diffraction was observed as well as a decrease in relative peak intensity. On the other hand, the antibacterial activity of Cu ions in the zeolite nanoreactor was evaluated.
Collapse
Affiliation(s)
- J. Flores-Valenzuela
- Universidad
Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel
Flores S/N, Los Mochis, Sinaloa 81223, México
| | - J. E. Leal-Perez
- Universidad
Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel
Flores S/N, Los Mochis, Sinaloa 81223, México
| | - J. L. Almaral-Sanchez
- Universidad
Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel
Flores S/N, Los Mochis, Sinaloa 81223, México
| | - A. Hurtado-Macias
- Centro
de Investigación en Materiales Avanzados, S. C., Miguel de Cervantes #120,
Complejo Industrial Chihuahua, Chihuahua, Chihuahua 31136, México
| | - A. Borquez-Mendivil
- Universidad
Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel
Flores S/N, Los Mochis, Sinaloa 81223, México
| | - R. A. Vargas-Ortiz
- Universidad
Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel
Flores S/N, Los Mochis, Sinaloa 81223, México
| | - B. A. Garcia-Grajeda
- Universidad
Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel
Flores S/N, Los Mochis, Sinaloa 81223, México
| | - S. A. Duran-Perez
- Doctorado
en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Calzada de las Americas Norte #2771, Burócrata, Culiacán Rosales, Sinaloa 80030, México
| | - Manuel Cortez-Valadez
- Departamento
de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, Hermosillo, Sonora 83190, México
| |
Collapse
|