1
|
Song Y, Chen K, Chen S, Zhang L, Wang Y, Wu K, Xu C, Li B, Zhang J, Liu G, Sun J. Stretchable and adhesive bilayers for electrical interfacing. MATERIALS HORIZONS 2025; 12:1981-1991. [PMID: 39744932 DOI: 10.1039/d4mh01166j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Integrated stretchable devices, containing soft modules, rigid modules, and encapsulation modules, are of potential use in implantable bioelectronics and wearable devices. However, such systems often suffer from electrical deterioration due to debonding failure at the connection between rigid and soft modules induced by severe stress concentration, limiting their practical implementation. Here, we report a highly conductive and adhesive bilayer interface that can reliably connect soft-soft modules and soft-rigid modules together by simply pressing without conductive pastes. This interface configuration features a nanoscale styrene-ethylene-butylene-styrene (SEBS) elastomer layer and a SEBS-liquid metal (LM) composite layer. The top SEBS layer enables a strong adhesion with different modules. The connections between soft-soft and soft-rigid modules can be stretched to high strains of 400% and 250%, respectively. Coupling electron tunneling through an ultrathin SEBS layer with LM particle networks in a SEBS-LM composite layer renders continuous pathways for electrical conductivity. Such a bilayer interface exhibits a strain-insensitive high conductivity (3.7 × 105 S m-1) over a wide strain range from 0 to 680%, which can be facilely fabricated in a self-organized manner by sedimentation of LM particles. We present a proof-of-concept demonstration of this bilayer interface as an electrode, interconnect, and self-solder for monitoring physiological signals.
Collapse
Affiliation(s)
- Yuli Song
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Kai Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Shimeng Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Linyuan Zhang
- School of Biomedical Engineering, The Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Yaqiang Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Kai Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Canhua Xu
- School of Biomedical Engineering, The Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Jinyu Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Gang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
2
|
Kim M, Hong S, Khan R, Park JJ, In JB, Ko SH. Recent Advances in Nanomaterial-Based Biosignal Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405301. [PMID: 39610205 DOI: 10.1002/smll.202405301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Indexed: 11/30/2024]
Abstract
Recent research for medical fields, robotics, and wearable electronics aims to utilize biosignal sensors to gather bio-originated information and generate new values such as evaluating user well-being, predicting behavioral patterns, and supporting disease diagnosis and prevention. Notably, most biosignal sensors are designed for body placement to directly acquire signals, and the incorporation of nanomaterials such as metal-based nanoparticles or nanowires, carbon-based or polymer-based nanomaterials-offering stretchability, high surface-to-volume ratio, and tunability for various properties-enhances their adaptability for such applications. This review categorizes nanomaterial-based biosignal sensors into three types and analyzes them: 1) biophysical sensors that detect deformation such as folding, stretching, and even pulse, 2) bioelectric sensors that capture electric signal originating from human body such as heart and nerves, and 3) biochemical sensors that catch signals from bio-originated fluids such as sweat, saliva and blood. Then, limitations and improvements to nanomaterial-based biosignal sensors is depicted. Lastly, it is highlighted on deep learning-based signal processing and human-machine interface applications, which can enhance the potential of biosignal sensors. Through this paper, it is aim to provide an understanding of nanomaterial-based biosignal sensors, outline the current state of the technology, discuss the challenges that be addressed, and suggest directions for development.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangwoo Hong
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rizwan Khan
- Soft Energy Systems and Laser Applications Laboratory, School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Bin In
- Soft Energy Systems and Laser Applications Laboratory, School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Department of Intelligent Energy and Industry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research / Institute of Advanced Machines and Design, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
Li Y, Qiu Z, Kan H, Yang Y, Liu J, Liu Z, Yue W, Du G, Wang C, Kim N. A Human-Computer Interaction Strategy for An FPGA Platform Boosted Integrated "Perception-Memory" System Based on Electronic Tattoos and Memristors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402582. [PMID: 39049180 PMCID: PMC11497050 DOI: 10.1002/advs.202402582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/12/2024] [Indexed: 07/27/2024]
Abstract
The integrated "perception-memory" system is receiving increasing attention due to its crucial applications in humanoid robots, as well as in the simulation of the human retina and brain. Here, a Field Programmable Gate Array (FPGA) platform-boosted system that enables the sensing, recognition, and memory for human-computer interaction is reported by the combination of ultra-thin Ag/Al/Paster-based electronic tattoos (AAP) and Tantalum Oxide/Indium Gallium Zinc Oxide (Ta2O5/IGZO)-based memristors. Notably, the AAP demonstrates exceptional capabilities in accommodating the strain caused by skin deformation, thanks to its unique structural design, which ensures a secure fit to the skin and enables the prolonged monitoring of physiological signals. By utilizing Ta2O5/IGZO as the functional layer, a high switching ratio is conferred to the memristor, and an integrated system for sensing, distinguishing, storing, and controlling the machine hand of multiple human physiological signals is constructed together with the AAP. Further, the proposed system implements emergency calls and smart homes using facial electromyogram signals and utilizing logical entailment to realize the control of the music interface. This innovative "perception-memory" integrated system not only serves the disabled, enhancing human-computer interaction but also provides an alternative avenue to enhance the quality of life and autonomy of individuals with disabilities.
Collapse
Affiliation(s)
- Yang Li
- Shandong Provincial Key Laboratory of Network Based Intelligent ComputingSchool of Information Science and EngineeringUniversity of JinanJinan250022China
- School of Integrated CircuitsShandong UniversityJinan250101China
| | - Zhicheng Qiu
- Shandong Provincial Key Laboratory of Network Based Intelligent ComputingSchool of Information Science and EngineeringUniversity of JinanJinan250022China
| | - Hao Kan
- Shandong Provincial Key Laboratory of Network Based Intelligent ComputingSchool of Information Science and EngineeringUniversity of JinanJinan250022China
| | - Yang Yang
- Shandong Provincial Key Laboratory of Network Based Intelligent ComputingSchool of Information Science and EngineeringUniversity of JinanJinan250022China
| | - Jianwen Liu
- Shandong Provincial Key Laboratory of Network Based Intelligent ComputingSchool of Information Science and EngineeringUniversity of JinanJinan250022China
| | - Zhaorui Liu
- Shandong Provincial Key Laboratory of Network Based Intelligent ComputingSchool of Information Science and EngineeringUniversity of JinanJinan250022China
| | - Wenjing Yue
- Shandong Provincial Key Laboratory of Network Based Intelligent ComputingSchool of Information Science and EngineeringUniversity of JinanJinan250022China
| | - Guiqiang Du
- School of Space Science and PhysicsShandong UniversityWeihai264209China
| | - Cong Wang
- School of Electronics and Information EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Nam‐Young Kim
- RFIC CentreDepartment of Electronics EngineeringNDAC CentreKwangwoon UniversitySeoul01897South Korea
| |
Collapse
|
4
|
Liu Y, Xu Z, Ji X, Xu X, Chen F, Pan X, Fu Z, Chen Y, Zhang Z, Liu H, Cheng B, Liang J. Ag-thiolate interactions to enable an ultrasensitive and stretchable MXene strain sensor with high temporospatial resolution. Nat Commun 2024; 15:5354. [PMID: 38918424 PMCID: PMC11200319 DOI: 10.1038/s41467-024-49787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
High-sensitivity strain sensing elements with a wide strain range, fast response, high stability, and small sensing areas are desirable for constructing strain sensor arrays with high temporospatial resolution. However, current strain sensors rely on crack-based conductive materials having an inherent tradeoff between their sensing area and performance. Here, we present a molecular-level crack modulation strategy in which we use layer-by-layer assembly to introduce strong, dynamic, and reversible coordination bonds in an MXene and silver nanowire-matrixed conductive film. We use this approach to fabricate a crack-based stretchable strain sensor with a very small sensing area (0.25 mm2). It also exhibits an ultrawide working strain range (0.001-37%), high sensitivity (gauge factor ~500 at 0.001% and >150,000 at 35%), fast response time, low hysteresis, and excellent long-term stability. Based on this high-performance sensing element and facile assembly process, a stretchable strain sensor array with a device density of 100 sensors per cm2 is realized. We demonstrate the practical use of the high-density strain sensor array as a multichannel pulse sensing system for monitoring pulses in terms of their spatiotemporal resolution.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China.
| | - Zijun Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Xinyi Ji
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Xin Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Fei Chen
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaosen Pan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Zhiqiang Fu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Yunzhi Chen
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Zhengjian Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Hongbin Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Bowen Cheng
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China.
| | - Jiajie Liang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, China.
- School of Materials Science and Engineering & Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, China.
| |
Collapse
|
5
|
Lu Y, Zhang H, Zhao Y, Liu H, Nie Z, Xu F, Zhu J, Huang W. Robust Fiber-Shaped Flexible Temperature Sensors for Safety Monitoring with Ultrahigh Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310613. [PMID: 38291859 DOI: 10.1002/adma.202310613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Flexible temperature sensors capable of detecting and transmitting temperature data from the human body, environment, and electronic devices hold significant potential for applications in electronic skins, human-machine interactions, and disaster prevention systems. Nonetheless, fabricating flexible temperature sensors with exceptional sensing performance remains a formidable task, primarily due to the intricate process of constructing an intrinsically flexible sensing element with high sensitivity. In this study, a facile in situ two-step synthetic method is introduced for fabricating flexible fiber-shaped NiO/carbon nanotube fiber (CNTF) composites. The resulting NiO/CNTF flexible temperature sensors demonstrate outstanding deformability and temperature sensing characteristics, encompassing a broad working range (-15 to 60 °C) and high sensitivity (maximum TCR of -20.2% °C-1 and B value of 3332 K). Importantly, the mechanical and thermal behaviors of the sensor in various application conditions are thoroughly examined using finite element analysis simulations. Moreover, the temperature sensors can effectively capture diverse thermal signals in wearable applications. Notably, a temperature monitoring and warning system is developed to prevent fire accidents resulting from abnormal thermal runaway in electronic devices.
Collapse
Affiliation(s)
- Yufei Lu
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou, 450046, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Hongjian Zhang
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou, 450046, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yang Zhao
- School of Materials Science and Engineering, Hubei University, 368 Youyi Avenue, Wuhan, 430062, China
| | - Haodong Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Zhentao Nie
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Feng Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China
| | - Wei Huang
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou, 450046, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
6
|
Li H, Tan P, Rao Y, Bhattacharya S, Wang Z, Kim S, Gangopadhyay S, Shi H, Jankovic M, Huh H, Li Z, Maharjan P, Wells J, Jeong H, Jia Y, Lu N. E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chem Rev 2024; 124:3220-3283. [PMID: 38465831 DOI: 10.1021/acs.chemrev.3c00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human body continuously emits physiological and psychological information from head to toe. Wearable electronics capable of noninvasively and accurately digitizing this information without compromising user comfort or mobility have the potential to revolutionize telemedicine, mobile health, and both human-machine or human-metaverse interactions. However, state-of-the-art wearable electronics face limitations regarding wearability and functionality due to the mechanical incompatibility between conventional rigid, planar electronics and soft, curvy human skin surfaces. E-Tattoos, a unique type of wearable electronics, are defined by their ultrathin and skin-soft characteristics, which enable noninvasive and comfortable lamination on human skin surfaces without causing obstruction or even mechanical perception. This review article offers an exhaustive exploration of e-tattoos, accounting for their materials, structures, manufacturing processes, properties, functionalities, applications, and remaining challenges. We begin by summarizing the properties of human skin and their effects on signal transmission across the e-tattoo-skin interface. Following this is a discussion of the materials, structural designs, manufacturing, and skin attachment processes of e-tattoos. We classify e-tattoo functionalities into electrical, mechanical, optical, thermal, and chemical sensing, as well as wound healing and other treatments. After discussing energy harvesting and storage capabilities, we outline strategies for the system integration of wireless e-tattoos. In the end, we offer personal perspectives on the remaining challenges and future opportunities in the field.
Collapse
Affiliation(s)
- Hongbian Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Philip Tan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yifan Rao
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarnab Bhattacharya
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zheliang Wang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sangjun Kim
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Susmita Gangopadhyay
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongyang Shi
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matija Jankovic
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heeyong Huh
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengjie Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pukar Maharjan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan Wells
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
| | - Yaoyao Jia
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Zhu T, Wu K, Wang Y, Zhang J, Liu G, Sun J. Highly stable and strain-insensitive metal film conductors via manipulating strain distribution. MATERIALS HORIZONS 2023; 10:5920-5930. [PMID: 37873924 DOI: 10.1039/d3mh01399e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Metal film-based stretchable conductors are essential elements of flexible electronics for wearable, biomedical, and robotic applications, which require strain-insensitive high conductivity over a wide strain range and excellent cyclic stability. However, they suffer from serious electrical failure under monotonic and cyclic tensile loading at a small strain due to the uncontrolled film cracking behavior. Here, we propose a novel in-plane crack control strategy of engineering hierarchical microstructures to achieve outstanding electromechanical performance via harnessing the strain distribution in metal films. The wrinkles delay the crack initiation at undercuts which should be the most vulnerable sites during the stretching process. The surface protrusions/grooves/undercuts inhibit the crack propagation because of the effective strain redistribution. In addition, hierarchical microstructures significantly improve cyclic stability due to the strong interfacial adhesion and stable crack patterns. The metal film-based conductors exhibit ultrahigh strain-insensitive conductivity (1.7 × 107 S m-1), negligible resistance change (ΔR/R0 = 0.007) over an ultra-wide strain range (>200%), and excellent cyclic strain durability (>15 000 cycles at 100% strain). A range of metal films was explored to establish the universality of this strategy, including ductile copper and silver, as well as brittle molybdenum and high entropy alloy. We demonstrate the strain-insensitive electrical functionality of a metal film-based conductor in a flexible light-emitting diode circuit.
Collapse
Affiliation(s)
- Ting Zhu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Kai Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Yaqiang Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Jinyu Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Gang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
8
|
Sun T, Feng B, Huo J, Xiao Y, Wang W, Peng J, Li Z, Du C, Wang W, Zou G, Liu L. Artificial Intelligence Meets Flexible Sensors: Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses. NANO-MICRO LETTERS 2023; 16:14. [PMID: 37955844 PMCID: PMC10643743 DOI: 10.1007/s40820-023-01235-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/24/2023] [Indexed: 11/14/2023]
Abstract
The recent wave of the artificial intelligence (AI) revolution has aroused unprecedented interest in the intelligentialize of human society. As an essential component that bridges the physical world and digital signals, flexible sensors are evolving from a single sensing element to a smarter system, which is capable of highly efficient acquisition, analysis, and even perception of vast, multifaceted data. While challenging from a manual perspective, the development of intelligent flexible sensing has been remarkably facilitated owing to the rapid advances of brain-inspired AI innovations from both the algorithm (machine learning) and the framework (artificial synapses) level. This review presents the recent progress of the emerging AI-driven, intelligent flexible sensing systems. The basic concept of machine learning and artificial synapses are introduced. The new enabling features induced by the fusion of AI and flexible sensing are comprehensively reviewed, which significantly advances the applications such as flexible sensory systems, soft/humanoid robotics, and human activity monitoring. As two of the most profound innovations in the twenty-first century, the deep incorporation of flexible sensing and AI technology holds tremendous potential for creating a smarter world for human beings.
Collapse
Affiliation(s)
- Tianming Sun
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
- College of Materials Science and Engineering, Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Bin Feng
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jinpeng Huo
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yu Xiao
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wengan Wang
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jin Peng
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zehua Li
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chengjie Du
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wenxian Wang
- College of Materials Science and Engineering, Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| | - Guisheng Zou
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Lei Liu
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|