1
|
Wadhwa A, Perrotton A, Taherian MH, Zirakjou A, Benavides-Guerrero J, Gratuze M, Vaussenat F, Bolduc M, Cloutier SG. Flexible screen-printed sic-based humidity sensors. COMMUNICATIONS ENGINEERING 2025; 4:96. [PMID: 40425788 PMCID: PMC12117086 DOI: 10.1038/s44172-025-00425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/29/2025] [Indexed: 05/29/2025]
Abstract
Humidity sensors are essential components in modern technology, spanning applications from residential appliances to the Internet of Things (IoT). However, conventional commercial sensors are typically rigid, constrained by narrow relative humidity (%RH) operating ranges, and require complex fabrication processes. In this study, we present a highly sensitive cubic silicon carbide (3C-SiC) nanoparticle-based relative humidity sensor, fabricated via serigraphic printing on to 5 mil thick flexible polyimide (Kapton®) substrate. Devices are tested across a broad humidity range of 10-90%RH at ambient temperature and their performance is evaluated in a controlled humidity chamber. The sensor exhibits a robust response of 45.2% R/R0, with a sensitivity of 5.34 Ω/%RH, an adsorption time of 18 seconds, and a desorption time of 46 seconds. Additionally, the device demonstrates low hysteresis of 6.5% at 60%RH, with excellent repeatability and stability over 3.5 hours of continuous cycling. To showcase their potential for real-world applications, the printed sensors are integrated into a commercial KN95 mask for monitoring respiration parameters, such as respiration rate. This integration highlights the potential for future exploration in human health monitoring, utilizing fully printed, low-cost sensing devices.
Collapse
Affiliation(s)
- Arjun Wadhwa
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame Street West, Montréal, QC, H3C 1K3, Canada
| | - Alexandre Perrotton
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame Street West, Montréal, QC, H3C 1K3, Canada
| | - Mohamad Hassan Taherian
- Department of Mechanical Engineering, Université du Québec à Trois-Rivières, 3351 Bd des Forges, Trois-Rivières, QC, G8Z 4M3, Canada
| | - Abbas Zirakjou
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame Street West, Montréal, QC, H3C 1K3, Canada
| | - Jaime Benavides-Guerrero
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame Street West, Montréal, QC, H3C 1K3, Canada
| | - Mathieu Gratuze
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame Street West, Montréal, QC, H3C 1K3, Canada
| | - Fabrice Vaussenat
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame Street West, Montréal, QC, H3C 1K3, Canada
| | - Martin Bolduc
- Department of Mechanical Engineering, Université du Québec à Trois-Rivières, 3351 Bd des Forges, Trois-Rivières, QC, G8Z 4M3, Canada
| | - Sylvain G Cloutier
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame Street West, Montréal, QC, H3C 1K3, Canada.
| |
Collapse
|
2
|
Wang B, Wang H, Bao Y, Ahmad W, Geng W, Ying Y, Xu W. Sustainable Materials Enabled Terahertz Functional Devices. NANO-MICRO LETTERS 2025; 17:212. [PMID: 40214928 PMCID: PMC11992292 DOI: 10.1007/s40820-025-01732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/15/2025] [Indexed: 04/14/2025]
Abstract
Terahertz (THz) devices, owing to their distinctive optical properties, have achieved myriad applications in diverse domains including wireless communication, medical imaging therapy, hazardous substance detection, and environmental governance. Concurrently, to mitigate the environmental impact of electronic waste generated by traditional materials, sustainable materials-based THz functional devices are being explored for further research by taking advantages of their eco-friendliness, cost-effective, enhanced safety, robust biodegradability and biocompatibility. This review focuses on the origins and distinctive biological structures of sustainable materials as well as succinctly elucidates the latest applications in THz functional device fabrication, including wireless communication devices, macromolecule detection sensors, environment monitoring sensors, and biomedical therapeutic devices. We further highlight recent applications of sustainable materials-based THz functional devices in hazardous substance detection, protein-based macromolecule detection, and environmental monitoring. Besides, this review explores the developmental prospects of integrating sustainable materials with THz functional devices, presenting their potential applications in the future.
Collapse
Affiliation(s)
- Baoning Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Haolan Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ying Bao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Wenhui Geng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Zhejiang Key Laboratory of Intelligent Sensing and Robotics for Agriculture, Hangzhou, 310058, People's Republic of China
- Key Laboratory of On Site Processing Equipment for Agricultural Products, Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, People's Republic of China
| | - Wendao Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Zhejiang Key Laboratory of Intelligent Sensing and Robotics for Agriculture, Hangzhou, 310058, People's Republic of China.
- Key Laboratory of On Site Processing Equipment for Agricultural Products, Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
3
|
Zhao Z, Wang W, Xiang G, Jiang L, Jiang X. Capillary-Assisted Confinement Assembly for Advanced Sensor Fabrication: From Superwetting Interfaces to Capillary Bridge Patterning. ACS NANO 2025; 19:3019-3036. [PMID: 39814369 DOI: 10.1021/acsnano.4c17499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Precise patterning of sensing materials, particularly the long-range-ordered assembly of micro/nanostructures, is pivotal for improving sensor performance, facilitating miniaturization, and enabling seamless integration. This paper examines the importance of interfacial confined assembly in sensor patterning, including gas-liquid and liquid-liquid confined assembly, wettability-assisted or microstructure-assisted solid-liquid interfacial confined assembly, and tip-induced confined assembly. The application of capillary bridge confined assembly technology in chemical sensors, flexible electronics, and optoelectronics is highlighted. The advantages of capillary bridge confined assembly technology include the ability to achieve high-resolution patterning, scalability, and material arrangement in long-range order. It is, therefore, an ideal processing platform for next-generation sensors. Finally, the broad prospects of this technology in the miniaturization and integration of high-performance multifunctional sensors are discussed.
Collapse
Affiliation(s)
- Zhihao Zhao
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Weijie Wang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Gongmo Xiang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Lei Jiang
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangyu Jiang
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
Wang K, Wang L, Si J, Wang R, Wang Z, Gao C, Yang J, Yang X, Zhang H, Han L. Flexible Passive Wireless Sensing Platform with Frequency Mapping and Multimodal Fusion. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4155-4164. [PMID: 39750060 DOI: 10.1021/acsami.4c17280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
As one of the core parts of the Internet-of-things (IOTs), multimodal sensors have exhibited great advantages in fields such as human-machine interaction, electronic skin, and environmental monitoring. However, current multimodal sensors substantially introduce a bloated equipment architecture and a complicated decoupling mechanism. In this work we propose a multimodal fusion sensing platform based on a power-dependent piecewise linear decoupling mechanism, allowing four parameters to be perceived and decoded from the passive wireless single component, which greatly broadens the configurable freedom of a sensor in the IOT. A systematic model is employed to analyze the linear sensing properties and ensure the feasibility of the scheme. The excitation power dependence provides an efficient and quantitative linear decoupling strategy of unidentified combinations for multiple stimuli. As a validation for a wearable device such as electronic skin (e-skin), the functionalized sensing film polyaniline/graphene oxide (PANI/GO) is served to synchronously monitor humidity, temperature, ultraviolet, and proximity through the mapping in resonant frequency (fs). Compared with the output errors of ∼18.00%, ∼17.50%, ∼15.00%, and ∼20.00%, the maximum experimental errors of temperature, humidity, ultraviolet, and proximity are 5.70%, 4.00%, 5.00%, and 8.30% after decoupling, respectively. In general, the developed single-component multimodal fusion sensing platform offers a strategic advantage for a miniaturization, passive wireless, and inexpensive (less than $1) signal identification system with a facile circuit layout.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Lifeng Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Jiawei Si
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Rui Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Ziyuan Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Chuyuan Gao
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Jin Yang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Xiaohan Yang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Hanqiang Zhang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Lei Han
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
5
|
Ullah Z, Mustafa GM, Raza A, Khalil A, Awadh Bahajjaj AA, Batool R, Sonil NI, Ali I, Nazar MF. Facile assembly of flexible humidity sensors based on nanostructured graphite/zinc oxide-coated cellulose fibrous frameworks for human healthcare. RSC Adv 2024; 14:37570-37579. [PMID: 39588242 PMCID: PMC11586847 DOI: 10.1039/d4ra05761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
The development of flexible, cost-effective, highly efficient, and reliable humidity monitoring sensors is in high demand owing to their wide-range of applications in industrial domains. In this study, a humidity sensor was fabricated based on graphite/zinc oxide nanoparticle (G/ZnO-NP)-coated cellulose paper. A bar device was designed using computer software, and its sketch was printed on cellulose paper, with graphite bars then added using the pencil-drawing method, and then ZnO-NP paste was coated on the graphite patterns. Scanning electron microscopy and X-ray diffraction analysis were used to respectively inspect the morphological and structural features of the samples. For sensor fabrication, copper wires were attached to the electrodes using copper tape. The fabricated device was placed into a chamber with varying relative humidity (RH) levels of 11%, 24%, 43%, 62%, 84%, and 97%, controlled using the salt solutions inside the chamber. The response of the sensor was recorded in terms of the change in resistance of the device upon exposure to different humidity environments. The sensor delivered a response time as short as 4.31 s for the 24% RH condition, and a recovery time as short as 10.05 s for 43% RH. Moreover, the sensor exhibited a sensitivity of 717% for the 97% RH condition. The sensor was also evaluated for human breath monitoring, showing distinctive responses for inhalation and exhalation.
Collapse
Affiliation(s)
- Zaka Ullah
- Department of Physics, Division of Science and Technology, University of Education Lahore 54770 Pakistan
| | - Ghulam M Mustafa
- Department of Physics, Division of Science and Technology, University of Education Lahore 54770 Pakistan
| | - Ali Raza
- Department of Physics, Division of Science and Technology, University of Education Lahore 54770 Pakistan
| | - Adnan Khalil
- Institute of Physics, Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan 64200 Pakistan
| | | | - Rashida Batool
- Department of Chemistry, Division of Science and Technology, University of Education Lahore 54770 Pakistan
| | - Nazmina Imrose Sonil
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University Shenzhen 518060 China
| | - Irfan Ali
- Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| | - Muhammad Faizan Nazar
- Department of Chemistry, Division of Science and Technology, University of Education Lahore 54770 Pakistan
| |
Collapse
|
6
|
Wang W, Zou J, Ni Y, Yu K, Yan X, Yin J, Gao W, Chen D, Jin Q, Jian J. Structural Optimization of Polyimide-Film Humidity Sensors for New Energy Vehicles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49733-49744. [PMID: 39231365 DOI: 10.1021/acsami.4c07661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
This paper presents a comprehensive study of the structural optimization of polyimide-film (PI-film) capacitive humidity sensors, with a focus on enhancing their performance for application in new energy vehicles (NEVs). Given the critical role of humidity sensors in ensuring the safety and efficiency of vehicle operations─particularly in monitoring lithium-ion battery systems─the study explores the intricate relationship between the interdigitated electrode (IDE) dimensions and the PI-film thickness to optimize sensor responsiveness and reliability. Through a combination of COMSOL Multiphysics simulations (a powerful finite element analysis, solver, and simulation software) and experimental validation, the research identifies the optimal geometrical combination that maximizes the sensitivity and minimizes the response time. The fabrication process is streamlined for batch preparation, leveraging the spin-coating process to achieve consistent and reliable PI films. Extensive characterizations confirm the superior morphology, chemical composition, and humidity-sensing capabilities of the developed sensors. Practical performance tests further validate their exceptional repeatability, long-term stability, low hysteresis, and excellent selectivity, underpinning their suitability for automotive applications. The final explanation of the sensing mechanism provides a solid theoretical foundation for observed performance improvements. This work not only advances the field of humidity sensing for vehicle safety but also offers a robust theoretical and practical framework for the batch preparation of PI-film humidity sensors, promising enhanced safety and reliability for NEVs.
Collapse
Affiliation(s)
- Wentian Wang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Jie Zou
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Yongjian Ni
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Kaige Yu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Xinxin Yan
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Jiawen Yin
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| | - Wanlei Gao
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Daidai Chen
- Ningbo Joyson Advanced Energy Research Institute Co., Ltd., Ningbo 315211, China
| | - Qinghui Jin
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jiawen Jian
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Tamayo A, Danowski W, Han B, Jeong Y, Samorì P. Light-Modulated Humidity Sensing in Spiropyran Functionalized MoS 2 Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404633. [PMID: 39263764 DOI: 10.1002/smll.202404633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/13/2024] [Indexed: 09/13/2024]
Abstract
The optically tuneable nature of hybrid organic/inorganic heterostructures tailored by interfacing photochromic molecules with 2D semiconductors (2DSs) can be exploited to endow multi-responsiveness to the exceptional physical properties of 2DSs. In this study, a spiropyran-molybdenum disulfide (MoS2) light-switchable bi-functional field-effect transistor is realized. The spiropyran-merocyanine reversible photo-isomerization has been employed to remotely control both the electron transport and wettability of the hybrid structure. This manipulation is instrumental for tuning the sensitivity in humidity sensing. The hybrid organic/inorganic heterostructure is subjected to humidity testing, demonstrating its ability to accurately monitor relative humidity (RH) across a range of 10%-75%. The electrical output shows good sensitivity of 1.0% · (%) RH-1. The light-controlled modulation of the sensitivity in chemical sensors can significantly improve their selectivity, versatility, and overall performance in chemical sensing.
Collapse
Affiliation(s)
- Adrián Tamayo
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Wojciech Danowski
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
- Faculty of Chemistry, University of Warsaw, Warsaw, 02-093, Poland
| | - Bin Han
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Yeonsu Jeong
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Paolo Samorì
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
8
|
Das G, Ibrahim FA, Khalil ZA, Bazin P, Chandra F, AbdulHalim RG, Prakasam T, Das AK, Sharma SK, Varghese S, Kirmizialtin S, Jagannathan R, Saleh N, Benyettou F, Roz ME, Addicoat M, Olson MA, Rao DSS, Prasad SK, Trabolsi A. Ionic Covalent Organic Framework as a Dual Functional Sensor for Temperature and Humidity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311064. [PMID: 38396219 DOI: 10.1002/smll.202311064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Visual sensing of humidity and temperature by solids plays an important role in the everyday life and in industrial processes. Due to their hydrophobic nature, most covalent organic framework (COF) sensors often exhibit poor optical response when exposed to moisture. To overcome this challenge, the optical response is set out to improve, to moisture by incorporating H-bonding ionic functionalities into the COF network. A highly sensitive COF, consisting of guanidinium and diformylpyridine linkers (TG-DFP), capable of detecting changes in temperature and moisture content is fabricated. The hydrophilic nature of the framework enables enhanced water uptake, allowing the trapped water molecules to form a large number of hydrogen bonds. Despite the presence of non-emissive building blocks, the H-bonds restrict internal bond rotation within the COF, leading to reversible fluorescence and solid-state optical hydrochromism in response to relative humidity and temperature.
Collapse
Affiliation(s)
- Gobinda Das
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Fayrouz Abou Ibrahim
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Zahraa Abou Khalil
- Laboratoire Catalyse et Spectrochimie, CNRS, Ensicaen, Université de Caen, 6, Boulevard Maréchal Juin 14050, Caen, France
| | - Philippe Bazin
- Laboratoire Catalyse et Spectrochimie, CNRS, Ensicaen, Université de Caen, 6, Boulevard Maréchal Juin 14050, Caen, France
| | - Falguni Chandra
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
| | - Rasha G AbdulHalim
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Thirumurugan Prakasam
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Akshaya Kumar Das
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Sudhir Kumar Sharma
- Engineering Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, 129188, United Arab Emirates
| | - Sabu Varghese
- New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Serdal Kirmizialtin
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Ramesh Jagannathan
- Engineering Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, 129188, United Arab Emirates
| | - Na'il Saleh
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
- National Water and Energy center, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Farah Benyettou
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Mohamad El Roz
- Laboratoire Catalyse et Spectrochimie, CNRS, Ensicaen, Université de Caen, 6, Boulevard Maréchal Juin 14050, Caen, France
| | - Matthew Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS, Nottingham, NG118NS, UK
| | - Mark A Olson
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Dr, Corpus Christi, TX, 78412, USA
| | - D S Shankar Rao
- Centre for Nano and Soft Matter Sciences(CeNS), Arkavathi, Survey No.7, Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India
| | - S Krishna Prasad
- Centre for Nano and Soft Matter Sciences(CeNS), Arkavathi, Survey No.7, Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India
| | - Ali Trabolsi
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
- NYUAD Water Research Center, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| |
Collapse
|
9
|
Vegas VG, García-Hernán A, Aguilar-Galindo F, Perles J, Amo-Ochoa P. Structural and Theoretical Study of Copper(II)-5-fluoro Uracil Acetate Coordination Compounds: Single-Crystal to Single-Crystal Transformation as Possible Humidity Sensor. Polymers (Basel) 2023; 15:2827. [PMID: 37447473 DOI: 10.3390/polym15132827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
This paper describes the synthesis and characterization of seven different copper(II) coordination compounds, as well as the formation of a protonated ligand involving all compounds from the same reaction. Their synthesis required hydrothermal conditions, causing the partial in situ transformation of 5-fluoro uracil-1-acetic acid (5-FUA) into an oxalate ion (ox), as well as the protonation of the 4,4'-bipyridine (bipy) ligand through a catalytic process resulting from the presence of Cu(II) within the reaction. These initial conditions allowed obtaining the new coordination compounds [Cu2(5-FUA)2(ox)(bipy)]n·2n H2O (CP2), [Cu(5-FUA)2(H2O)(bipy)]n·2n H2O (CP3), as well as the ionic pair [(H2bipy)+2 2NO3-] (1). The mother liquor evolved rapidly at room temperature and atmospheric pressure, due to the change in concentration of the initial reagents and the presence of the new chemical species generated in the reaction process, yielding CPs [Cu(5-FUA)2(bipy)]n·3.5n H2O, [Cu3(ox)3(bipy)4]n and [Cu(ox)(bipy)]n. The molecular compound [Cu(5-FUA)2(H2O)4]·4H2O (more thermodynamically stable) ended up in the mother liquor after filtration at longer reaction times at 25 °C and 1 atm., cohabiting in the medium with the other crystalline solids in different proportions. In addition, the evaporation of H2O caused the single-crystal to single-crystal transformation (SCSC) of [Cu(5-FUA)2(H2O)(bipy)]n·2n H2O (CP3) into [Cu(5-FUA)2(bipy)]n·2n H2O (CP4). A theoretical study was performed to analyze the thermodynamic stability of the phases. The observed SCSC transformation also involved a perceptible color change, highlighting this compound as a possible water sensor.
Collapse
Affiliation(s)
- Verónica G Vegas
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Andrea García-Hernán
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Aguilar-Galindo
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Josefina Perles
- Laboratorio de DRX Monocristal, Servicio Interdepartamental de Investigación, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pilar Amo-Ochoa
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|