1
|
Li S, Zhu Z, Zhang Y, Liu Y, Zhang X, Hui KN. Innovative engineering strategies and mechanistic insights for enhanced carbon-based electrocatalysts in sustainable H 2O 2 production. MATERIALS HORIZONS 2025. [PMID: 40364583 DOI: 10.1039/d5mh00221d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Hydrogen peroxide (H2O2) plays a crucial role in various industrial sectors and everyday applications. Given the energy-intensive nature of the current anthraquinone process for its production, the quest for cost-effective, efficient, and stable catalysts for H2O2 synthesis is paramount. A promising sustainable approach lies in small-scale, decentralized electrochemical methods. Carbon nanomaterials have emerged as standout candidates, offering low costs, high surface areas, excellent conductivity, and adjustable electronic properties. This review presents a thorough examination of recent strides in engineering strategies of carbon-based nanomaterials for enhanced electrochemical H2O2 generation. It delves into tailored microstructures (e.g., 1D, 2D, porous architectures), defect/surface engineering (e.g., edge sites, heteroatom doping, surface modification), and heterostructure assembly (e.g., semiconductor-carbon composites, single-atom, dual-single-atom catalysts). Moreover, the review explores structure-performance interplays in these carbon electrocatalysts, drawing from advanced experimental analyses and theoretical models to unveil the mechanisms governing selective electrocatalytic H2O2 synthesis. Lastly, this review identifies challenges and charts future research avenues to propel carbon electrocatalysts towards greener and more effective H2O2 production methods.
Collapse
Affiliation(s)
- Shun Li
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Zhanpeng Zhu
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yuqiao Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yong Liu
- Foshan (Southern China) Institute for New Materials, Foshan, 528200, China.
| | - Xinyue Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Foshan (Southern China) Institute for New Materials, Foshan, 528200, China.
| | - Kwun Nam Hui
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.
| |
Collapse
|
2
|
Yin L, Liu Y, Zhang S, Huang Y, Wang Q, Liu JC, Gu C, Du Y. Hollow carbon nanoreactors integrating NiFe-LDH nanodots with adjacent La single atoms for efficient oxygen electrocatalytic reactions. MATERIALS HORIZONS 2025. [PMID: 40356415 DOI: 10.1039/d5mh00313j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Optimizing both mass transport and electronic structure of the active component is of interest to obtain electrocatalysts with superior oxygen evolution reaction (OER) performance. Here, we miniaturized the classical NiFe-layered double hydroxides (NiFe-LDHs) and integrated them into S/N co-doped hollow hierarchical porous carbon (SNHPC) loaded with rare earth La single atoms (La SAs) to obtain nanoreactors. The unique carbon framework induced uniform deposition of LDH nanodots and ensured adequate exposure during electrocatalysis. The advantages of the carbon carrier for the local electric field and interfacial OH- layer density in the catalytic process were confirmed by finite element simulations. The well-designed NiFe-LDH@La SNHPC exhibited satisfactory activity (overpotential of 251 mV at 10 mA cm-2) and stability in alkaline media, exceeding those of commercial RuO2. Impressively, a cathode catalyst combining NiFe-LDH@La SNHPC with Pt/C can be stabilized in rechargeable zinc-air batteries (ZABs) for more than 350 h. Theoretical calculations indicated that the introduction of La SAs modified the electronic structures of the NiFe-LDH nanodots, activated lattice oxygen activity, optimized the adsorption strength of the intermediates, and reduced rate-determining step energy barriers in OER. This study provides guidance for the preparation and design of sub-microreactors and information on the strong electron interaction effects induced by rare earth species.
Collapse
Affiliation(s)
- Leilei Yin
- Inner Mongolia Academy of Science and Technology, Hohhot, Inner Mongolia, 010010, China.
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Yuyan Liu
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shuai Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Yongkang Huang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiang Wang
- Inner Mongolia Academy of Science and Technology, Hohhot, Inner Mongolia, 010010, China.
| | - Jin-Cheng Liu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Chao Gu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Huang M, Gu Q, Wu Y, Wei Y, Pei Y, Hu T, Lützenkirchen-Hecht D, Yuan K, Chen Y. Linkage Microenvironment and Oxygen Electroreduction Reaction Performance Correlationship of Iron Phthalocyanine-based Polymers. Angew Chem Int Ed Engl 2025; 64:e202501506. [PMID: 39930898 DOI: 10.1002/anie.202501506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Iron phthalocyanine-based conjugated polymers (PFePc) offer well-defined sites, rendering them ideal model systems to elucidate structure-property relationships towards oxygen reduction reaction (ORR), but have struggled to achieve improved catalytic activity due to uniform electron distribution of iron center and difficulty in molecular-level structure design. Although rationally linkage microenvironmental regulation is an effective approach to adjusting activity, the underlying fundamental mechanism is incompletely understood. Herein, systematic DFT calculations and experimental investigation of PFePc analogous reveal that the incorporation of the electron-withdrawing benzophenone linkage into the PFePc backbone (PFePc-3) drives the delocalization of Fe d-orbital electrons, downshifts the d-band energy level, thereby tailoring the key OH* intermediate interaction, demonstrating enhanced ORR performance with a half-wave potential of 0.91 V, a high mass activity of 21.43 A g-1, and a high turnover frequency of 2.18 e s-1 site-1. Magnetic susceptibility measurements and electron paramagnetic resonance spectroscopy reveal that linkage regulation can induce a 3d electron with high spin-state (t2g 3eg 2) of PFePc-3, significantly accelerating the ORR kinetics. In situ scanning electrochemical microscopy and variable-frequency square wave voltammetry further highlight the rapid kinetics of PFePc-3 to the high accessible site density (6.14×1019 site g-1) and fast electron outbound propagation mechanism.
Collapse
Affiliation(s)
- Mingtao Huang
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Qiao Gu
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yonggan Wu
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yuanhao Wei
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yangfan Pei
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Ting Hu
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Dirk Lützenkirchen-Hecht
- Faculty of Mathematics and Natural Sciences-Physics Department, Bergische Universität Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany
| | - Kai Yuan
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- College of Chemistry and Materials/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
4
|
Liu M, Liu Y, Zhang X, Li L, Xue X, Humayun M, Yang H, Sun L, Bououdina M, Zeng J, Wang D, Snyders R, Wang D, Wang X, Wang C. Altering the Symmetry of Fe-N-C by Axial Cl-Mediation for High-Performance Zinc-Air Batteries. Angew Chem Int Ed Engl 2025:e202504923. [PMID: 40232866 DOI: 10.1002/anie.202504923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/17/2025]
Abstract
Fe-N-C catalyst is acknowledged as a promising alternative for the state-of-the-art Pt/C in oxygen reduction reaction (ORR) toward cutting-edge electrochemical energy conversion/storage applications. Herein, a "Cl-mediation" strategy is proposed on Fe-N-C for modulating the catalyst's electronic structure toward achieving remarkable ORR activity. By coordinating axial Cl atoms to iron phthalocyanine (FePc) molecules on carbon nanotubes (CNTs) matrix, a Cl-modulated Fe-N-C (FePc-Cl-CNTs) catalyst is synthesized. The as-prepared FePc-Cl-CNTs exhibit an improved ORR activity with a half-wave potential of 0.91 V versus RHE in alkaline solution, significantly outperforming the parent FePc-CNTs (0.88 V versus RHE). The advanced nature of the as-prepared FePc-Cl-CNTs is evidenced by a configured high-performance rechargeable Zn-air battery, which operates stably for over 150 h. The experiments and density functional theory calculations unveil that axial Cl atoms induce the transformation of FePc from its original D4h to C4v symmetry, effectively altering the electrons distribution around the Fe-center, by which it optimizes *OH desorption and subsequently boosts the reaction kinetics. This work paves ways for resolving the dilemma of Fe-N-C catalysts' exploration via engineering Fe-N-C configuration.
Collapse
Affiliation(s)
- Mengni Liu
- Department of Physics, College of Science, Shihezi University, Xinjiang, 832003, P.R. China
- School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Yuxiao Liu
- School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Xia Zhang
- School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Linfeng Li
- School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Xinying Xue
- Department of Physics, College of Science, Shihezi University, Xinjiang, 832003, P.R. China
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Haowei Yang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P.R. China
| | - Libo Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P.R. China
| | - Deli Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Rony Snyders
- Chimie des Interactions Plasma Surfaces (ChIPS), University of Mons, Mons, 7000, Belgium
- Materia Nova Research Center, Mons, B-7000, Belgium
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Chundong Wang
- School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| |
Collapse
|
5
|
Wang Q, Lyu L, Hu X, Fan W, Shang C, Huang Q, Li Z, Zhou Z, Kang YM. Tailoring the Surface Curvature of the Supporting Carbon to Tune the d-Band Center of Fe-N-C Single-Atom Catalysts for Zinc-Urea-Air Batteries. Angew Chem Int Ed Engl 2025; 64:e202422920. [PMID: 39891591 DOI: 10.1002/anie.202422920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/01/2025] [Accepted: 01/30/2025] [Indexed: 02/03/2025]
Abstract
The catalytic activities of the Fe-N-C single-atom catalysts (SACs) are associated with the varying atomic interactions through its characteristic coordination geometry. Yet, modulation of the surface curvature of carbon acting as a supporting body has not been investigated. Herein, we report the superior catalytic activity for the oxygen reduction reaction (ORR) and enhanced performance for urea oxidation reaction (UOR) of single Fe atoms anchored on a highly curved N-doped carbon dodecahedron with concave morphology (Fe SA/NhcC). Theoretical calculations and in situ spectroscopy disclose that the curvature of the carbon support helps to shorten the bond length of Fe-N, spatially redistributing the charges around the Fe and thereby lowering the d-band center toward optimal adsorption for oxygenated species. The Fe SA/NhcC catalyst displays an ultrahigh half-wave potential of 0.926 V for ORR and a small potential difference of 0.686 V for bifunctional ORR/UOR. A rechargeable Zn-urea-air battery with the Fe SA/NhcC cathode displays robust discharge durability, excellent cycling lifespan and higher energy efficiency compared to conventional Zn-air batteries. This work provides new insight into promoting the catalytic activity of SACs through varying the surface curvature of the supporting carbon, tailoring geometric configuration and electronic states of SACs.
Collapse
Affiliation(s)
- Qichen Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Lulu Lyu
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Xu Hu
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China
| | - Wenqi Fan
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chunyan Shang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qirui Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zhipeng Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zhen Zhou
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yong-Mook Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Battery-Smart Factory, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Ji D, Huang B, Li H, Guo P, Li W, Liu R, Zhao X, Li G. Enhanced electro-catalysis for methanol oxidation reaction performance by edge defects of ordered mesoporous carbon. J Colloid Interface Sci 2025; 683:68-80. [PMID: 39724834 DOI: 10.1016/j.jcis.2024.12.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/07/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Heteroatom-doped carbon materials are widely used to improve the electrocatalytic oxidation of methanol; however, the underlying mechanisms driving this enhancement remain poorly understood. A major challenge lies in developing non-doped carbon supports with tunable intrinsic defect types tailored for metal-based catalysts. In this study, we synthesize a series of ordered mesoporous carbon (OMC) supports with adjustable edge defect densities by varying roasting temperatures and employing a zinc (Zn) evaporation strategy to systematically investigate the impact of edge defects on methanol oxidation reaction (MOR) performance. Theoretical calculations and structural characterizations confirm that the electron metal-support interaction (EMSI) between OMC edge defects and palladium nanoparticles (Pd NPs) effectively modulates the electronic structure of Pd NPs. This modulation not only enhances overall reaction activity and selectivity for the non-CO pathway but also strengthens the anchoring of Pd NPs, leading to superior activity and stability of the Pd/OMC-Zn0.55 catalyst in methanol electrocatalytic oxidation. Notably, after rigorously excluding the influence of various physicochemical properties of the carbon supports, the crucial role of edge defects in improving MOR performance is established. This work provides essential insights into the controlled synthesis of carbon-based catalysts with edge defects and introduces promising strategies for the development of high-performance anode catalysts for direct methanol fuel cells.
Collapse
Affiliation(s)
- Dong Ji
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, PR China
| | - BoYu Huang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, PR China
| | - HongWei Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, PR China.
| | - Peng Guo
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, PR China
| | - WeiPing Li
- Gansu Research Institute of Chemical Industry Co., Ltd, Lanzhou 730050, PR China
| | - Rong Liu
- Gansu Research Institute of Chemical Industry Co., Ltd, Lanzhou 730050, PR China
| | - XinHong Zhao
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, PR China
| | - GuiXian Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, PR China
| |
Collapse
|
7
|
Lan L, Wu Y, Pei Y, Wei Y, Hu T, Lützenkirchen-Hecht D, Yuan K, Chen Y. High-Density Accessible Iron Single-Atom Catalyst for Durable and Temperature-Adaptive Laminated Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417711. [PMID: 39916539 DOI: 10.1002/adma.202417711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/09/2025] [Indexed: 03/21/2025]
Abstract
Designing single-atom catalysts (SACs) with high density of accessible sites by improving metal loading and sites utilization is a promising strategy to boost the catalytic activity, but remains challenging. Herein, a high site density (SD) iron SAC (D-Fe-N/C) with 11.8 wt.% Fe-loading is reported. The in situ scanning electrochemical microscopy technique attests that the accessible active SD and site utilization of D-Fe-N/C reach as high as 1.01 × 1021 site g-1 and 79.8%, respectively. Therefore, D-Fe-N/C demonstrates superior oxygen reduction reaction (ORR) activity in terms of a half-wave potential of 0.918 V and turnover frequency of 0.41 e site-1 s-1. The excellent ORR property of D-Fe-N/C is also demonstrated in the liquid zinc-air batteries (ZABs), which exhibit a high peak power density of 306.1 mW cm-2 and an ultra-long cycling stability over 1200 h. Moreover, solid-state laminated ZABs prepared by presetting an air flow layer show a high specific capacity of 818.8 mA h g-1, an excellent cycling stability of 520 h, and a wide temperature-adaptive from -40 to 60 °C. This work not only offers possibilities by improving metal-loading and catalytic site utilization for exploring efficient SACs, but also provides strategies for device structure design toward advanced ZABs.
Collapse
Affiliation(s)
- Liansheng Lan
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yonggan Wu
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yangfan Pei
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yuanhao Wei
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Ting Hu
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Dirk Lützenkirchen-Hecht
- Faculty of Mathematics and Natural Sciences-Physics Department, Bergische Universität Wuppertal, Gauss-Str. 20, D-42119, Wuppertal, Germany
| | - Kai Yuan
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- College of Chemistry and Materials/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
8
|
Liu L, Ma S, Deng YP, Tang B, Zhang Y, Yan W, Jiang Y, Chen Z. Constructing Artificial Zincophilic Interphases Based on Indium-Organic Frameworks as Zinc Dendrite Constraint for Rechargeable Zinc-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409545. [PMID: 40012342 DOI: 10.1002/smll.202409545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/15/2025] [Indexed: 02/28/2025]
Abstract
The practical application of zinc (Zn)-air batteries is largely restricted by their inferior cyclability, especially under fast-charging conditions. Uneven Zn plating and dendrite formation result in their short circuits. In this work, an artificial solid-electrolyte interphase (SEI) is constructed using indium-organic frameworks (IOF) on the Zn anode. It contains a hybrid architecture that integrates chemical and morphological contributions to regulate Zn plating behaviors and constrain dendrite growth. The atomically dispersed In3+ provides zincophilic sites to tune Zn nucleation kinetics and promote preferential growth along (002) crystal facet. Meanwhile, IOF exhibits nanosheets-assembled microspheres with a well-ordered porous architecture, which promotes mass transfer and affords space for Zn electrodeposition. The influence of SEI microstructure on Zn plating/stripping behavior is further investigated and validated by the post-cycling characterizations. With IOF based SEI, Zn symmetric cells perform stable cycling for over 1750 h at 10 mA cm-2. When powering Zn-air batteries, their cycling life is extended to 800 h, which is approximately four times longer than that of pristine Zn foil.
Collapse
Affiliation(s)
- Ling Liu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Saifei Ma
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Ya-Ping Deng
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Bing Tang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Yining Zhang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Yi Jiang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Zhongwei Chen
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
9
|
Yin L, Sun M, Zhang S, Huang Y, Huang B, Du Y. Chlorine Axial Coordination Activated Lanthanum Single Atoms for Efficient Oxygen Electroreduction with Maximum Utilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416387. [PMID: 39713918 DOI: 10.1002/adma.202416387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/05/2024] [Indexed: 12/24/2024]
Abstract
Currently, there are still obstacles to rationally designing the ligand fields to activate rare-earth (RE) elements with satisfactory intrinsic electrocatalytic reactivity. Herein, axial coordination strategies and nanostructure design are applied for the construction of La single atoms (La-Cl SAs/NHPC) with satisfactory oxygen reduction reaction (ORR) activity. The nontrivial LaN4Cl2 motifs configuration and the hierarchical porous carbon substrate that facilitates maximized metal atom utilization ensure high half-wave potential (0.91 V) and significant robustness in alkaline media. The aqueous and flexible Zinc-air battery (ZAB) integrating La-Cl SAs/NHPC as the cathode catalyst exhibits a maximum power density of 260.7 and 68.5 mW cm-2, representing one of the most impressive RE-based ORR electrocatalysts to date. Theoretical calculations have demonstrated that the Cl coordination evidently modulate the electronic structures of La sites, which promoted electron transfer efficiency by d-p orbital couplings. With enhanced electroactivity of La sites, the adsorptions of key intermediates are optimized to alleviate the energy barriers of the potential-determining step. Importantly, this preparation strategy is also successfully applied to other REs. This work provides perspectives for near-range electronic structure modulation of RE-SAs based on a nonplanar coordination micro-environment for efficient electrocatalysis.
Collapse
Affiliation(s)
- Leilei Yin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Shuai Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yongkang Huang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
10
|
Yu Y, Wang Y, Yang F, Feng D, Yang M, Xie P, Zhu Y, Shao M, Mei Y, Li J. Meso/Microporous Single-Atom Catalysts Featuring Curved Fe-N 4 Sites Boost the Oxygen Reduction Reaction Activity. Angew Chem Int Ed Engl 2025; 64:e202415691. [PMID: 39375149 PMCID: PMC11735866 DOI: 10.1002/anie.202415691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Zeolitic-imidazolate frameworks (ZIFs) are among the most efficient precursors for the synthesis of atomically dispersed Fe-N/C materials, which are promising catalysts for enhancing the performance of Zn-air batteries (ZABs) and proton exchange fuel cells (PEMFCs). However, existing ZIF-derived Fe-N/C electrocatalysts mostly consist of microporous materials, leading to insufficient mass transport and inadequate battery/cell performance. In this study, we synthesize an atomically dispersed meso/microporous Fe-N/C material with curved Fe-N4 active sites, denoted as FeSA-N/TC, through the pyrolysis of hemin-modified ZIF films on ZnO nanorods, obtained from the self-assembly reaction between Zn2+ from ZnO hydrolysis and 2-methylimidazole. Density functional theory calculations demonstrate that the curved Fe-N4 active sites can weaken the intermediate adsorptions, resulting in lower free energy barriers and enhanced performance during oxygen reduction reaction (ORR). Specifically, FeSA-N/TC exhibits exceptional ORR performance with half-wave potentials of 0.925 V in alkaline media and 0.825 V in acidic media. When used as the cathodic catalyst in PEMFCs and ZABs, FeSA-N/TC achieves high peak power densities (H2-O2 PEMFC: 1100 mW cm-2; H2-Air PEMFC: 715 mW cm-2; liquid-state ZAB: 228 mW cm-2; solid-state ZAB: 112 mW cm-2), demonstrating its feasibility and efficiency in practical applications.
Collapse
Affiliation(s)
- Ying Yu
- Faculty of Chemical EngineeringYunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus MaterialsKunming University of Science and TechnologyKunming650500China
| | - Yian Wang
- Department of Chemical and Biological EngineeringHong Kong University of Science and Technology Clear Water BayKowloonHong KongChina
| | - Fei Yang
- Department of Chemical and Biological EngineeringHong Kong University of Science and Technology Clear Water BayKowloonHong KongChina
| | - Dong Feng
- Faculty of Chemical EngineeringYunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus MaterialsKunming University of Science and TechnologyKunming650500China
| | - Mingyang Yang
- Faculty of Chemical EngineeringYunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus MaterialsKunming University of Science and TechnologyKunming650500China
| | - Peng‐Fei Xie
- Faculty of Chemical EngineeringYunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus MaterialsKunming University of Science and TechnologyKunming650500China
| | - Yuanzhi Zhu
- Faculty of Chemical EngineeringYunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus MaterialsKunming University of Science and TechnologyKunming650500China
| | - Minhua Shao
- Department of Chemical and Biological EngineeringHong Kong University of Science and Technology Clear Water BayKowloonHong KongChina
- CIAC-HKUST Joint Laboratory for Hydrogen EnergyEnergy InstituteThe Hong Kong University of Science and Technology Clear Water BayKowloonHong KongChina
- Guangzhou Key Laboratory of Electrochemical Energy Storage TechnologiesFok Ying Tung Research InstituteThe Hong Kong University of Science and TechnologyGuangzhou511458China
| | - Yi Mei
- Faculty of Chemical EngineeringYunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus MaterialsKunming University of Science and TechnologyKunming650500China
| | - Jin‐Cheng Li
- Faculty of Chemical EngineeringYunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus MaterialsKunming University of Science and TechnologyKunming650500China
| |
Collapse
|
11
|
Luo Q, Wang K, Zhang Q, Ding W, Wang R, Li L, Peng S, Ji D, Qin X. Tailoring Single-Atom Coordination Environments in Carbon Nanofibers via Flash Heating for Highly Efficient Bifunctional Oxygen Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202413369. [PMID: 39162070 DOI: 10.1002/anie.202413369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/21/2024]
Abstract
The rational design of carbon-supported transition metal single-atom catalysts necessitates precise atomic positioning within the precursor. However, structural collapse during pyrolysis can occlude single atoms, posing significant challenges in controlling both their utilization and coordination environment. Herein, we present a surface atom adsorption-flash heating (FH) strategy, which ensures that the pre-designed carbon nanofiber structure remains intact during heating, preventing unforeseen collapse effects and enabling the formation of metal atoms in nano-environments with either tetra-nitrogen or penta-nitrogen coordination at different flash heating temperatures. Theoretical calculations and in situ Raman spectroscopy reveal that penta-nitrogen coordinated cobalt atoms (Co-N5) promote a lower energy pathway for oxygen reduction and oxygen evolution reactions compared to the commonly formed Co-N4 sites. This strategy ensures that Co-N5 sites are fully exposed on the surface, achieving exceptionally high atomic utilization. The turnover frequency (65.33 s-1) is 47.4 times higher than that of 20 % Pt/C under alkaline conditions. The porous, flexible carbon nanofibers significantly enhance zinc-air battery performance, with a high peak power density (273.8 mW cm-2), large specific capacity (784.2 mAh g-1), and long-term cycling stability over 600 h. Additionally, the flexible fiber-shaped zinc-air battery can power wearable devices, demonstrating significant potential in flexible electronics applications.
Collapse
Affiliation(s)
- Qingliang Luo
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Kangkang Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Qiangqiang Zhang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Wei Ding
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Rongwu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016, China
| | - Dongxiao Ji
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaohong Qin
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
12
|
Li RJ, Niu WJ, Zhao WW, Yu BX, Cai CY, Xu LY, Wang FM. Achievements and Challenges in Surfactants-Assisted Synthesis of MOFs-Derived Transition Metal-Nitrogen-Carbon as a Highly Efficient Electrocatalyst for ORR, OER, and HER. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408227. [PMID: 39463060 DOI: 10.1002/smll.202408227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Metal-organic frameworks (MOFs) are excellent precursors for preparing transition metal and nitrogen co-doped carbon catalysts, which have been widely utilized in the field of electrocatalysis since their initial development. However, the original MOFs derived catalysts have been greatly limited in their development and application due to their disadvantages such as metal atom aggregation, structural collapse, and narrow pore channels. Recently, surfactants-assisted MOFs derived catalysts have attracted much attention from researchers due to their advantages such as hierarchical porous structure, increased specific surface area, and many exposed active sites. This review mainly focuses on the synthesis methods of surfactants-assisted MOFs derived catalysts and comprehensively introduces the action of surfactants in MOFs derived materials and the structure-activity relationship between the catalysts and the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction performance. Apparently, the aims of this review not only introduce the status of surfactants-assisted MOFs derived catalysts in the field of electrocatalysis but also contribute to the rational design and synthesis of MOFs derived catalysts for fuel cells, metal-air cells, and electrolysis of water toward hydrogen production.
Collapse
Affiliation(s)
- Ru-Ji Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Wen-Jun Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Wei-Wei Zhao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Bing-Xin Yu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Chen-Yu Cai
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Li-Yang Xu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Fu-Ming Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
13
|
Ji S, Mou Y, Liu H, Lu X, Zhang Y, Guo C, Sun K, Liu D, Horton JH, Wang C, Wang Y, Li Z. Manipulating the Electronic Properties of an Fe Single Atom Catalyst via Secondary Coordination Sphere Engineering to Provide Enhanced Oxygen Electrocatalytic Activity in Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410121. [PMID: 39279558 DOI: 10.1002/adma.202410121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/31/2024] [Indexed: 09/18/2024]
Abstract
Oxygen reduction and evolution reactions are two key processes in electrochemical energy conversion technologies. Synthesis of nonprecious metal, carbon-based electrocatalysts with high oxygen bifunctional activity and stability is a crucial, yet challenging step to achieving electrochemical energy conversion. Here, an approach to address this issue: synthesis of an atomically dispersed Fe electrocatalyst (Fe1/NCP) over a porous, defect-containing nitrogen-doped carbon support, is described. Through incorporation of a phosphorus atom into the second coordination sphere of iron, the activity and durability boundaries of this catalyst are pushed to an unprecedented level in alkaline environments, such as those found in a zinc-air battery. The rationale is to delicately incorporate P heteroatoms and defects close to the central metal sites (FeN4P1-OH) in order to break the local symmetry of the electronic distribution. This enables suitable binding strength with oxygenated intermediates. In situ characterizations and theoretical studies demonstrate that these synergetic interactions are responsible for high bifunctional activity and stability. These intrinsic advantages of Fe1/NCP enable a potential gap of a mere 0.65 V and a high power density of 263.8 mW cm-2 when incorporated into a zinc-air battery. These findings underscore the importance of design principles to access high-performance electrocatalysts for green energy technologies.
Collapse
Affiliation(s)
- Siqi Ji
- State Key Laboratory of Continental Shale Oil, Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Yimin Mou
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hongxue Liu
- State Key Laboratory of Continental Shale Oil, Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Xue Lu
- State Key Laboratory of Continental Shale Oil, Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Continental Shale Oil, Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Chunmin Guo
- State Key Laboratory of Continental Shale Oil, Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Kaizhan Sun
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Dong Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Hefei, 230029, P. R. China
| | | | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Yu Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhijun Li
- State Key Laboratory of Continental Shale Oil, Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| |
Collapse
|
14
|
Chen H, Chen R, Liu S, Zhou Y, Chen X, Cai J, Lan X, Jiang H, Lin L, Sun Z. Efficient H 2O 2 Synthesis Through a Two-Electron Oxygen Reduction Reaction by Electrocatalysts. Chempluschem 2024; 89:e202400422. [PMID: 39012587 DOI: 10.1002/cplu.202400422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/17/2024]
Abstract
The two-electron oxygen reduction reaction (2e-ORR) for the sustainable synthesis of hydrogen peroxide (H2O2) has demonstrated considerable potential for local production of this environmentally friendly chemical oxidant on small, medium, and large scales. This method offers a promising alternative to the energy-intensive anthraquinone approach, placing a primary emphasis on the development of efficient electrocatalysts. Improving the efficiency of electrocatalysts and uncovering their catalytic mechanisms are essential steps in achieving high 2e-ORR activity, selectivity, and stability. This comprehensive review summarizes recent advancements in electrocatalysts for in-situ H2O2 production, providing a detailed overview of the field. In particular, the review delves into the design, fabrication, and investigation of catalytic active sites contributing to H2O2 selectivity. Additionally, it highlights a range of electrocatalysts including pure metals and alloys, transition metal compounds, single-atom catalysts, and carbon-based catalysts for the 2e-ORR pathway. Finally, the review addresses significant challenges and opportunities for efficient H2O2 electrosynthesis, as well as potential future research directions.
Collapse
Affiliation(s)
- Huatian Chen
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Runxuan Chen
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Sha Liu
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Yanhong Zhou
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Xinyu Chen
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Jiajin Cai
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Xiyue Lan
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Haomin Jiang
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100091, China
| | - Liu Lin
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Zemin Sun
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| |
Collapse
|
15
|
Chen S, Zhu H, Li T, Liu P, Wu C, Jia S, Li Y, Suo B. Applications of metal nanoclusters supported on the two-dimensional material graphene in electrocatalytic carbon dioxide reduction. Phys Chem Chem Phys 2024; 26:26647-26676. [PMID: 39415712 DOI: 10.1039/d4cp03161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metal nanoclusters (MNCs) have been demonstrated to exhibit superior catalytic performance compared to single nanoparticles. This is attributed to their quantized electronic structure, unique geometrical stacking and abundant active sites. While the exposed metal atoms can markedly enhance the efficiency of catalysis, unfortunately, MNCs are susceptible to agglomeration, which impairs their catalytic activity and stability. Graphene is a two-dimensional material consisting of a single atomic layer formed by the hybridization of the s and p orbitals of carbon atoms. It exhibits stable physical and chemical properties and has an easily controllable structure, making it an ideal carrier for MNCs. When metal nanoclusters (MNCs) are loaded on a graphene substrate, the MNCs can form a stable binding site on the graphene substrate. Furthermore, the construction of a defective structure on the graphene substrate enables the formation of robust interactions between the metal atoms of the MNCs and the substrate, facilitating the rapid establishment of electron conduction pathways and markedly enhancing the electrocatalytic performance. This paper presents a review of the applications of metal nanoclusters supported on graphene skeletons in the field of the electrocatalytic CO2 reduction reaction (CO2RR). Firstly, we briefly introduce the reaction mechanism of the CO2RR, then we systematically discuss the synthesis strategies, properties and applications of metal nanoclusters in electrocatalytic carbon dioxide reduction from both experimental and theoretical perspectives, and lastly, we discuss the opportunities and challenges of metal nanocluster catalysts supported on carbon materials.
Collapse
Affiliation(s)
- Shanlin Chen
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Haiyan Zhu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Tingting Li
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Ping Liu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chou Wu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shaobo Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi'an, P. R. China
| | - Yawei Li
- School of Energy, Power and Mechanical Engineering, Institute of Energy and Power Innovation, North China Electric Power University, Beijing 102206, China.
| | - Bingbing Suo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
16
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
17
|
Cheng J, Zhang Z, Shao J, Wang T, Li R, Zhang W. Construction of an Axial Charge Transfer Channel Between Single-Atom Fe Sites and Nitrogen-Doped Carbon Supports for Boosting Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402583. [PMID: 38804883 DOI: 10.1002/smll.202402583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The introduction of axial-coordinated heteroatoms in Fe─N─C single-atom catalysts enables the significant enhancement of their oxygen reduction reaction (ORR) performance. However, the interaction relationship between the axial-coordinated heteroatoms and their carbon supports is still unclear. In this work, a gas phase surface treatment method is proposed to prepare a series of X─Fe─N─C (X = O, P, and S) single-atom catalysts with axial X-coordination on graphitic-N-rich carbon supports. Synchrotron-based X-ray absorption near-edge structure spectra and X-ray photoelectron spectroscopy indicate the formation of an axial charge transfer channel between the graphitic-N-rich carbon supports and single-atom Fe sites by axial O atoms in O─Fe─N─C. As a result, the O─Fe─N─C exhibits excellent ORR performance with a half-wave potential of 0.905 V versus RHE and a high specific capacity of 884 mAh g-1 for zinc-air battery, which is superior to other X─Fe─N─C catalysts without axial charge transfer and the commercial Pt/C catalyst. This work not only demonstrates a general synthesis strategy for the preparation of single-atom catalysts with axial-coordinated heteroatoms, but also presents insights into the interaction between single-atom active sites and doped carbon supports.
Collapse
Affiliation(s)
- Jiahao Cheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zheng Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jibin Shao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tang Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Rui Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wang Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
18
|
Rong J, Chen W, Gao E, Wu J, Ao H, Zheng X, Zhang Y, Li Z, Kim M, Yamauchi Y, Wang C. Design of Atomically Dispersed CoN 4 Sites and Co Clusters for Synergistically Enhanced Oxygen Reduction Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402323. [PMID: 38953346 DOI: 10.1002/smll.202402323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/31/2024] [Indexed: 07/04/2024]
Abstract
Constructing dual-site catalysts consisting of atomically dispersed metal single atoms and metal atomic clusters (MACs) is a promising approach to further boost the catalytic activity for oxygen reduction reaction (ORR). Herein, a porous CoSA-AC@SNC featuring the coexistence of Co single-atom sites (CoN4) and S-coordinated Co atomic clusters (SCo6) in S, N co-doped carbon substrate is successfully synthesized by using porphyrinic metal-organic framework (Co-TPyP MOF) as the precursor. The introduction of the sulfur source creates abundant microstructural defects to anchor Co metal clusters, thus modulating the electronic structure of its surrounding carbon substrate. The synergistic effect between the two types of active sites and structural advantages, in turn, results in high ORR performance of CoSA-AC@SNC with half-wave potential (E1/2) of 0.86 V and Tafel slope of 50.17 mV dec-1. Density functional theory (DFT) calculations also support the synergistic effect between CoN4 and SCo6 by detailing the catalytic mechanism for the improved ORR performance. The as-fabricated Zn-air battery (ZAB) using CoSA-AC@SNC demonstrates impressive peak power density of 174.1 mW cm-2 and charge/discharge durability for 148 h. This work provides a facile synthesis route for dual-site catalysts and can be extended to the development of other efficient atomically dispersed metal-based electrocatalysts.
Collapse
Affiliation(s)
- Jian Rong
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213614, China
- Jiangsu Petrochemical Safety and Environmental Protection Engineering Research Center, Changzhou, Jiangsu, 213164, China
| | - Wangyi Chen
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213614, China
| | - Erhao Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213614, China
| | - Jing Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213614, China
| | - Huaisheng Ao
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213614, China
| | - Xudong Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213614, China
| | - Yuzhe Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213614, China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213614, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213614, China
| | - Minjun Kim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Chaohai Wang
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467036, China
| |
Collapse
|
19
|
Jiang X, Zhang R, Liao Q, Zhang H, Yang Y, Zhang F. Fe-N x sites coupled with Fe 3C on porous carbon from plastic wastes for oxygen reduction reaction. Chem Commun (Camb) 2024; 60:10334-10337. [PMID: 39212348 DOI: 10.1039/d4cc03683b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Isolated Fe-Nx sites coupled with Fe3C nanoparticles co-embedded in N-doped porous carbon were fabricated using polyethylene terephthalate wastes as carbon sources. Benefiting from the synergistic effect between Fe-Nx sites and Fe3C, and the hierarchical porous structure, the catalyst exhibits outstanding ORR performance, realizing the concept of turning trash into treasure.
Collapse
Affiliation(s)
- Xiaole Jiang
- Laboratory of Fundamental Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zhang
- Laboratory of Fundamental Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qingqing Liao
- Laboratory of Fundamental Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Hanjun Zhang
- Laboratory of Fundamental Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yaoyue Yang
- Laboratory of Fundamental Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Fan Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
20
|
Yang X, Zhu B, Gao Z, Yang C, Zhou J, Han A, Liu J. A Vacuum Vapor Deposition Strategy to Fe Single-Atom Catalysts with Densely Active Sites for High-Performance Zn-Air Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306594. [PMID: 38751152 PMCID: PMC11425844 DOI: 10.1002/advs.202306594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Indexed: 09/27/2024]
Abstract
Iron single-atom catalysts (SACs) have garnered increasing attention as highly efficient catalysts for the oxygen reduction reaction (ORR), yet their performance in practical devices remains suboptimal due to the low density of accessible active sites. Anchoring iron single atoms on 2D support is a promising way to increase the accessible active sites but remains difficult attributing to the high aggregation tendency of iron atoms on the 2D support. Herein, a vacuum vapor deposition strategy is presented to fabricate an iron SAC supported on ultrathin N-doped carbon nanosheets with densely active sites (FeSAs-UNCNS). Experimental analyses confirm that the FeSAs-UNCNS achieves densely accessible active sites (1.11 × 1020 sites g-1) in the configuration of Fe─N4O. Consequently, the half-wave potential of FeSAs-UNCNS in 0.1 m KOH reaches a remarkable value of 0.951 V versus RHE. Moreover, when employed as the cathode of various kinds of Zn-air batteries, FeSAs-UNCNS exhibits boosting performances by achieving a maximum power density of 306 mW cm-2 and long cycle life (>180 h) at room temperature, surpassing both Pt/C and reported SACs. Further investigations reveal that FeSAs-UNCNS facilitates the mass and charge transfer during catalysis and the atomic configuration favors the desorption of *OH kinetically.
Collapse
Affiliation(s)
- Xiang Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Baohui Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhiyang Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Can Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jingbo Zhou
- Baidu Research, Haidian District, Beijing, 100193, P. R. China
| | - Aijuan Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
21
|
Jing L, Wang W, Tian Q, Kong Y, Ye X, Yang H, Hu Q, He C. Efficient Neutral H 2O 2 Electrosynthesis from Favorable Reaction Microenvironments via Porous Carbon Carrier Engineering. Angew Chem Int Ed Engl 2024; 63:e202403023. [PMID: 38763905 DOI: 10.1002/anie.202403023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The efficient electrosynthesis of hydrogen peroxide (H2O2) via two-electron oxygen reduction reaction (2e- ORR) in neutral media is undoubtedly a practical route, but the limited comprehension of electrocatalysts has hindered the system advancement. Herein, we present the design of model catalysts comprising mesoporous carbon spheres-supported Pd nanoparticles for H2O2 electrosynthesis at near-zero overpotential with approximately 95 % selectivity in a neutral electrolyte. Impressively, the optimized Pd/MCS-8 electrocatalyst in a flow cell device achieves an exceptional H2O2 yield of 15.77 mol gcatalyst -1 h-1, generating a neutral H2O2 solution with an accumulated concentration of 6.43 wt %, a level sufficiently high for medical disinfection. Finite element simulation and experimental results suggest that mesoporous carbon carriers promote O2 enrichment and localized pH elevation, establishing a favorable microenvironment for 2e- ORR in neutral media. Density functional theory calculations reveal that the robust interaction between Pd nanoparticles and the carbon carriers optimized the adsorption of OOH* at the carbon edge, ensuring high active 2e- process. These findings offer new insights into carbon-loaded electrocatalysts for efficient 2e- ORR in neutral media, emphasizing the role of carrier engineering in constructing favorable microenvironments and synergizing active sites.
Collapse
Affiliation(s)
- Lingyan Jing
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wenyi Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qiang Tian
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yan Kong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xieshu Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
22
|
Li S, Shi L, Guo Y, Wang J, Liu D, Zhao S. Selective oxygen reduction reaction: mechanism understanding, catalyst design and practical application. Chem Sci 2024; 15:11188-11228. [PMID: 39055002 PMCID: PMC11268513 DOI: 10.1039/d4sc02853h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
The oxygen reduction reaction (ORR) is a key component for many clean energy technologies and other industrial processes. However, the low selectivity and the sluggish reaction kinetics of ORR catalysts have hampered the energy conversion efficiency and real application of these new technologies mentioned before. Recently, tremendous efforts have been made in mechanism understanding, electrocatalyst development and system design. Here, a comprehensive and critical review is provided to present the recent advances in the field of the electrocatalytic ORR. The two-electron and four-electron transfer catalytic mechanisms and key evaluation parameters of the ORR are discussed first. Then, the up-to-date synthetic strategies and in situ characterization techniques for ORR electrocatalysts are systematically summarized. Lastly, a brief overview of various renewable energy conversion devices and systems involving the ORR, including fuel cells, metal-air batteries, production of hydrogen peroxide and other chemical synthesis processes, along with some challenges and opportunities, is presented.
Collapse
Affiliation(s)
- Shilong Li
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lei Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yingjie Guo
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jingyang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Di Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
23
|
Huang B, Gu Q, Tang X, Lützenkirchen-Hecht D, Yuan K, Chen Y. Experimentally validating sabatier plot by molecular level microenvironment customization for oxygen electroreduction. Nat Commun 2024; 15:6077. [PMID: 39030179 PMCID: PMC11271610 DOI: 10.1038/s41467-024-50377-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Microenvironmental modifications on metal sites are crucial to tune oxygen reduction catalytic behavior and decrypt intrinsic mechanism, whereas the stochastic properties of traditional pyrolyzed single-atom catalysts induce vague recognition on structure-reactivity relations. Herein, we report a theoretical descriptor relying on binding energies of oxygen adsorbates and directly associating the derived Sabatier volcano plot with calculated overpotential to forecast catalytic efficiency of cobalt porphyrin. This Sabatier volcano plot instructs that electron-withdrawing substituents mitigate the over-strong *OH intermediate adsorption by virtue of the decreased proportion of electrons in bonding orbital. To experimentally validate this speculation, we implement a secondary sphere microenvironment customization strategy on cobalt porphyrin-based polymer nanocomposite analogs. Systematic X-ray spectroscopic and in situ electrochemical characterizations capture the pronounced accessible active site density and the fast interfacial/outward charge migration kinetics contributions for the optimal carboxyl group-substituted catalyst. This work offers ample strategies for designing single-atom catalysts with well-managed microenvironment under the guidance of Sabatier volcano map.
Collapse
Affiliation(s)
- Bingyu Huang
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, PR China
- College of Chemistry and Materials/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Qiao Gu
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, PR China
| | - Xiannong Tang
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, PR China
| | - Dirk Lützenkirchen-Hecht
- Faculty of Mathematics and Natural Sciences-Physics Department, Bergische Universität Wuppertal, Gauss-Str. 20, D-42119, Wuppertal, Germany
| | - Kai Yuan
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, PR China.
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, PR China.
- College of Chemistry and Materials/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
24
|
Chen Z, Dong X, Sun ZX, An X, Li C, Liu S, Shen J, Wu C, Wang J, Wang Z, Zhu Z, Zhou Y, Yu K, Ma Y, He J, Feng K, He L, Hu Z. Hierarchical Carbon Nanocages as Superior Supports for Photothermal CO 2 Catalysis. ACS NANO 2024. [PMID: 39016025 DOI: 10.1021/acsnano.4c04691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The exploitation of hierarchical carbon nanocages with superior light-to-heat conversion efficiency, together with their distinct structural, morphological, and electronic properties, in photothermal applications could provide effective solutions to long-standing challenges in diverse areas. Here, we demonstrate the discovery of pristine and nitrogen-doped hierarchical carbon nanocages as superior supports for highly loaded, small-sized Ru particles toward enhanced photothermal CO2 catalysis. A record CO production rate of 3.1 mol·gRu-1·h-1 with above 90% selectivity in flow reactors was reached for hierarchical nitrogen-doped carbon-nanocage-supported Ru clusters under 2.4 W·cm-2 illumination without external heating. Detailed studies reveal that the enhanced performance originates from the strong broadband sunlight absorption and efficient light-to-heat conversion of nanocage supports as well as the excellent intrinsic catalytic reactivity of sub-2 nm Ru particles. Our study reveals the great potential of hierarchical carbon nanocages in photothermal catalysis to reduce the fossil fuel consumption of various industrial chemical processes and stimulates interest in their exploitation for other demanding photothermal applications.
Collapse
Affiliation(s)
- Zhijie Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xudong Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Zi-Xuan Sun
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123 Jiangsu, PR China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Shuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jiahui Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Chunpeng Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jiaqi Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Zidi Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Zhijie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yuxuan Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Kewei Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yueru Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jiari He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Kai Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123 Jiangsu, PR China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123 Jiangsu, PR China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, PR China
| |
Collapse
|
25
|
Guo M, Wang L, Huang Z, Li H, Isimjan TT, Yang X. Modulating the Energy Barrier via the Synergism of Cu 3P and CoP to Accelerate Kinetics for Bolstering Oxygen Electrocatalysis in Zn-Air Batteries. ACS NANO 2024; 18:17901-17912. [PMID: 38913650 DOI: 10.1021/acsnano.4c04479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Modulating the energy barrier of reaction intermediates to surmount sluggish kinetics is an utterly intriguing strategy for amplifying the oxygen reduction reaction. Herein, a Cu3P/CoP hybrid is incorporated on hollow porous N-doped carbon nanospheres via dopamine self-polymerization and high-temperature treatment. The resultant Cu3P/CoP@NC showcases a favorable mass activity of 4.41 mA mg-1 and a kinetic current density of 2.38 mA cm-2. Strikingly, the catalyst endows the aqueous Zn-air battery (ZAB) with a large power density of 209.0 mW cm-2, superb cyclability over 317 h, and promising application prospects in flexible ZAB. Theoretical simulations reveal that Cu functions as a modulator to modify the free energy of intermediates and adsorbs the O2 on the Co sites, hence rushing the reaction kinetics. The open and hydrophilic hollow spherical mesoporous structure provides unimpeded channels for reactant diffusion and electrolyte penetration, whereas the exposed inner and outer surfaces can confer a plethora of accessible actives sites. This research establishes a feasible design concept to tune catalytic activity for non-noble metal materials by construction of a rational nanoframework.
Collapse
Affiliation(s)
- Man Guo
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lixia Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhiyang Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huatong Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
26
|
Li Y, Sun H, Ren L, Sun K, Gao L, Jin X, Xu Q, Liu W, Sun X. Asymmetric Coordination Regulating D-Orbital Spin-Electron Filling in Single-Atom Iron Catalyst for Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2024; 63:e202405334. [PMID: 38720373 DOI: 10.1002/anie.202405334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 06/05/2024]
Abstract
The single-atom Fe-N-C catalyst has shown great promise for the oxygen reduction reaction (ORR), yet the intrinsic activity is not satisfactory. There is a pressing need to gain a deeper understanding of the charge configuration of the Fe-N-C catalyst and to develop rational modulation strategies. Herein, we have prepared a single-atom Fe catalyst with the co-coordination of N and O (denoted as Fe-N/O-C) and adjacent defect, proposing a strategy to optimize the d-orbital spin-electron filling of Fe sites by fine-tuning the first coordination shell. The Fe-N/O-C exhibits significantly better ORR activity compared to its Fe-N-C counterpart and commercial Pt/C, with a much more positive half-wave potential (0.927 V) and higher kinetic current density. Moreover, using the Fe-N/O-C catalyst, the Zn-air battery and proton exchange membrane fuel cell achieve peak power densities of up to 490 and 1179 mW cm-2, respectively. Theoretical studies and in situ electrochemical Raman spectroscopy reveal that Fe-N/O-C undergoes charge redistribution and negative shifting of the d-band center compared to Fe-N-C, thus optimizing the adsorption free energy of ORR intermediates. This work demonstrates the feasibility of introducing an asymmetric first coordination shell for single-atom catalysts and provides a new optimization direction for their practical application.
Collapse
Affiliation(s)
- Yizhe Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Longtao Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Kai Sun
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Liyao Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiangrong Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qingzhen Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
27
|
Wang D, Zha S, Li Y, Li X, Wang J, Chu Y, Mitsuzaki N, Chen Z. A carboxylate linker strategy mediated densely accessible Fe-N 4 sites for enhancing oxygen electroreduction in Zn-air batteries. J Colloid Interface Sci 2024; 665:879-887. [PMID: 38564952 DOI: 10.1016/j.jcis.2024.03.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/09/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Iron-nitrogen-carbon single-atom catalysts derived from zeolitic-imidazolate-framework-8 (ZIF-8) have presented its great potential for the oxygen reduction reaction (ORR) in Zn-air batteries (ZABs). However, due to insufficient active Fe-N sites, its ORR activity is inferior to Pt-based catalysts. Herein, a carboxylate (OAc) linker strategy is proposed to design a ZIF-8-derived FeNCOAc catalyst with abundant accessible Fe-N4 single-atom sites. Except that imidazole groups can coordinate with Fe ions, the OAc linker on the unsaturated coordination Zn nodes can anchor and coordinate with more Fe ions, resulting in a significant increase in Fe-N4 site density. Meanwhile, the corrosion of carbon skeleton by OAc oxidation during heat-treatment leads to improved porosity of catalyst. Benefitting from the highly dense Fe-N4 sites and hierarchical pores, the FeNCOAc endows superior performance in alkaline medium (E1/2 = 0.906 V), which is confirmed by density functional theory calculation results. Meanwhile, the assembled liquid ZAB delivers a favorable peak power density of 173.9 mW cm-2, and a high specific capacity of 770.9 mAh g-1 as well as outstanding durability. Besides, the solid-state ZAB also shows outstanding discharge performance.
Collapse
Affiliation(s)
- Dan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Sujuan Zha
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yaqiang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xiaosong Li
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jibiao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yuan Chu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | | | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
28
|
Li S, Zhou Y, Xu C, Wang L, Wang T, Zhu B, Xu W, Wu YA, Tao H. ZIFs-Derived Hollow Nanostructures via a Strong/Weak Coetching Strategy for Long-Life Rechargeable Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309932. [PMID: 38295134 DOI: 10.1002/smll.202309932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Indexed: 02/02/2024]
Abstract
Recently, zeolitic imidazolate frameworks (ZIFs) composites have emerged as promising precursors for synthesizing hollow-structured N-doped carbon-based noble-metal materials with diverse structures and compositions. Here, a strong/weak competitive coordination strategy is presented for synthesizing high-performance electrocatalysts with hollow features. During the competitive coordination process, the cubic zeolitic-imidazole framework-8 (Cube-8)@ZIF-67 with core-shell structures are transformed into Cube-8@ZIF-67@PF/POM with yolk-shell nanostructures employing phosphomolybdic acid (POM) and potassium ferricyanide (PF) as the strong chelator and the weak chelator, respectively. After calcination, the hollow Mo/Fe/Co@NC catalyst exhibits superior performance in both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Interestingly, the Mo/Fe/Co@NC catalyst exhibits efficient electrocatalytic performance for Zn-air batteries (ZABs), with a high power density (≈150 mW cm-2) and superior cycling life (≈500 h) compared to commercial platinum/carbon (Pt/C) and ruthenium dioxide (RuO2) mixture benchmarks catalysts. In addition, the density functional theory further proves that after the introduction of Mo and Fe atoms, the adsorption energy with the adsorption intermediates is weakened by adjusting the d-band center, thus weakening the reaction barrier and promoting the reaction kinetics of OER. Undoubtedly, this study presents novel insights into the fabrication of ZIFs-derived hollow structure bifunctional oxygen electrocatalysts for clean-energy diverse applications.
Collapse
Affiliation(s)
- Shunli Li
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yingtang Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Chenxi Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lei Wang
- Department of Mechanical and Mechatronics Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Tianzheng Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Baikang Zhu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022, China
- National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Weijian Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Hengcong Tao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022, China
- National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
29
|
Wei J, Lou J, Hu W, Song X, Wang H, Yang Y, Zhang Y, Jiang Z, Mei B, Wang L, Yang T, Wang Q, Li X. Superstructured Carbon with Enhanced Kinetics for Zinc-Air Battery and Self-Powered Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308956. [PMID: 38183403 DOI: 10.1002/smll.202308956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/15/2023] [Indexed: 01/08/2024]
Abstract
The present study proposes a novel engineering concept for the customization of functionality and construction of superstructure to fabricate 2D monolayered N-doped carbon superstructure electrocatalysts decorated with Co single atoms or Co2P nanoparticles derived from 2D bimetallic ZnCo-ZIF superstructure precursors. The hierarchically porous carbon superstructure maximizes the exposure of accessible active sites, enhances electron/mass transport efficiency, and accelerates reaction kinetics simultaneously. Consequently, the Co single atoms embedded N-doped carbon superstructure (Co-NCS) exhibits remarkable catalytic activity toward oxygen reduction reaction, achieving a half-wave potential of 0.886 V versus RHE. Additionally, the Co2P nanoparticles embedded N-doped carbon superstructure (Co2P-NCS) demonstrates high activity for both oxygen evolution reaction and hydrogen evolution reaction, delivering low overpotentials of 292 mV at 10 mA cm-2 and 193 mV at 10 mA cm-2 respectively. Impressively, when employed in an assembled rechargeable Zn-air battery, the as-prepared 2D carbon superstructure electrocatalysts exhibit exceptional performance with a peak power density of 219 mW cm-2 and a minimal charge/discharge voltage gap of only 1.16 V at 100 mA cm-2. Moreover, the cell voltage required to drive an overall water-splitting electrolyzer at a current density of 10 mA cm-2 is merely 1.69 V using these catalysts as electrodes.
Collapse
Affiliation(s)
- Jiamin Wei
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Jiali Lou
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Weibo Hu
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
| | - Xiaokai Song
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Haifeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yang Yang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Yaqi Zhang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Ziru Jiang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201800, PR China
| | - Liangbiao Wang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Tinghai Yang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Qing Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
30
|
Shi H, Gao S, Liu X, Wang Y, Zhou S, Liu Q, Zhang L, Hu G. Recent Advances in Catalyst Design and Performance Optimization of Nanostructured Cathode Materials in Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309557. [PMID: 38705855 DOI: 10.1002/smll.202309557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Indexed: 05/07/2024]
Abstract
This review focuses on the advanced design and optimization of nanostructured zinc-air batteries (ZABs), with the aim of boosting their energy storage and conversion capabilities. The findings show that ZABs favor porous nanostructures owing to their large surface area, and this enhances the battery capacity, catalytic activity, and life cycle. In addition, the nanomaterials improve the electrical conductivity, ion transport, and overall battery stability, which crucially reduces dendrite growth on the zinc anodes and improves cycle life and energy efficiency. To obtain a superior performance, the importance of controlling the operational conditions and using custom nanostructural designs, optimal electrode materials, and carefully adjusted electrolytes is highlighted. In conclusion, porous nanostructures and nanoscale materials significantly boost the energy density, longevity, and efficiency of Zn-air batteries. It is suggested that future research should focus on the fundamental design principles of these materials to further enhance the battery performance and drive sustainable energy solutions.
Collapse
Affiliation(s)
- Haiyang Shi
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
- School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China
| | - Sanshuang Gao
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China
| | - Yin Wang
- Hubei Key Laboratory of Low-Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Shuxing Zhou
- Hubei Key Laboratory of Low-Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Lei Zhang
- School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| |
Collapse
|
31
|
Liu X, Yang X, Zhao Z, Fang T, Yi K, Chen L, Liu S, Wang R, Jia X. Isolated Binary Fe-Ni Metal-Nitrogen Sites Anchored on Porous Carbon Nanosheets for Efficient Oxygen Electrocatalysis through High-Temperature Gas-Migration Strategy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18703-18712. [PMID: 38591147 DOI: 10.1021/acsami.3c17193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Atomically dispersed dual-site catalysts can regulate multiple reaction processes and provide synergistic functions based on diverse molecules and their interfaces. However, how to synthesize and stabilize dual-site single-atom catalysts (DACs) is confronted with challenges. Herein, we report a facile high-temperature gas-migration strategy to synthesize Fe-Ni DACs on nitrogen-doped carbon nanosheets (FeNiSAs/NC). FeNiSAs/NC exhibits a high half-wave potential (0.88 V) for the oxygen reduction reaction (ORR) and a low overpotential of 410 mV at 10 mA cm-2 for the oxygen evolution reaction (OER). As an air electrode for Zn-air batteries (ZABs), it shows better performances in aqueous ZABs and excellent stability and flexibility in solid-state ZABs. The high specific surface area (1687.32 m2/g) of FeNiSAs/NC is conducive to electron transport. Density functional theory (DFT) reveals that the Fe sites are the active center, and Ni sites can significantly optimize the free energy of the oxygen-containing intermediate state on Fe sites, contributing to the improvement of ORR and the corresponding OER activities. This work can provide guidance for the rational design of DACs and understand the structure-activity relationship of SACs with multiple active sites for electrocatalytic energy conversion.
Collapse
Affiliation(s)
- Xinghuan Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Xiaodong Yang
- Key Laboratory of Ecophysics and Department of Physics, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Zeyu Zhao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Tianwen Fang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Ke Yi
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Long Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Shiyu Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Rongjie Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Xin Jia
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
32
|
Ping D, Huang S, Wu S, Zhang Y, Wang S, Yang X, Han L, Tian J, Guo D, Qiu HJ, Fang S. Confinement Effect and 3D Design Endow Unsaturated Single Ni Atoms with Ultrahigh Stability and Selectivity toward CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309014. [PMID: 37972262 DOI: 10.1002/smll.202309014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Developing single-atomic catalysts with superior selectivity and outstanding stability for CO2 electroreduction is desperately required but still challenging. Herein, confinement strategy and three-dimensional (3D) nanoporous structure design strategy are combined to construct unsaturated single Ni sites (Ni-N3) stabilized by pyridinic N-rich interconnected carbon nanosheets. The confinement agent chitosan and its strong interaction with g-C3N4 nanosheet are effective for dispersing Ni and restraining their agglomeration during pyrolysis, resulting in ultrastable Ni single-atom catalyst. Due to the confinement effect and structure advantage, such designed catalyst exhibits a nearly 100% selectivity and remarkable stability for CO2 electroreduction to CO, exceeding most reported state-of-the-art catalysts. Specifically, the CO Faradaic efficiency (FECO) maintains above 90% over a broad potential range (-0.55 to -0.95 V vs. RHE) and reaches a maximum value of 99.6% at a relatively low potential of -0.67 V. More importantly, the FECO is kept above 95% within a long-term 100 h electrolyzing. Density functional theory (DFT) calculations explain the high selectivity for CO generation is due to the high energy barrier required for hydrogen evolution on the unsaturated Ni-N3. This work provides a new designing strategy for the construction of ultrastable and highly selective single-atom catalysts for efficient CO2 conversion.
Collapse
Affiliation(s)
- Dan Ping
- Henan Provincial Key Laboratory of Surface & Interface Science, Henan Engineering Research Center of Technology and Equipment of Biodegradable Materials, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Siguang Huang
- Henan Provincial Key Laboratory of Surface & Interface Science, Henan Engineering Research Center of Technology and Equipment of Biodegradable Materials, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Shide Wu
- Henan Provincial Key Laboratory of Surface & Interface Science, Henan Engineering Research Center of Technology and Equipment of Biodegradable Materials, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yifei Zhang
- Henan Provincial Key Laboratory of Surface & Interface Science, Henan Engineering Research Center of Technology and Equipment of Biodegradable Materials, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Shiwen Wang
- Henan Provincial Key Laboratory of Surface & Interface Science, Henan Engineering Research Center of Technology and Equipment of Biodegradable Materials, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xuzhao Yang
- Henan Provincial Key Laboratory of Surface & Interface Science, Henan Engineering Research Center of Technology and Equipment of Biodegradable Materials, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Lifeng Han
- Henan Provincial Key Laboratory of Surface & Interface Science, Henan Engineering Research Center of Technology and Equipment of Biodegradable Materials, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Junfeng Tian
- Henan Provincial Key Laboratory of Surface & Interface Science, Henan Engineering Research Center of Technology and Equipment of Biodegradable Materials, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Dongjie Guo
- Henan Provincial Key Laboratory of Surface & Interface Science, Henan Engineering Research Center of Technology and Equipment of Biodegradable Materials, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Hua-Jun Qiu
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Shaoming Fang
- Henan Provincial Key Laboratory of Surface & Interface Science, Henan Engineering Research Center of Technology and Equipment of Biodegradable Materials, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| |
Collapse
|
33
|
Tan X, Zhang J, Cao F, Liu Y, Yang H, Zhou Q, Li X, Wang R, Li Z, Hu H, Zhao Q, Wu M. Salt Effect Engineering Single Fe-N 2P 2-Cl Sites on Interlinked Porous Carbon Nanosheets for Superior Oxygen Reduction Reaction and Zn-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306599. [PMID: 38224212 PMCID: PMC10966546 DOI: 10.1002/advs.202306599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Developing efficient metal-nitrogen-carbon (M-N-C) single-atom catalysts for oxygen reduction reaction (ORR) is significant for the widespread implementation of Zn-air batteries, while the synergic design of the matrix microstructure and coordination environment of metal centers remains challenges. Herein, a novel salt effect-induced strategy is proposed to engineer N and P coordinated atomically dispersed Fe atoms with extra-axial Cl on interlinked porous carbon nanosheets, achieving a superior single-atom Fe catalyst (denoted as Fe-NP-Cl-C) for ORR and Zn-air batteries. The hierarchical porous nanosheet architecture can provide rapid mass/electron transfer channels and facilitate the exposure of active sites. Experiments and density functional theory (DFT) calculations reveal the distinctive Fe-N2P2-Cl active sites afford significantly reduced energy barriers and promoted reaction kinetics for ORR. Consequently, the Fe-NP-Cl-C catalyst exhibits distinguished ORR performance with a half-wave potential (E1/2) of 0.92 V and excellent stability. Remarkably, the assembled Zn-air battery based on Fe-NP-Cl-C delivers an extremely high peak power density of 260 mW cm-2 and a large specific capacity of 812 mA h g-1, outperforming the commercial Pt/C and most reported congeneric catalysts. This study offers a new perspective on structural optimization and coordination engineering of single-atom catalysts for efficient oxygen electrocatalysis and energy conversion devices.
Collapse
Affiliation(s)
- Xiaojie Tan
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Jinqiang Zhang
- School of Chemical Engineering and Advanced MaterialsThe University of AdelaideAdelaideSA5005Australia
| | - Fengliang Cao
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Yachao Liu
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Hao Yang
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Qiang Zhou
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Xudong Li
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Rui Wang
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Zhongtao Li
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Han Hu
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Qingshan Zhao
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil ProcessingCollege of Chemistry and Chemical EngineeringCollege of New EnergyChina University of Petroleum (East China)Qingdao266580China
| |
Collapse
|
34
|
Tian Q, Jing L, Du H, Yin Y, Cheng X, Xu J, Chen J, Liu Z, Wan J, Liu J, Yang J. Mesoporous carbon spheres with programmable interiors as efficient nanoreactors for H 2O 2 electrosynthesis. Nat Commun 2024; 15:983. [PMID: 38302469 PMCID: PMC10834542 DOI: 10.1038/s41467-024-45243-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
The nanoreactor holds great promise as it emulates the natural processes of living organisms to facilitate chemical reactions, offering immense potential in catalytic energy conversion owing to its unique structural functionality. Here, we propose the utilization of precisely engineered carbon spheres as building blocks, integrating micromechanics and controllable synthesis to explore their catalytic functionalities in two-electron oxygen reduction reactions. After conducting rigorous experiments and simulations, we present compelling evidence for the enhanced mass transfer and microenvironment modulation effects offered by these mesoporous hollow carbon spheres, particularly when possessing a suitably sized hollow architecture. Impressively, the pivotal achievement lies in the successful screening of a potent, selective, and durable two-electron oxygen reduction reaction catalyst for the direct synthesis of medical-grade hydrogen peroxide disinfectant. Serving as an exemplary demonstration of nanoreactor engineering in catalyst screening, this work highlights the immense potential of various well-designed carbon-based nanoreactors in extensive applications.
Collapse
Affiliation(s)
- Qiang Tian
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Lingyan Jing
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China.
| | - Hongnan Du
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yunchao Yin
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Xiaolei Cheng
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jiaxin Xu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Junyu Chen
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Zhuoxin Liu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jiayu Wan
- Global Institute of Future Technology, Shanghai Jiaotong University, Shanghai, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jinlong Yang
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China.
| |
Collapse
|
35
|
Zhao Y, Zhu L, Tang J, Fu L, Jiang D, Wei X, Nara H, Asahi T, Yamauchi Y. Enhancing Electrocatalytic Performance via Thickness-Tuned Hollow N-Doped Mesoporous Carbon with Embedded Co Nanoparticles for Oxygen Reduction Reaction. ACS NANO 2024; 18:373-382. [PMID: 38126305 DOI: 10.1021/acsnano.3c07375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Improving catalytic performance relies heavily on the rational design of the spatial structure of electrocatalysts, achieved through exposure of active sites, acceleration of the charge/mass transfer rate, and confinement of the reactants. In this study, we have fabricated Co nanoparticles embedded in overhang eave-like hollow N-doped mesoporous carbon (Co@EMPC) by adjusting the thickness of mesoporous polydopamine (mPDA). Thanks to the abundance of short mesoporous channels within the porous structure and the tuned electronic properties resulting from heterojunction structures between metal and carbon, the prepared Co@EMPC provides increased accessibility to active sites and enhanced mass and charge transfer rates. These features contribute to superior performance in the oxygen reduction reaction (ORR), with a half-wave potential of 0.874 V vs RHE, as well as exceptional durability in alkaline media. This study introduces a useful approach to enhance the ORR using eave-like hollow nanoreactors.
Collapse
Affiliation(s)
- Yingji Zhao
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Liyang Zhu
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Jing Tang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Lei Fu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dong Jiang
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Xiaoqian Wei
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hiroki Nara
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
36
|
Feng X, Chen G, Cui Z, Qin R, Jiao W, Huang Z, Shang Z, Ma C, Zheng X, Han Y, Huang W. Engineering Electronic Structure of Nitrogen-Carbon Sites by sp 3 -Hybridized Carbon and Incorporating Chlorine to Boost Oxygen Reduction Activity. Angew Chem Int Ed Engl 2024; 63:e202316314. [PMID: 38032121 DOI: 10.1002/anie.202316314] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Development of efficient and easy-to-prepare low-cost oxygen reaction electrocatalysts is essential for widespread application of rechargeable Zn-air batteries (ZABs). Herein, we mixed NaCl and ZIF-8 by simple physical milling and pyrolysis to obtain a metal-free porous electrocatalyst doped with Cl (mf-pClNC). The mf-pClNC electrocatalyst exhibits a good oxygen reduction reaction (ORR) activity (E1/2 =0.91 V vs. RHE) and high stability in alkaline electrolyte, exceeding most of the reported transition metal carbon-based electrocatalysts and being comparable to commercial Pt/C electrocatalysts. Likewise, the mf-pClNC electrocatalyst also shows state-of-the-art ORR activity and stability in acidic electrolyte. From experimental and theoretical calculations, the better ORR activity is most likely originated from the fact that the introduced Cl promotes the increase of sp3 -hybridized carbon, while the sp3 -hybridized carbon and Cl together modify the electronic structure of the N-adjacent carbons, as the active sites, while NaCl molten-salt etching provides abundant paths for the transport of electrons/protons. Furthermore, the liquid rechargeable ZAB using the mf-pClNC electrocatalyst as the cathode shows a fulfilling performance with a peak power density of 276.88 mW cm-2 . Flexible quasi-solid-state rechargeable ZAB constructed with the mf-pClNC electrocatalyst as the cathode exhibits an exciting performance both at low, high and room temperatures.
Collapse
Affiliation(s)
- Xueting Feng
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhibo Cui
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rong Qin
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wensheng Jiao
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zeyi Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ziang Shang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
37
|
Zhang P, Liu Y, Liu S, Zhou L, Wu X, Han G, Liu T, Sun K, Li B, Jiang J. Precise Design and Modification Engineering of Single-Atom Catalytic Materials for Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305782. [PMID: 37718497 DOI: 10.1002/smll.202305782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Indexed: 09/19/2023]
Abstract
Due to their unique electronic and structural properties, single-atom catalytic materials (SACMs) hold great promise for the oxygen reduction reaction (ORR). Coordinating environmental and engineering strategies is the key to improving the ORR performance of SACMs. This review summarizes the latest research progress and breakthroughs of SACMs in the field of ORR catalysis. First, the research progress on the catalytic mechanism of SACMs acting on ORR is reviewed, including the latest research results on the origin of SACMs activity and the analysis of pre-adsorption mechanism. The study of the pre-adsorption mechanism is an important breakthrough direction to explore the origin of the high activity of SACMs and the practical and theoretical understanding of the catalytic process. Precise coordination environment modification, including in-plane, axial, and adjacent site modifications, can enhance the intrinsic catalytic activity of SACMs and promote the ORR process. Additionally, several engineering strategies are discussed, including multiple SACMs, high loading, and atomic site confinement. Multiple SACMs synergistically enhance catalytic activity and selectivity, while high loading can provide more active sites for catalytic reactions. Overall, this review provides important insights into the design of advanced catalysts for ORR.
Collapse
Affiliation(s)
- Pengxiang Zhang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Limin Zhou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Guosheng Han
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| |
Collapse
|
38
|
Wang Z, Deng D, Wang H, Wu S, Zhu L, Xu L, Li H. Engineering Mn-N x sites on porous carbon via molecular assembly strategy for long-life zinc-air batteries. J Colloid Interface Sci 2024; 653:1348-1357. [PMID: 37801845 DOI: 10.1016/j.jcis.2023.09.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/03/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Nitrogen-coordinated manganese atoms on carbon materials denoted as MnNC, serve as the highly active non-precious metal electrocatalysts for oxygen reduction reaction (ORR) in zinc-air batteries (ZABs). Nonetheless, a significant challenge arises from the tendency of Mn atoms to aggregate during heat treatment, thereby compromising ORR performance in ZABs. In this work, the molecular assembly strategy based on the hydrogen bond interaction was employed to fabricate the MnNC electrocatalyst. This approach promotes the dispersion of Mn atoms, creating abundant Mn-Nx active sites. Furthermore, the resulting three-dimensional porous nanostructure, formed by molecular assembly, significantly enhances accessibility to the Mn-Nx active sites. The porous nanostructure not only shortens the diffusion path of reactants and charges but also improves mass transfer. The MnNC exhibits impressive ORR catalytic performance with a half-wave potential of 0.90 V (vs. RHE). The liquid-type ZAB based on MnNC displays a high specific capacity of 816.6 mAh/g and an extended charge-discharge cycle life of 1000 h. Quasi-solid-state ZAB based on MnNC can operate stably for 24 h. This work presents an effective strategy to synthesize transition metal-nitrogen-carbon (MNC) electrocatalysts tailored for long-life zinc-air battery.
Collapse
Affiliation(s)
- Zehui Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang 212013, China
| | - Daijie Deng
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang 212013, China
| | - Huan Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang 212013, China
| | - Suqin Wu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang 212013, China
| | - Linhua Zhu
- College of Chemistry and Chemical Engineering, Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Hainan Normal University, Haikou 571158, China
| | - Li Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang 212013, China.
| | - Henan Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
39
|
Lu X, Li Y, Dong D, Wan Y, Li R, Xiao L, Wang D, Liu L, Wang G, Zhang J, An M, Yang P. Coexisting Fe single atoms and nanoparticles on hierarchically porous carbon for high-efficiency oxygen reduction reaction and Zn-air batteries. J Colloid Interface Sci 2024; 653:654-663. [PMID: 37741173 DOI: 10.1016/j.jcis.2023.09.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Fe single-atom catalysts still suffer from unsatisfactory intrinsic activity and durability for oxygen reduction reaction (ORR). Herein, the coexisting Fe single atoms and nanoparticles on hierarchically porous carbon (denoted as Fe-FeN-C) are prepared via a Zn5(OH)6(CO3)2-assisted pyrolysis strategy. Theoretical calculation reveals that the Fe nanoparticles can optimize the electronic structures and d-band center of Fe active center, hence reducing the reaction energy barrier for enhancing intrinsic activity. The Zn5(OH)6(CO3)2 self-sacrificial template not only can promote the formation of Fe single atoms, but also contributes to the construction of microporous/mesoporous/macroporous structures. Therefore, the obtained Fe-FeN-C exhibits impressive ORR activity with a half-wave potential of 0.921 V, which far exceeds Pt/C. With Fe-FeN-C as the cathode catalyst, the assembled Zn-air batteries delivered a maximum power density of 206 mW cm-2 and a long-cycle life over 400 h.
Collapse
Affiliation(s)
- Xiangyu Lu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yaqiang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Derui Dong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yongbiao Wan
- Microsystem & Terahertz Research Center, Institute of Electronic Engineering, China Academy of Engineering Physics, Chengdu 610200, China
| | - Ruopeng Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lihui Xiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Dan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Lilai Liu
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Guangzhao Wang
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Jinqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Maozhong An
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Peixia Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
40
|
Zhao Z, Xiong Y, Yu S, Fang T, Yi K, Yang B, Zhang Y, Yang X, Liu X, Jia X. Single-atom Zn with nitrogen defects on biomimetic 3D carbon nanotubes for bifunctional oxygen electrocatalysis. J Colloid Interface Sci 2023; 650:934-942. [PMID: 37453317 DOI: 10.1016/j.jcis.2023.06.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Single atoms catalysts (SACs) have promising development in electrocatalytic energy conversion. Nevertheless, rational design SACs with reversible oxygen electrocatalysis still remain challenge. Herein, we synthesized atomically dispersed Zn with N defect on three-dimensional (3D) biomimetic carbon nanotubes by secondary pyrolysis (Zn-N-C-2), which possesses excellent oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional catalytic activities. The biomimetic 3D structure and unique "leaf-branch" system are beneficial to fully expose the active sites. Density functional theory (DFT) calculations show that Zn-N3-D can optimize the charge distribution and facilitate electron transfer step of OH*→O*. Zn-N-C-2 exhibits higher ORR activity than commercial Pt/C with a half-wave potential (E1/2) of 0.85 V and OER overpotential of 450 mV at 10 mA cm-2. After being assembled into the air cathode of aqueous Zn-air battery (ZAB), it demonstrates superior performances with long-term charge and discharge for more than 200 h. This work not only clarifies the controlled synthesis of N-defects Zn SACs with excellent bifunctional electrocatalyst, but also provide in-depth understanding of structural-performance relationships by regulating local microenvironments.
Collapse
Affiliation(s)
- Zeyu Zhao
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University, Shihezi 832003, PR China
| | - Youpeng Xiong
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University, Shihezi 832003, PR China
| | - Shui Yu
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University, Shihezi 832003, PR China
| | - Tianwen Fang
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University, Shihezi 832003, PR China
| | - Ke Yi
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University, Shihezi 832003, PR China
| | - Bin Yang
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University, Shihezi 832003, PR China
| | - Yanwen Zhang
- Key Laboratory of Ecophysics and Department of Physics, College of Science, Shihezi University, Shihezi 832003, PR China
| | - Xiaodong Yang
- Key Laboratory of Ecophysics and Department of Physics, College of Science, Shihezi University, Shihezi 832003, PR China
| | - Xinghuan Liu
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University, Shihezi 832003, PR China
| | - Xin Jia
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
41
|
Yu J, Su C, Shang L, Zhang T. Single-Atom-Based Oxygen Reduction Reaction Catalysts for Proton Exchange Membrane Fuel Cells: Progress and Perspective. ACS NANO 2023; 17:19514-19525. [PMID: 37812403 DOI: 10.1021/acsnano.3c06522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Single-atom catalysts (SACs) are regarded as promising non-noble-metal alternatives for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells due to their high atom utilization efficiency and excellent catalytic properties. However, the insufficient long-term stability issues of SACs under the working conditions seriously hinder their practical application. In this perspective, the recent progress of SACs with optimized ORR catalytic activity is first reviewed. Then, the possible degradation mechanisms of SACs in the ORR process and effective strategies for improving their ORR durability are summarized. Finally, some challenges and opportunities are proposed to develop stable single-atom-based ORR electrocatalysts in the future.
Collapse
Affiliation(s)
- Jianmin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen 518060, People's Republic of China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen 518060, People's Republic of China
| | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
42
|
Li L, Tang X, Wu B, Huang B, Yuan K, Chen Y. Advanced Architectures of Air Electrodes in Zinc-Air Batteries and Hydrogen Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308326. [PMID: 37823716 DOI: 10.1002/adma.202308326] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/05/2023] [Indexed: 10/13/2023]
Abstract
The air electrode is an essential component of air-demanding energy storage/conversion devices, such as zinc-air batteries (ZABs) and hydrogen fuel cells (HFCs), which determines the output power and stability of the devices. Despite atom-level modulation in catalyst design being recently achieved, the air electrodes have received much less attention, causing a stagnation in the development of air-demanding equipment. Herein, the evolution of air electrodes for ZABs and HFCs from the early stages to current requirements is reviewed. In addition, the operation mechanism and the corresponding electrocatalytic mechanisms of ZABs are summarized. In particular, by clarifying the air electrode interfaces of ZABs at different scales, several approaches to improve the air electrode in rechargeable ZABs are reviewed, including innovative electrode structures and bifunctional oxygen catalysts. Afterward, the operating mechanisms of proton-exchange-membrane fuel cells (PEMFCs) and anion-exchange-membrane fuel cells (AEMFCs) are explained. Subsequently, the strategies employed to enhance the efficiency of the membrane electrode assembly (MEA) in PEMFCs and AEMFCs, respectively, are highlighted and discussed in detail. Last, the prospects for air electrodes in ZABs and HFCs are considered by discussing the main challenges. The aim of this review is to facilitate the industrialization of ZABs and HFCs.
Collapse
Affiliation(s)
- Longbin Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Xiannong Tang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Bing Wu
- National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Bingyu Huang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Kai Yuan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, Nanchang, 330031, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
43
|
Qi C, Yang H, Sun Z, Wang H, Xu N, Zhu G, Wang L, Jiang W, Yu X, Li X, Xiao Q, Qiu P, Luo W. Modulating Electronic Structures of Iron Clusters through Orbital Rehybridization by Adjacent Single Copper Sites for Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2023; 62:e202308344. [PMID: 37485998 DOI: 10.1002/anie.202308344] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
The atom-cluster interaction has recently been exploited as an effective way to increase the performance of metal-nitrogen-carbon catalysts for oxygen reduction reaction (ORR). However, the rational design of such catalysts and understanding their structure-property correlations remain a great challenge. Herein, we demonstrate that the introduction of adjacent metal (M)-N4 single atoms (SAs) could significantly improve the ORR performance of a well-screened Fe atomic cluster (AC) catalyst by combining density functional theory (DFT) calculations and experimental analysis. The DFT studies suggest that the Cu-N4 SAs act as a modulator to assist the O2 adsorption and cleavage of O-O bond on the Fe AC active center, as well as optimize the release of OH* intermediates to accelerate the whole ORR kinetic. The depositing of Fe AC with Cu-N4 SAs on nitrogen doped mesoporous carbon nanosheet are then constructed through a universal interfacial monomicelles assembly strategy. Consistent with theoretical predictions, the resultant catalyst exhibits an outstanding ORR performance with a half-wave potential of 0.92 eV in alkali and 0.80 eV in acid, as well as a high power density of 214.8 mW cm-2 in zinc air battery. This work provides a novel strategy for precisely tuning the atomically dispersed poly-metallic centers for electrocatalysis.
Collapse
Affiliation(s)
- Chunhong Qi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Haoyu Yang
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - Ziqi Sun
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - Haifeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Na Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Guihua Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Xiqian Yu
- Beijing Advanced Innovation Center for Materials, Genome Engineering, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Qi Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Pengpeng Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
44
|
Yang X, Wang F, Jing Z, Chen M, Wang B, Wang L, Qu G, Kong Y, Xu L. A General "In Situ Etch-Adsorption-Phosphatization" Strategy for the Fabrication of Metal Phosphides/Hollow Carbon Composite for High Performance Liquid/Flexible Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301985. [PMID: 37226367 DOI: 10.1002/smll.202301985] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/13/2023] [Indexed: 05/26/2023]
Abstract
Benefiting from the admirable energy density (1086 Wh kg-1 ), overwhelming security, and low environmental impact, rechargeable zinc-air batteries (ZABs) are deemed to be attractive candidates for lithium-ion batteries. The exploration of novel oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional catalysts is the key to promoting the development of zinc-air batteries. Transitional metal phosphides (TMPs) especially Fe-based TMPs are deemed to be a rational type of catalyst, however, their catalytic performance still needs to be further improved. Considering Fe (heme) and Cu (copper terminal oxidases) are nature's options for ORR catalysis in many forms of life from bacteria to humans. Herein, a general "in situ etch-adsorption-phosphatization" strategy is designed for the fabrication of hollow FeP/Fe2 P/Cu3 P-N, P codoped carbon (FeP/Cu3 P-NPC) catalyst as the cathode of liquid and flexible ZABs. The liquid ZABs manifest a high peak power density of 158.5 mW cm-2 and outstanding long-term cycling performance (≈1100 cycles at 2 mA cm-2 ). Similarly, the flexible ZABs deliver superior cycling stability of 81 h at 2 mA cm-2 without bending and 26 h with different bending angles.
Collapse
Affiliation(s)
- Xiaofan Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Fengbo Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Zhongxin Jing
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Ming Chen
- School of Physics, Shandong University, Jinan, 250100, P. R. China
| | - Bin Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Lu Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Guangmeng Qu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yueyue Kong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Liqiang Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
45
|
Bai J, Tang Y, Lin C, Jiang X, Zhang C, Qin H, Zhou Q, Xiang M, Lian Y, Deng Y. Iron clusters regulate local charge distribution in Fe-N 4 sites to boost oxygen electroreduction. J Colloid Interface Sci 2023; 648:440-447. [PMID: 37302227 DOI: 10.1016/j.jcis.2023.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
The atomically-dispersed and nitrogen-coordinated iron (FeNC) on a carbon catalyst is a potential non-noble metal catalyst that can replace precious metal electrocatalysts. However, its activity is often unsatisfactory owing to the symmetric charge distribution around the iron matrix. In this study, atomically- dispersed Fe-N4 and Fe nanoclusters loaded with N-doped porous carbon (FeNCs/FeSAs-NC-Z8@34) were rationally fabricated by introducing homologous metal clusters and increasing the N content of the support. FeNCs/FeSAs-NC-Z8@34 exhibited a half-wave potential of 0.918 V, which exceeded that of the commercial benchmark Pt/C catalyst. Theoretical calculations verified that introducing Fe nanoclusters can break the symmetric electronic structure of Fe-N4, thus inducing charge redistribution. Furthermore, it can optimize a part of Fe 3d occupancy orbitals and accelerate OO fracture in OOH* (rate-determining step), thus significantly improving oxygen reduction reaction activity. This work provides a reasonably advanced pathway to modulate the electronic structure of the single-atom center and optimize the catalytic activity of single-atom catalysts.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Yiming Tang
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Cheng Lin
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Xiankai Jiang
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Chunyong Zhang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Hengfei Qin
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Quanfa Zhou
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Mei Xiang
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Yuebin Lian
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Yaoyao Deng
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| |
Collapse
|
46
|
Wang H, Gao J, Chen C, Zhao W, Zhang Z, Li D, Chen Y, Wang C, Zhu C, Ke X, Pei J, Dong J, Chen Q, Jin H, Chai M, Li Y. PtNi-W/C with Atomically Dispersed Tungsten Sites Toward Boosted ORR in Proton Exchange Membrane Fuel Cell Devices. NANO-MICRO LETTERS 2023; 15:143. [PMID: 37266746 PMCID: PMC10236083 DOI: 10.1007/s40820-023-01102-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
The performance of proton exchange membrane fuel cells is heavily dependent on the microstructure of electrode catalyst especially at low catalyst loadings. This work shows a hybrid electrocatalyst consisting of PtNi-W alloy nanocrystals loaded on carbon surface with atomically dispersed W sites by a two-step straightforward method. Single-atomic W can be found on the carbon surface, which can form protonic acid sites and establish an extended proton transport network at the catalyst surface. When implemented in membrane electrode assembly as cathode at ultra-low loading of 0.05 mgPt cm-2, the peak power density of the cell is enhanced by 64.4% compared to that with the commercial Pt/C catalyst. The theoretical calculation suggests that the single-atomic W possesses a favorable energetics toward the formation of *OOH whereby the intermediates can be efficiently converted and further reduced to water, revealing a interfacial cascade catalysis facilitated by the single-atomic W. This work highlights a novel functional hybrid electrocatalyst design from the atomic level that enables to solve the bottle-neck issues at device level.
Collapse
Affiliation(s)
- Huawei Wang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jialong Gao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Changli Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Wei Zhao
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102209, People's Republic of China
| | - Zihou Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Dong Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Ying Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Chenyue Wang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Cheng Zhu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xiaoxing Ke
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, People's Republic of China.
| | - Jiajing Pei
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qi Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Haibo Jin
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Maorong Chai
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102209, People's Republic of China
| | - Yujing Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
47
|
Liu X, Zhao F, Jiao L, Fang T, Zhao Z, Xiao X, Li D, Yi K, Wang R, Jia X. Atomically Dispersed Fe/N 4 and Ni/N 4 Sites on Separate-Sides of Porous Carbon Nanosheets with Janus Structure for Selective Oxygen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300289. [PMID: 36929092 DOI: 10.1002/smll.202300289] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Dual single atoms catalysts have promising application in bifunctional electrocatalysis due to their synergistic effect. However, how to balance the competition between rate-limiting steps (RDSs) of reversible oxygen reduction and oxygen evolution reaction (OER) and fully expose the active centers by reasonable structure design remain enormous challenges. Herein, Fe/N4 and Ni/N4 sites separated on different sides of the carbon nanosheets with Janus structure (FeNijns /NC) is synthesized by layer-by-layer assembly method. Experiments and calculations reveal that the side of Fe/N4 is beneficial to oxygen reduction reaction (ORR) and the Ni/N4 side is preferred to OER. Such Janus structure can take full advantage of two separate-sides of carbon nanosheets and balance the competition of RDSs during ORR and OER. FeNijns /NC possesses superior ORR and OER activity with ORR half-wave potential of 0.92 V and OER overpotential of 440 mV at J = 10 mA cm-2 . Benefiting from the excellent bifunctional activities, FeNijns /NC assembled aqueous Zn-air battery (ZAB) demonstrates better maximum power density, and long-term stability (140 h) than Pt/C+RuO2 catalyst. It also reveals superior flexibility and stability in solid-state ZAB. This work brings a novel perspective for rational design and understanding of the catalytic mechanisms of dual single atom catalysts.
Collapse
Affiliation(s)
- Xinghuan Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Fei Zhao
- College of Chemistry and Chemical Engineering, Taishan University, Taian, 271000, P. R. China
| | - Long Jiao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tianwen Fang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Zeyu Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Xiangfei Xiao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Danya Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Ke Yi
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Rongjie Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Xin Jia
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| |
Collapse
|