1
|
Lee JM, Son W, Oh M, Han D, Seo H, Sim HJ, Kim SH, Shin DM, Kim CS, Kim SJ, Choi C. Dual-Scale Hydration-Induced Electrical and Mechanical Torsional Energy Harvesting in Heterophilically Designed CNT Yarns. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501111. [PMID: 40289894 DOI: 10.1002/adma.202501111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/01/2025] [Indexed: 04/30/2025]
Abstract
Water holds vast potential for a useful energy source, yet traditional approaches capture only a fraction of it. This study introduces a heterophilically designed carbon nanotube (CNT) yarn with an asymmetric configuration. This yarn is capable of both electrical and mechanical torsional energy harvesting through dual-scale hydration. Fabricated via half-electrochemical oxidation, the yarn contains a hydrophilic region enriched with oxygen-containing functional groups and a hydrophobic pristine CNT region. Molecular-scale hydration triggers proton release in the hydrophilic region. Consequently, a concentration gradient is established that generates a peak open-circuit voltage of 106.0 mV and a short-circuit current of 20.6 mA cm-2. Simultaneously, microscale hydration induces water absorption into inter-bundle microchannels, resulting in considerable yarn volume expansion. This process leads to hydro-driven actuation with a torsional stroke of 78.8° mm-1 and a maximum rotational speed of 1012 RPM. The presented simultaneous harvesting results in electrical and mechanical power densities of 3.5 mW m-2 and 34.3 W kg-1, respectively, during a hydration cycle. By integrating molecular and microscale hydrations, the proposed heterophilic CNT yarns establish an unprecedented platform for simultaneous electrical and mechanical energy harvesting from water, representing a groundbreaking development for sustainable applications.
Collapse
Affiliation(s)
- Jae Myeong Lee
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Wonkyeong Son
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Myoungeun Oh
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Duri Han
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Hyunji Seo
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Hyeon Jun Sim
- Department of Biomedical Engineering, Konkuk University, Chungju, 27478, South Korea
| | - Shi Hyeong Kim
- Textile Innovation R&D Department, Korea Institute of Industrial Technology, Ansan, Gyeonggi-do, 15588, Republic of Korea
- Department of Advanced Material Engineering, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Dong-Myeong Shin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Seon Jeong Kim
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Changsoon Choi
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
2
|
Wei X, He D, Yang Y, Geng Z, Shi M, Jia Z, Wang J, Zhao T, Chen N. Enhancing the Performance of Fluorinated Graphdiyne Moisture Cells via Hard Acid-Base Coordination of Aluminum Ions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419706. [PMID: 40018839 DOI: 10.1002/adma.202419706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/09/2025] [Indexed: 03/01/2025]
Abstract
Moisture-enabled electric generators (MEGs) are emerging as a transformative energy technology, capable of directly converting ambient moisture into electrical energy without producing pollutants or harmful emissions. However, the widespread application of MEGs is hindered by challenges such as intermittent output and low current densities, which limit power density and prevent large-scale integration. Here, a novel moisture cell based on Al ion-F coordination-specifically, a fluorinated graphdiyne (FGDY) Al-ion moisture cell (FGDY AlMC) is introduced. This new moisture cell achieves an exceptionally high mass-specific power density of 371.36 µW g-¹, stable output (0.65 V for 15 h), and broad applicability across varying humid environments. Density functional theory (DFT) calculations reveal that the large-pore molecular structure of FGDY significantly reduces the diffusion barriers for Al ions compared to other 2D carbon materials. Furthermore, the F atoms as "hard base" on FGDY effectively coordinate with "hard acid" Al ions, enhancing ionic conductivity, accelerating ion migration, and promoting the generation of a higher number of mobile cations. These combined advantages lead to a marked improvement in the performance of the FGDY AlMC. These findings position Al ion coordinated FGDY as a highly promising candidate for the development of high-performance MEG active materials.
Collapse
Affiliation(s)
- Xiaoyan Wei
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, 063000, China
| | - Danyang He
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ya'nan Yang
- School of Materials Science and Engineering, Harbin Institute of Technology (Weihai), Weihai, 264209, China
| | - Zhide Geng
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Mengfan Shi
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China
| | - Zhiyu Jia
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, 063000, China
| | - Jiaqi Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Tianchang Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Nan Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, 063000, China
| |
Collapse
|
3
|
Li N, Yu X, Yang DP, He J. Natural polysaccharides-based smart sensors for health monitoring, diagnosis and rehabilitation: A review. Int J Biol Macromol 2025; 304:140966. [PMID: 39952503 DOI: 10.1016/j.ijbiomac.2025.140966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
With the rapid growth of multi-level health needs, precise and real-time health sensing systems have become increasingly pivotal in personal health management and disease prevention. Natural polysaccharides demonstrate immense potential in healthcare sensors by leveraging their superior biocompatibility, biodegradability, environmental sustainability, as well as diverse structural designs and surface functionalities. This review begins by introducing a variety of natural polysaccharides, including cellulose, alginates, chitosan, hyaluronic acid, and starch, and analyzing their structural and functional distinctions, which offer extensive possibilities for sensor design and construction. Further, we summarize several principal sensing mechanisms, such as piezoresistivity, piezoelectricity, capacitance, triboelectricity, and hygroelectricity, which provide a theoretical and technological foundation for developing high-performance healthcare sensing devices. Additionally, the review discusses the most recent applications of natural polysaccharide-based sensors in diverse healthcare contexts, including human body motion tracking, respiratory and heartbeat monitoring, electrophysiological signal recording, body temperature variation detection, and biomarker analysis. Finally, prospective development directions are proposed, such as the integration of artificial intelligence for real-time data analysis, the design of multifunctional devices that combine sensing with therapeutic functionalities, and advancements in remote monitoring and smart wearable technologies. This review aims to provide valuable insights into the development of next-generation healthcare sensors and propose novel research directions for personalized medicine and remote health management.
Collapse
Affiliation(s)
- Na Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Xiao Yu
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Da-Peng Yang
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Jintao He
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China; College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
4
|
Chen J, Zhang X, Cheng M, Li Q, Zhao S, Zhang M, Fu Q, Deng H. A self-sustained moist-electric generator with enhanced energy density and longevity through a bilayer approach. MATERIALS HORIZONS 2025; 12:2309-2318. [PMID: 39789936 DOI: 10.1039/d4mh01642d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Although MEG is being developed as a green renewable energy technology, there remains significant room for improvement in self-sustained power supply, generation duration, and energy density. In this study, we present a self-sustained, high-performance MEG device with a bilayer structure. The lower hydrogel layer incorporates graphene oxide (GO) and carbon nanotubes (CNTs) as the active materials, whereas the upper aerogel layer is comprised of pyrrole-modified graphene oxide (PGO). This design generates a dual-gradient structure (ion density gradient and relative humidity gradient), enabling continuous power generation from the intrinsic moisture in the hydrogel. The device can operate for up to 16 days without external water and extend its operation to 45 days with added moisture. Remarkably, encapsulating this MEG maintains its high performance output even after nearly three months. The short-circuit current of MEG reaches 1695 μA, with an energy density of 809.2 μW h cm-2, which is considerably higher than those reported in previous studies on MEG. This work highlights a promising approach for long-term, self-sustained power generation, with potential applications in environmental sensing and low-power devices.
Collapse
Affiliation(s)
- Jie Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xuezhong Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610065, P. R. China.
| | - Minhan Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qianyang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shuaijiang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Mao Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hua Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
5
|
Zhou J, Zhang X, Yao Y, Yang T. Screen printing of ionic diode arrays for large-area uniform moist-electric generators. iScience 2025; 28:112026. [PMID: 40092608 PMCID: PMC11910122 DOI: 10.1016/j.isci.2025.112026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/11/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Developing moist-electric array device using screen printing technology that meets mass customization, high power output, and wearable capabilities is very attractive for sustainable mobile power. However, the design of sandwich stacked moist-electric array devices and their screen printing patterning manufacturing process are still challenging. Here, we developed a large-scale fine construction strategy for ion diode nano-channels compatible with screen printing process. A single moist-electric device can generate an open circuit voltage of 0.7 V and a short circuit current density of 56.69 μA/cm2. After large-area integrated manufacturing, the array can generate an open circuit voltage of 126 V and a short circuit current of 5.47 mA. In addition, compared with the spraying process, the performance deviation between different array units is greatly reduced using the screen printing process, which is the key to ensuring the application of moist-electric technology from a single prototype device to a functional integrated device.
Collapse
Affiliation(s)
- Jie Zhou
- School of Electronic Information and Electrical Engineering, Chengdu University, Chengdu 610100, China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiang Zhang
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Yuming Yao
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Tingting Yang
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu 610031, Sichuan, P.R. China
| |
Collapse
|
6
|
Huang Z, Zhang T, Cao H, Xu Z, Ju A, Zhao Y. Flexible Moisture-Driven Electricity Generators Based on Heterogeneous Gels and Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7916-7928. [PMID: 39865592 DOI: 10.1021/acsami.4c21266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Recently developed asymmetric heterogeneous moisture-driven electricity generators (AHMEGs) are advantageous for harvesting energy from ubiquitous moisture due to their superior output performance and possible flexibility. However, the regeneration of AHMEG has seldom been explored. Here, we report the fabrication of flexible AHMEGs with regeneration ability simply by asymmetrically incorporating carbon nanotubes into a bilayer-structured gel with heterogeneities of both hygroscopicity and charge. The bilayered gel consists of a Na+-containing macroporous aerogel and a highly hygroscopic Cl--containing hydrogel. After assembly, the resulting flexible AHMEG unit shows excellent output performance, with a stable voltage of 1.03 V, a current density of 23.8 μA cm-2, a power density of up to 9.12 μW cm-2 and a high stability over 7 days, resulting from a synergistic effect between hygroscopicity and charge heterogeneities of the bilayered gel. The regeneration of the AHMEGs has been realized via light irradiation of the aerogel containing carbon nanotubes, and the regeneration can be repeated for at least 30 cycles, significantly expanding the lifecycle of moisture-driven electricity generators. Regeneration imposed by carbon nanotubes, combined with flexibility, simple preparation, and excellent electrical performance, enables the AHMEGs to be excellent moisture-driven electricity generators for advantageous applications.
Collapse
Affiliation(s)
- Zhihao Huang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Tao Zhang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
- China National Textile and Apparel Council Key Laboratory for Silk Functional Materials and Technology, Soochow University, Suzhou 215123, China
| | - Hui Cao
- College of Textile and Clothing Engineering, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Zhiguang Xu
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, 889 Guangqiong Road, Jiaxing 314001, China
| | - Aiming Ju
- College of Textile and Clothing Engineering, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yan Zhao
- College of Textile and Clothing Engineering, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| |
Collapse
|
7
|
Zhang H, Qin L, Zhou Y, Huang G, Cai H, Sha J. High-Performance and Anti-Freezing Moisture-Electric Generator Combining Ion-Exchange Membrane and Ionic Hydrogel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410609. [PMID: 39723742 DOI: 10.1002/smll.202410609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Moisture-electric generators (MEGs), which convert moisture chemical potential energy into electrical power, are attracting increasing attention as clean energy harvesting and conversion technologies. However, existing devices suffer from inadequate moisture trapping, intermittent electric output, suboptimal performance at low relative humidity (RH), and limited ion separation efficiency. This study designs an ionic hydrogel MEG capable of continuously generating energy with enhanced selective ion transport and sustained ion-to-electron current conversion at low RH by integrating an ion-exchange membrane (IEM-MEG). A single IEM-MEG exhibits a maximum open-circuit voltage (VOC) of 0.815 V and a short-circuit current (ISC) of 101 µA at 80% RH. Even at a low RH of 10%, a stable VOC of 0.43 V and ISC of 11 µA can be generated. Moreover, the antifreeze performance of the device is improved by adding LiCl, which significantly expands its operational range in low-temperature environments. Finally, a simple series-parallel connection of six IEM-MEGs can yield an enhanced VOC of 4.8 V and a ISC of ≈0.6 mA, and the scalable units can directly power commercial electronics. This study provides new insights into the design of MEGs that will advance the development of green energy conversion technologies in the future.
Collapse
Affiliation(s)
- Hanxiao Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Liling Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Yuyan Zhou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Guiyun Huang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Hui Cai
- China National Pulp and Paper Research Institute Co., Ltd, Beijing, 100102, P. R. China
| | - Jiulong Sha
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
8
|
Gao W, Liu F, Zheng Y, Wang C, Jian Y, Ju J, Wang W, Lu Z, Qiao Y. Long-Lasting and High-Power-Density Yarn-Based Moisture-Enabled Electric Generator for Self-powered Electronic Textiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409438. [PMID: 39763131 DOI: 10.1002/smll.202409438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/15/2024] [Indexed: 02/21/2025]
Abstract
1D moisture-enabled electric generators (MEGs) hold great promise for powering electronic textiles, but their current limitations in power output and operational duration restrict their application in wearable technology. This study introduces a high-performance yarn-based moisture-enabled electric generator (YMEG), which comprises a carbon-fiber core, a cotton yarn active layer with a radial gradient of poly(4-styrensulfonic acid) and poly(vinyl alcohol) (PSSA/PVA), and an aluminum wire as the outer electrode. The unique design maintains a persistent moisture gradient between the interior and exterior electrodes, enhancing performance through the continuous proton diffusion from PSSA and Al3⁺ ions from the aluminum wire. The optimized 5-cm-long YMEG delivers an open-circuit voltage of 1.35 V and a short-circuit current density of 460 µA cm-2, sustaining over 300 µA cm-2 for more than 5 h. When woven into a 1 m long yarn containing 95 YMEGs, it generates 101.0 V at 60% relative humidity. Additionally, a configuration of 420 YMEGs connected in series and parallel can power a 1 W LED and a 40 mW motor. This innovative YMEG design paves the way for self-powered electronic textiles such as warning vests and headbands, capable of harnessing insensible sweat for energy.
Collapse
Affiliation(s)
- Wenhu Gao
- School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
- Sino-Singapore Joint Laboratory of Materials and Technologies for Proactive Health Monitoring, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Feng Liu
- School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
- Sino-Singapore Joint Laboratory of Materials and Technologies for Proactive Health Monitoring, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Yanling Zheng
- School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
- Sino-Singapore Joint Laboratory of Materials and Technologies for Proactive Health Monitoring, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Chenyu Wang
- School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
- Sino-Singapore Joint Laboratory of Materials and Technologies for Proactive Health Monitoring, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Yihao Jian
- School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
- Sino-Singapore Joint Laboratory of Materials and Technologies for Proactive Health Monitoring, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Jun Ju
- School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
- Sino-Singapore Joint Laboratory of Materials and Technologies for Proactive Health Monitoring, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Wei Wang
- Singapore Institute of Manufacturing Technology, Singapore, 138669, Singapore
| | - Zhisong Lu
- School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
- Sino-Singapore Joint Laboratory of Materials and Technologies for Proactive Health Monitoring, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Yan Qiao
- School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
- Sino-Singapore Joint Laboratory of Materials and Technologies for Proactive Health Monitoring, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
9
|
Liang S, Al-Handawi MB, Chen T, Naumov P, Zhang L. Hollow Hydrogels for Excellent Aerial Water Collection and Autonomous Release. Angew Chem Int Ed Engl 2025; 64:e202415936. [PMID: 39313473 DOI: 10.1002/anie.202415936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Air moisture is a valuable and omnipresent resource of fresh water. However, traditional water collectors come with an enduring problem of the water-release step, which requires special devices and additional energy to remove the water from the adsorbent, such as heat, sunlight, or both. Herein, we report the first composite conical hollow hydrogel architecture fabricated through a film-to-tube transforming protocol, designed to harvest water from aerial humidity. This hollow hydrogel device can rapidly collect water from humid air to a saturation point, whereupon it automatically and continually releases fresh water at room temperature. The entire water collection and release process does not require any external assistance. Therefore, this device is highly suitable for emergency water collection in arid areas. As an exemplary demonstration, positioning the hollow hydrogel device next to a plant turns into an individualized system for irrigation. Since the device is biodegradable, it eventually decomposes and becomes an organic fertilizer after the water supply is not required. For long-term application, the water-release process can be monitored in real time by an electronic device to indicate the amount of collected water. The hollow hydrogel combines the humidity-adsorbing capacity with autonomous water release that carries the potential for harvesting water from humidity to address the shortage of fresh water, especially in arid locations where other sources of water are scarce or inaccessible.
Collapse
Affiliation(s)
- Shumin Liang
- School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, People's Republic of China
| | | | - Tao Chen
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, 315201, Ningbo, China
| | - Panče Naumov
- New York University Abu Dhabi, Abu Dhabi, UAE
- Center for Smart Engineering Materials, New York University Abu Dhabi, Abu Dhabi, UAE
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, MK-1000, Skopje, Macedonia
- Molecular Design Institute, Department of Chemistry, New York University, 10003, New York, New York, United States
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Yin J, Jia P, Ren Z, Zhang Q, Lu W, Yao Q, Deng M, Zhou X, Gao Y, Liu N. Recent Advances in Self-Powered Sensors Based on Ionic Hydrogels. RESEARCH (WASHINGTON, D.C.) 2025; 8:0571. [PMID: 39810855 PMCID: PMC11729273 DOI: 10.34133/research.0571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025]
Abstract
After years of research and development, flexible sensors are gradually evolving from the traditional "electronic" paradigm to the "ionic" dimension. Smart flexible sensors derived from the concept of ion transport are gradually emerging in the flexible electronics. In particular, ionic hydrogels have increasingly become the focus of research on flexible sensors as a result of their tunable conductivity, flexibility, biocompatibility, and self-healable capabilities. Nevertheless, the majority of existing sensors based on ionic hydrogels still mainly rely on external power sources, which greatly restrict the dexterity and convenience of their applications. Advances in energy harvesting technologies offer substantial potential toward engineering self-powered sensors. This article reviews in detail the self-powered mechanisms of ionic hydrogel self-powered sensors (IHSSs), including piezoelectric, triboelectric, ionic diode, moist-electric, thermoelectric, potentiometric transduction, and hybrid modes. At the same time, structural engineering related to device and material characteristics is discussed. Additionally, the relevant applications of IHSS toward wearable electronics, human-machine interaction, environmental monitoring, and medical diagnostics are further reviewed. Lastly, the challenges and prospective advancement of IHSS are outlined.
Collapse
Affiliation(s)
- Jianyu Yin
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Peixue Jia
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ziqi Ren
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qixiang Zhang
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Wenzhong Lu
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qianqian Yao
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Mingfang Deng
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xubin Zhou
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yihua Gao
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Nishuang Liu
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
11
|
Gao Z, Fang C, Gao Y, Yin X, Zhang S, Lu J, Wu G, Wu H, Xu B. Hybrid electromagnetic and moisture energy harvesting enabled by ionic diode films. Nat Commun 2025; 16:312. [PMID: 39747851 PMCID: PMC11697010 DOI: 10.1038/s41467-024-55030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Wireless energy-responsive systems provide a foundational platform for powering and operating intelligent devices. However, current electronic systems relying on complex components limit their effective deployment in ambient environment and seamless integration of energy harvesting, storage, sensing, and communication. Here, we disclose a coupling effect of electromagnetic wave absorption and moist-enabled generation on carrier transportation and energy interaction regulated by ionic diode effect. As demonstration, a wireless energy interactive system is established for electromagnetic-moist coupled energy harvesting and signal transmission through highly integrated polyelectrolyte/conjugated conductive polymer bilayer ionic diode films as dynamic energy-switching carriers. The gradient distribution of ions within the films, excited by moist energy, enables the ionic rectification and further endows the films with electromagnetic energy harvesting capability. In turn, the absorbed electromagnetic energy drives the directional migration of charge carriers and internal ionic current. By rationally regulating the electrolyte and dielectric properties of ionic diodes, it becomes feasible to control targeted electric signals and energy outputs under coupled electromagnetic-moist environment. This work is a step towards enabling enhanced smart interactivities for wirelessly driven flexible electronics.
Collapse
Affiliation(s)
- Zhenguo Gao
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Cuiqin Fang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yuanyuan Gao
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xin Yin
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Siyuan Zhang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jian Lu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
| |
Collapse
|
12
|
Stokes K, Sun Y, Passaretti P, White H, Goldberg Oppenheimer P. Unveiling the Sorption Properties of Graphene Oxide-M13 Bacteriophage Aerogels for Advanced Sensing and Environmental Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70804-70817. [PMID: 39660982 DOI: 10.1021/acsami.4c16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
GraPhage13 aerogels (GPAs) are ultralow density, porous structures fabricated through the self-assembly of graphene oxide (GO) and M13 bacteriophage. Given GPA's high surface area and extensive porous network, properties typically associated with highly adsorbent materials, it is essential to characterize its sorption capabilities, with a focus on unlocking its potential for advanced applications in areas such as biomedical sensing and environmental monitoring. Herein, the water, ethanol and acetone sorption properties of GPA were explored using dynamic vapor sorption (DVS). GPA was found to be highly hygroscopic, with a sorption capacity of 0.68 ± 0.02 g/g, double that of conventional desiccant silica gels and 20% higher than GO laminates. This remarkable sorption capacity, along with its sorption kinetics, was influenced by both GPA's morphology and the strong interactions between the water molecules and the functional groups on the GO within GPA. The low hysteresis and stability of GPA during repeated sorption-desorption cycles highlight the reversibility of water sorption. While GPA shows lower capacity for ethanol and acetone, its tuneability presents opportunities for improving acetone sorption, and its ethanol sorption capacity exceeds that of similar carbon-based materials. These findings underscore GPA's capability and versatility in vapor adsorption, paving the way toward its integration into graphene-based devices for sensing applications.
Collapse
Affiliation(s)
- Kate Stokes
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Yiwei Sun
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
- Paragraf Ltd, Cambridge PB28 3EB, U.K
| | - Paolo Passaretti
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Henry White
- BAE-Systems─Air Sector, Buckingham House, FPC 267, Filton, Bristol BS34 7QW, U.K
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham B15 2TH, U.K
| |
Collapse
|
13
|
Luo T, Kong L, Lu J, Xie M, Lin B, Fu L, Huang B, Xu C. Neuron-Inspired Flexible Phase Change Materials for Ambient Energy Harvesting and Respiration Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411820. [PMID: 39436043 DOI: 10.1002/adma.202411820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/03/2024] [Indexed: 10/23/2024]
Abstract
The global energy crisis and climate change pose unprecedented challenges. Wearable devices with personal thermoregulation and energy harvesting hold great promise for achieving energy savings and human thermal comfort. Here, inspired by neurons, a novel phase change material (PCM) is reported for efficient energy harvesting and respiratory monitoring via a self-assembly strategy. The use of gum arabic (GA) enabled the encapsulation of polyethylene glycol (PEG) and the targeted distribution of carboxylated multi-walled carbon nanotubes (cMWCNTs) simultaneously in poly (ethylene vinyl acetate) (EVA) matrix. The material exhibits an outstanding toughness value of 14.88 MJ m-3 and high elongation at a break of 565.67%, exhibiting remarkable flexibility. The material with sufficient melting enthalpy (71.11 J g-1) demonstrates high photothermal conversion efficiency (95.27%) under 808 nm laser irradiation (105 mW cm-2). In addition, due to the synergistic effect of GA and PEG, especially the formation of microdome structures on the surface, the material demonstrates ultrasensitive humidity responsiveness for respiratory monitoring with high precision, excellent repeatability, and fast response/recovery time (50.4/50.5 ms). Notably, it shows great potential for moisture-electric generators (MEGs) with the function of non-contact sensing. This material opens the path toward next-generation wearable devices in energy conversion and health monitoring.
Collapse
Affiliation(s)
- Tianwen Luo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Lingli Kong
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Junjie Lu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Man Xie
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Lihua Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Bai Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Chuanhui Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
14
|
Gao Y, Elhadad A, Choi S. A Paper-Based Wearable Moist-Electric Generator for Sustained High-Efficiency Power Output and Enhanced Moisture Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2408182. [PMID: 39308200 PMCID: PMC11636170 DOI: 10.1002/smll.202408182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 12/13/2024]
Abstract
Disposable wearable electronics are valuable for diagnostic and healthcare purposes, reducing maintenance needs and enabling broad accessibility. However, integrating a reliable power supply is crucial for their advancement, but conventional power sources present significant challenges. To address that issue, a novel paper-based moist-electric generator is developed that harnesses ambient moisture for power generation. The device features gradients for functional groups and moisture adsorption and architecture of nanostructures within a disposable paper substrate. The nanoporous, gradient-formed spore-based biofilm and asymmetric electrode deposition enable sustained high-efficiency power output. A Janus hydrophobic-hydrophilic paper layer enhances moisture harvesting, ensuring effective operation even in low-humidity environments. This research reveals that the water adsorption gradient is crucial for performance under high humidity, whereas the functional group gradient is dominant under low humidity. The device delivers consistent performance across diverse conditions and flexibly conforms to various surfaces, making it ideal for wearable applications. Its eco-friendly, cost-effective, and disposable nature makes it a viable solution for widespread use with minimal environmental effects. This innovative approach overcomes the limitations of traditional power sources for wearable electronics, offering a sustainable solution for future disposable wearables. It significantly enhances personalized medicine through improved health monitoring and diagnostics.
Collapse
Affiliation(s)
- Yang Gao
- Bioelectronics & Microsystems LaboratoryDepartment of Electrical & Computer EngineeringState University of New York at BinghamtonBinghamtonNew York13902USA
| | - Anwar Elhadad
- Bioelectronics & Microsystems LaboratoryDepartment of Electrical & Computer EngineeringState University of New York at BinghamtonBinghamtonNew York13902USA
| | - Seokheun Choi
- Bioelectronics & Microsystems LaboratoryDepartment of Electrical & Computer EngineeringState University of New York at BinghamtonBinghamtonNew York13902USA
- Center for Research in Advanced Sensing Technologies & Environmental SustainabilityState University of New York at BinghamtonBinghamtonNew York13902USA
| |
Collapse
|
15
|
Zan G, Jiang W, Kim H, Zhao K, Li S, Lee K, Jang J, Kim G, Shin E, Kim W, Oh JW, Kim Y, Park JW, Kim T, Lee S, Oh JH, Shin J, Kim HJ, Park C. A core-shell fiber moisture-driven electric generator enabled by synergetic complex coacervation and built-in potential. Nat Commun 2024; 15:10056. [PMID: 39567507 PMCID: PMC11579398 DOI: 10.1038/s41467-024-54442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of poly(3,4-ethylenedioxythiophene) (PEDOT) with a built-in charge potential and a gel shell composed of poly(diallyldimethylammonium chloride) (PDDA) and sodium alginate (NaAlg) coacervate. The complex coacervation of two oppositely charged polyelectrolytes produces extra mobile carriers and free volume in the device; meanwhile, the PEDOT core's surface charge significantly accelerates carrier diffusion. Consequently, the uniaxial fiber-based MEG demonstrates breakthrough performance, achieving an output voltage of up to 0.8 V, a maximum current density of 1.05 mA/cm2, and a power density of 184 μW/cm2 at 20% relative humidity. Moreover, the mechanical robustness is ensured for the PEDOT nanoribbon substrate without performance degradation even after 100,000 folding cycles, making it suitable for self-powered human interactive sensor and synapse. Notably, we have constructed the inaugural MEG-synapse self-powered device, with a fiber-based MEG successfully operating a synaptic memristor, thereby emulating autonomous human synapses linked with fibrous neurons. Overall, this work pioneers innovative design strategies and application scenarios for high-performance MEGs.
Collapse
Affiliation(s)
- Guangtao Zan
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Wei Jiang
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - HoYeon Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kaiying Zhao
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Shengyou Li
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kyuho Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jihye Jang
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Gwanho Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - EunAe Shin
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon, Republic of Korea
| | - Woojoong Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jin Woo Oh
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yeonji Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jong Woong Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Taebin Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Seonju Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Ji Hye Oh
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jowon Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Hyeong Jun Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea.
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Bai S, Yao X, Wong MY, Xu Q, Li H, Lin K, Zhou Y, Ho TC, Pan A, Chen J, Zhu Y, Wang S, Tso CY. Enhancement of Water Productivity and Energy Efficiency in Sorption-based Atmospheric Water Harvesting Systems: From Material, Component to System Level. ACS NANO 2024; 18:31597-31631. [PMID: 39497484 DOI: 10.1021/acsnano.4c09582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
To address the increasingly serious water scarcity across the world, sorption-based atmospheric water harvesting (SAWH) continues to attract attention among various water production methods, due to it being less dependent on climatic and geographical conditions. Water productivity and energy efficiency are the two most important evaluation indicators. Therefore, this review aims to comprehensively and systematically summarize and discuss the water productivity and energy efficiency enhancement methods for SAWH systems based on three levels, from material to component to system. First, the material level covers the characteristics, categories, and mechanisms of different sorbents. Second, the component level focuses on the sorbent bed, regeneration energy, and condenser. Third, the system level encompasses the system design, operation, and synergetic effect generation with other mechanisms. Specifically, the key and promising improvement methods are: synthesizing composite sorbents with high water uptake, fast sorption kinetics, and low regeneration energy (material level); improving thermal insulation between the sorbent bed and condenser, utilizing renewable energy or electrical heating for desorption and multistage design (component level); achieving continuous system operation with a desired number of sorbent beds or rotational structure, and integrating with Peltier cooling or passive radiative cooling technologies (system level). In addition, applications and challenges of SAWH systems are explored, followed by potential outlooks and future perspectives. Overall, it is expected that this review article can provide promising directions and guidelines for the design and operation of SAWH systems with the aim of achieving high water productivity and energy efficiency.
Collapse
Affiliation(s)
- Shengxi Bai
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Xiaoxue Yao
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Man Yi Wong
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Qili Xu
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Hao Li
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Kaixin Lin
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Yiying Zhou
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Tsz Chung Ho
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Aiqiang Pan
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Jianheng Chen
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Yihao Zhu
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Steven Wang
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Chi Yan Tso
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| |
Collapse
|
17
|
Li F, Zhao J, Li B, Han Z, Guo L, Han P, Kim HH, Su Y, Zhu LM, Shen D. Water-Triboelectrification-Complemented Moisture Electric Generator. ACS NANO 2024; 18:30658-30667. [PMID: 39443166 DOI: 10.1021/acsnano.4c09581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Energy harvesting from ubiquitous natural water vapor based on moisture electric generator (MEG) technology holds great potential to power portable electronics, the Internet of Things, and wireless transmission. However, most devices still encounter challenges of low output, and a single MEG complemented with another form of energy harvesting for achieving high power has seldom been demonstrated. Herein, we report a flexible and efficient hybrid generator capable of harvesting moisture and tribo energies simultaneously, both from the source of water droplets. The moisture electric and triboelectric layers are based on a water-absorbent citric acid (CA)-mediated polyglutamic acid (PGA) hydrogel and porous electret expanded polytetrafluoroethylene (E-PTFE), respectively. Such a waterproof E-PTFE film not only enables efficient triboelectrification with water droplets' contact but also facilitates water vapor to be transferred into the hydrogel layer for moisture electricity generation. A single hybrid generator under water droplets' impact delivers a DC voltage of 0.55 V and a peak current density of 120 μA cm-2 from the MEG, together with a simultaneous AC output voltage of 300 V and a current of 400 μA from the complementary water-based triboelectric generator (TEG) side. Such a hybrid generator can work even under harsh wild environments with 5 °C cold and saltwater impacts. Significantly, an optical alarm and wireless communication system for wild, complex, and emergency scenarios is demonstrated with power from the hybrid generators. This work expands the applications of water-based electricity generation technologies and provides insight into harvesting multiple potential energies in the natural environment with high output.
Collapse
Affiliation(s)
- Fangzhou Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jian Zhao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Bin Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zechao Han
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linglan Guo
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peicheng Han
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hyun Ho Kim
- Department of Energy Engineering Convergence, School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yanjie Su
- Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Min Zhu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daozhi Shen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Shen D, Li F, Zhao J, Wang R, Li B, Han Z, Guo L, Han P, Yang D, Kim HH, Su Y, Gong Z, Zhu L. Ionic Hydrogel-Based Moisture Electric Generators for Underwater Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408954. [PMID: 39342649 DOI: 10.1002/advs.202408954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Ubiquitous moisture is of particular interest for sustainable power generation and self-powered electronics. However, current moisture electric generators (MEGs) can only harvest moisture energy in the air, which tremendously limits the energy harvesting efficiency and practical application scenarios. Herein, the operationality of MEG from air to underwater environment, through a sandwiched engineered-hydrogel device with an additional waterproof breathable membrane layer allowing water vapor exchange while preventing liquid water penetration, is expanded. Underwater environment, the device can spontaneously deliver a voltage of 0.55 V and a current density of 130 µA cm-2 due to the efficient ion separation assisted by negative ions confinement in hydrogel networks. The output can be maintained even under harsh underwater environment with 10% salt concentration, 1 m s-1 disturbing flow, as well as >40 kPa hydraulic pressure. The engineered hydrogel used for MEG also exhibits excellent self-healing ability, flexibility, and biocompatibility. As the first demonstration of practical applications in self-powered underwater electronics, the MEG device is successfully powering a wireless emitter for remote communication in water. This new type of MEG offers an innovative route for harvesting moisture energy underwater and holds promise in the creation of a new range of innovative electronic devices for marine Internet-of-Things.
Collapse
Affiliation(s)
- Daozhi Shen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangzhou Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Jian Zhao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Rui Wang
- University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Zechao Han
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linglan Guo
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peicheng Han
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongqi Yang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hyun Ho Kim
- Department of Energy Engineering Convergence, School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Yanjie Su
- Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhixiong Gong
- State Key Laboratory of Ocean Engineering, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Limin Zhu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
19
|
Ge C, Xu D, Feng X, Yang X, Song Z, Song Y, Chen J, Liu Y, Gao C, Du Y, Sun Z, Xu W, Fang J. Recent Advances in Fibrous Materials for Hydroelectricity Generation. NANO-MICRO LETTERS 2024; 17:29. [PMID: 39347862 PMCID: PMC11444048 DOI: 10.1007/s40820-024-01537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development. Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gaseous water has been considered a promising strategy for mitigating the energy crisis. Fibrous materials with unique flexibility, processability, multifunctionality, and practicability have been widely applied for fibrous materials-based hydroelectricity generation (FHG). In this review, the power generation mechanisms, design principles, and electricity enhancement factors of FHG are first introduced. Then, the fabrication strategies and characteristics of varied constructions including 1D fiber, 1D yarn, 2D fabric, 2D membrane, 3D fibrous framework, and 3D fibrous gel are demonstrated. Afterward, the advanced functions of FHG during water harvesting, proton dissociation, ion separation, and charge accumulation processes are analyzed in detail. Moreover, the potential applications including power supply, energy storage, electrical sensor, and information expression are also discussed. Finally, some existing challenges are considered and prospects for future development are sincerely proposed.
Collapse
Affiliation(s)
- Can Ge
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
| | - Duo Xu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Xiao Feng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xing Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zheheng Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, People's Republic of China
| | - Yuhang Song
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jingyu Chen
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Yingcun Liu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Chong Gao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Yong Du
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China
| | - Zhe Sun
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
20
|
Fu K, Yuan D, Yu T, Lei C, Kou Z, Huang B, Lyu S, Zhang F, Wan T. Recent Advances on Two-Dimensional Nanomaterials Supported Single-Atom for Hydrogen Evolution Electrocatalysts. Molecules 2024; 29:4304. [PMID: 39339299 PMCID: PMC11434429 DOI: 10.3390/molecules29184304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Water electrolysis has been recognized as a promising technology that can convert renewable energy into hydrogen for storage and utilization. The superior activity and low cost of catalysis are key factors in promoting the industrialization of water electrolysis. Single-atom catalysts (SACs) have attracted attention due to their ultra-high atomic utilization, clear structure, and highest hydrogen evolution reaction (HER) performance. In addition, the performance and stability of single-atom (SA) substrates are crucial, and various two-dimensional (2D) nanomaterial supports have become promising foundations for SA due to their unique exposed surfaces, diverse elemental compositions, and flexible electronic structures, to drive single atoms to reach performance limits. The SA supported by 2D nanomaterials exhibits various electronic interactions and synergistic effects, all of which need to be comprehensively summarized. This article aims to organize and discuss the progress of 2D nanomaterial single-atom supports in enhancing HER, including common and widely used synthesis methods, advanced characterization techniques, different types of 2D supports, and the correlation between structural hydrogen evolution performance. Finally, the latest understanding of 2D nanomaterial supports was proposed.
Collapse
Affiliation(s)
- Kangkai Fu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Douke Yuan
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Ting Yu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Chaojun Lei
- Key Laboratory of Organosilicon Chemistry and Material Technology, College of Material, Chemistry and Chemical Engineering, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenhui Kou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bingfeng Huang
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Siliu Lyu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Feng Zhang
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Tongtao Wan
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| |
Collapse
|
21
|
Xiao H, Yu Z, Liang J, Ding L, Zhu J, Wang Y, Chen S, Xin JH. Wetting Behavior-Induced Interfacial transmission of Energy and Signal: Materials, Mechanisms, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407856. [PMID: 39032113 DOI: 10.1002/adma.202407856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/10/2024] [Indexed: 07/22/2024]
Abstract
Wetting behaviors can significantly affect the transport of energy and signal (E&S) through vapor, solid, and liquid interfaces, which has prompted increased interest in interfacial science and technology. E&S transmission can be achieved using electricity, light, and heat, which often accompany and interact with each other. Over the past decade, their distinctive transport phenomena during wetting processes have made significant contributions to various domains. However, few studies have analyzed the intricate relationship between wetting behavior and E&S transport. This review summarizes and discusses the mechanisms of electrical, light, and heat transmission at wetting interfaces to elucidate their respective scientific issues, technical characteristics, challenges, commonalities, and potential for technological convergence. The materials, structures, and devices involved in E&S transportation are also analyzed. Particularly, harnessing synergistic advantages in practical applications and constructing advanced, multifunctional, and highly efficient smart systems based on wetted interfaces is the aim to provide strategies.
Collapse
Affiliation(s)
- Haoyuan Xiao
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zilin Yu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiechang Liang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Ding
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jingshuai Zhu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuanfeng Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shiguo Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - John H Xin
- Research Centre of Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
22
|
Xiao BH, Xiao K, Li JX, Xiao CF, Cao S, Liu ZQ. Flexible electrochemical energy storage devices and related applications: recent progress and challenges. Chem Sci 2024; 15:11229-11266. [PMID: 39055032 PMCID: PMC11268522 DOI: 10.1039/d4sc02139h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Given the escalating demand for wearable electronics, there is an urgent need to explore cost-effective and environmentally friendly flexible energy storage devices with exceptional electrochemical properties. However, the existing types of flexible energy storage devices encounter challenges in effectively integrating mechanical and electrochemical performances. This review is intended to provide strategies for the design of components in flexible energy storage devices (electrode materials, gel electrolytes, and separators) with the aim of developing energy storage systems with excellent performance and deformability. Firstly, a concise overview is provided on the structural characteristics and properties of carbon-based materials and conductive polymer materials utilized in flexible energy storage devices. Secondly, the fabrication process and strategies for optimizing their structures are summarized. Subsequently, a comprehensive review is presented regarding the applications of carbon-based materials and conductive polymer materials in various fields of flexible energy storage, such as supercapacitors, lithium-ion batteries, and zinc-ion batteries. Finally, the challenges and future directions for next-generation flexible energy storage systems are proposed.
Collapse
Affiliation(s)
- Bo-Hao Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
- School of Materials Science & Engineering, Jiangsu University Zhenjiang 212013 China
| | - Kang Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Jian-Xi Li
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Can-Fei Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Shunsheng Cao
- School of Materials Science & Engineering, Jiangsu University Zhenjiang 212013 China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
23
|
Tiwari A, Sharma SK, Borah A, Yella A. Manipulating the Crystallization of Tin Halide Perovskites for Efficient Moisture-to-Electricity Conversion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36272-36280. [PMID: 38978170 DOI: 10.1021/acsami.4c03828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Manipulating the crystallization of perovskite in thin films is essential for the fabrication of any thin-film-based devices. Fabricating tin-based perovskite films from solution poses difficulties because tin tends to crystallize faster than the commonly used lead perovskite. To achieve optimal device performance in solar cells, the preferred method involves depositing tin perovskite under inert conditions using dimethyl sulfoxide (DMSO), which effectively retards the formation of the tin-bromine network, which is crucial for perovskite assembly. We found that under ambient conditions, a DMSO-based tin perovskite salt solution resulted in the formation of a two-phase system, SnBr4(DMSO)2 and MABr, whereas a dimethylformamide-based solution resulted in the formation of vacancy-ordered double perovskite MA2SnBr6. Humidity is known to solvate MABr to form the solvated ions, and so we used the two-phase system for the application in moisture to electricity conversion. The importance of the presence of the scaffold can be seen with the negligible power output from the vacancy-ordered double perovskite obtained with MA2SnBr6. We have fabricated a device with two-phase system that can generate an open-circuit potential of 520 mV and a short-circuit current density of 30.625 μA/cm2 at 85% RH. Also, the device charges a 10 μF capacitor from 150 mV at 51% RH to 500 mV at 85% RH in 6 s at a rate of 52.5 mV/s. Moreover, the output can be scaled by connecting devices in series and parallel configurations. A 527 nm green LED was powered by connecting five devices in series at 75% RH. This indicates a potential for utilizing these moisture-to-electricity conversion devices in powering low-energy requirement devices.
Collapse
Affiliation(s)
- Abinash Tiwari
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology, Bombay 400076, India
| | - Sumit Kumar Sharma
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology, Bombay 400076, India
| | - Aditya Borah
- Jengraimukh College, Majuli, Assam 785105, India
| | - Aswani Yella
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology, Bombay 400076, India
- Department of Metallurgical Engineering and Material Science, Indian Institute of Technology, Bombay 400076, India
| |
Collapse
|
24
|
Kang M, Yeo WH. Advances in Energy Harvesting Technologies for Wearable Devices. MICROMACHINES 2024; 15:884. [PMID: 39064395 PMCID: PMC11279352 DOI: 10.3390/mi15070884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
The development of wearable electronics is revolutionizing human health monitoring, intelligent robotics, and informatics. Yet the reliance on traditional batteries limits their wearability, user comfort, and continuous use. Energy harvesting technologies offer a promising power solution by converting ambient energy from the human body or surrounding environment into electrical power. Despite their potential, current studies often focus on individual modules under specific conditions, which limits practical applicability in diverse real-world environments. Here, this review highlights the recent progress, potential, and technological challenges in energy harvesting technology and accompanying technologies to construct a practical powering module, including power management and energy storage devices for wearable device developments. Also, this paper offers perspectives on designing next-generation wearable soft electronics that enhance quality of life and foster broader adoption in various aspects of daily life.
Collapse
Affiliation(s)
- Minki Kang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30322, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
25
|
Wu P, Chen Y, Luo Y, Ji W, Wang Y, Qian Z, Duan Y, Li X, Fu S, Gao W, Liu D. Hierarchical Bilayer Polyelectrolyte Ion Paper Conductor for Moisture-Induced Power Generation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32198-32208. [PMID: 38865083 DOI: 10.1021/acsami.4c03665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Harvesting energy from air water (atmospheric moisture) promises a sustainable self-powered system without any restrictions from specific environmental requirements (e.g., solar cells, hydroelectric, or thermoelectric devices). However, the present moisture-induced power devices traditionally generate intermittent or bursts of energy, especially for much lower current outputs (generally keeping at nA or μA levels) from the ambient environment, typically suffering from inferior ionic conductivity and poor hierarchical structure design for manipulating sustained air water and ion-charge transport. Here, we demonstrate a universal strategy to design a high-performance bilayer polyelectrolyte ion paper conductor for generating continuous electric power from ambient humidity. The generator can produce a continuous voltage of up to 0.74 V and also an exceptional current of 5.63 mA across a single 1.0 mm-thick ion paper conductor. We discover that the sandwiched LiCl-nanocellulose-engineered paper promises an ion-transport junction between the negatively and positively charged bilayer polyelectrolytes for application in MEGs with both high voltage and high current outputs. Moreover, we demonstrated the universality of this bilayer sandwich nanocellulose-salt engineering strategy with other anions and cations, exhibiting similar power generation ability, indicating that it could be the next generation of sustainable MEGs with low cost, easier operation, and high performance.
Collapse
Affiliation(s)
- Peilin Wu
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Yonghao Chen
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Yao Luo
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Wenhao Ji
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Yan Wang
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Zhiyun Qian
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Yulong Duan
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Xiaoming Li
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Shiyu Fu
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Wenhua Gao
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Detao Liu
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| |
Collapse
|
26
|
He W, Li P, Wang H, Hu Y, Lu B, Weng C, Cheng H, Qu L. Robustly and Intrinsically Stretchable Ionic Gel-Based Moisture-Enabled Power Generator with High Human Body Conformality. ACS NANO 2024; 18:12096-12104. [PMID: 38687972 DOI: 10.1021/acsnano.3c08543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Direct harvesting of energy from moist air will be a promising route to supply electricity for booming wearable and distributed electronics, with the recent rapid development of the moisture-enabled electricity generator (MEG). However, the easy spatial distortion of rigid MEG materials under severe deformation extremely inconveniences the human body with intense physical activity, seriously hindering the desirable applications. Here, an intrinsically stretchable moisture-enabled electricity generator (s-MEG) is developed based on a well-fabricated stretchable functional ionic gel (SIG) with a flexible double-network structure and reversible cross-linking interactions, demonstrating stable electricity output performance even when stretched up to 150% strain and high human body conformality. This SIG exhibits ultrahigh tensile strain (∼600%), and a 1 cm × 1 cm SIG film-based s-MEG can generate a voltage of ∼0.4 V and a current of ∼5.7 μA when absorbing water from humidity air. Based on the strong adhesion and the excellent interface combination of SIG and rough fabric electrodes induced by the fabrication process, s-MEG is able to realize bending or twisting deformation and shows outstanding electricity output stability with ∼90% performance retention after 5000 cycles of bending tests. By connecting s-MEG units in series or parallel, an integrated device of "moisture-powered wristband" is developed to wear on the wrist of humans and drive a flexible sensor for tracking finger motions. Additionally, a comfortable "moisture-powered sheath" based on s-MEGs is created, which can be worn like clothing on human arms to generate energy while walking and flexing the elbow, which is promising in the field of wearable electronics.
Collapse
Affiliation(s)
- Wenya He
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Puying Li
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Haiyan Wang
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Yajie Hu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Bing Lu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Chuanxin Weng
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Huhu Cheng
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Liangti Qu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
27
|
Yang S, Zhang L, Mao J, Guo J, Chai Y, Hao J, Chen W, Tao X. Green moisture-electric generator based on supramolecular hydrogel with tens of milliamp electricity toward practical applications. Nat Commun 2024; 15:3329. [PMID: 38637511 PMCID: PMC11026426 DOI: 10.1038/s41467-024-47652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
Moisture-electric generators (MEGs) has emerged as promising green technology to achieve carbon neutrality in next-generation energy suppliers, especially combined with ecofriendly materials. Hitherto, challenges remain for MEGs as direct power source in practical applications due to low and intermittent electric output. Here we design a green MEG with high direct-current electricity by introducing polyvinyl alcohol-sodium alginate-based supramolecular hydrogel as active material. A single unit can generate an improved power density of ca. 0.11 mW cm-2, a milliamp-scale short-circuit current density of ca. 1.31 mA cm-2 and an open-circuit voltage of ca. 1.30 V. Such excellent electricity is mainly attributed to enhanced moisture absorption and remained water gradient to initiate ample ions transport within hydrogel by theoretical calculation and experiments. Notably, an enlarged current of ca. 65 mA is achieved by a parallel-integrated MEG bank. The scalable MEGs can directly power many commercial electronics in real-life scenarios, such as charging smart watch, illuminating a household bulb, driving a digital clock for one month. This work provides new insight into constructing green, high-performance and scalable energy source for Internet-of-Things and wearable applications.
Collapse
Affiliation(s)
- Su Yang
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, P. R. China
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Lei Zhang
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, P. R. China
| | - Jianfeng Mao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Jianmiao Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Wei Chen
- National & Local Joint Engineering Research Center for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, P. R. China
| | - Xiaoming Tao
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, P. R. China.
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, P. R. China.
| |
Collapse
|
28
|
Feng H, Zhou P, Peng Q, Weng M. Soft multi-layer actuators integrated with the functions of electrical energy harvest and storage. Chemistry 2024; 30:e202303378. [PMID: 38009845 DOI: 10.1002/chem.202303378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Soft multi-layer actuators are smart, lightweight, and flexible, which can be used in a wide range of fields such as artificial muscles, advanced medical devices, and wearable devices. The research on the actuation property of the soft actuators has made significant progress, paving the way for the controllable motions of the actuators. However, compared with the intelligence and adaptability of life in nature, these actuators still have the problem of insufficient intelligence. The phenomenon is reflected in a lack of continuous supply of energy. Therefore, it has become a development trend to combine functions such as energy harvesting, storage, and conversion with actuators to build intelligent actuators. This concept presents a synopsis of the advancements made in soft actuators that have been coupled with the capabilities of electrical energy harvesting and storage. The design concepts and typical applications of this soft smart actuators are introduced in detail. Finally, the future research directions and applications of smart actuators are prospected from our perspective.
Collapse
Affiliation(s)
- Haihang Feng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Peidi Zhou
- Institute of Smart Marine and Engineering, Fujian Provincial Key Laboratory of Marine Smart Equipment, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Qinglu Peng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Mingcen Weng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| |
Collapse
|
29
|
Xue W, Zhao Z, Zhang S, Li Y, Wang X, Qiu J. Power Generation from the Interaction of a Carbon Foam and Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2825-2835. [PMID: 38176096 DOI: 10.1021/acsami.3c04726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Understanding the interaction mechanisms between the surface of carbon-based materials and water is of great significance for the development of water-based energy storage and energy conversion devices. Herein, a self-supporting electric generator is demonstrated based on water adsorption on the surface of the carbon foam (CF) that works with various water resources, including deionized (DI) water, tap water, wastewater, and seawater. It is revealed that the dissociation of oxygen-containing groups on the surface of CF after water molecule adsorption leads to a reduction of the surface potential of the CF. Through surface modulation techniques such as reduction and oxidation, a balance has been uncovered between the oxygen content and conductivity for the high-performance CFs. The generator can generate an open-circuit voltage of approximately 0.6 V in natural seawater with a power density of up to 0.77 mW g-1. A high voltage of more than 2 V can be achieved easily by assembling components connected in series to drive electronic devices, such as a light-emitting diode (LED). This work demonstrates a simple and low-cost method for electricity harvesting, offering an additional option for self-powered devices.
Collapse
Affiliation(s)
- Wan Xue
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zongbin Zhao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Su Zhang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yong Li
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Xuzhen Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jieshan Qiu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
30
|
Zhang T, Han X, Peng Y, Yu H, Pu J. Modified Wood Fibers Spontaneously Harvest Electricity from Moisture. Polymers (Basel) 2024; 16:260. [PMID: 38257058 PMCID: PMC10818770 DOI: 10.3390/polym16020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
With the rapid development of modern society, our demand for energy is increasing. And the extensive use of fossil energy has triggered a series of problems such as an energy crisis and environmental pollution. A moisture-enabled electric generator (MEG) is a new type of energy conversion method, which can directly convert the ubiquitous moisture in the air into electrical energy equipment. It has attracted great interest for its renewable and environmentally friendly qualities. At present, most MEGs still have low power density, strong dependence on high humidity, and high cost. Herein, we report the development of a high-efficiency MEG based on a lignocellulosic fiber frame with high-power-density, all-weather, and low-cost characteristics using a simple strategy that optimizes the charge transport channel and ion concentration difference. The MEG devices we manufactured can generate the open-circuit voltage of 0.73 V and the short-circuit current of 360 μA, and the voltage can still reach 0.6 V at less than 30% humidity. It is possible to drive commercial electronic devices such as light-emitting diodes, electronic displays, and electronic calculators by simply connecting several electric generators in series. Biomass-based moisture-enabled electric generation has a low cost, is easy to integrate on a large scale, and is green and pollution-free, providing clean energy for low-humidity or high-electricity-cost areas.
Collapse
Affiliation(s)
| | | | | | | | - Junwen Pu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; (T.Z.); (X.H.); (Y.P.); (H.Y.)
| |
Collapse
|
31
|
Ni K, Xu B, Wang Z, Ren Q, Gu W, Sun B, Liu R, Zhang X. Ion-Diode-Like Heterojunction for Improving Electricity Generation from Water Droplets by Capillary Infiltration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305438. [PMID: 37526223 DOI: 10.1002/adma.202305438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Water-droplet-based electricity generators are emerging hydrovoltaic technologies that harvest energy from water circulation through strong interactions between water and nanomaterials. However, such devices exhibit poor current performance owing to their unclear driving force (evaporation or infiltration) and undesirable reverse diffusion current. Herein, a water-droplet-based hydrovoltaic electricity generator induced by capillary infiltration with an asymmetric structure composed of a diode-like heterojunction formed by negatively and positively charged materials is fabricated. This device can generate current densities of 160 and 450 µA cm-2 at room temperature and 65 °C, respectively. The heterojunction achieves a rectification ratio of 12, which effectively suppresses the reverse current caused by concentration differences. This results in an improved charge accumulation of ≈60 mC cm-2 in 1000 s, which is three times the value observed in the control device. When the area of the device is increased to 6 cm2 , the current increases linearly to 1 mA, thus demonstrating the scale-up potential of the generator. It has been proven that the streaming potential originates from capillary infiltration, and the presence of ion rectification. The proposed method of constructing ion-diode-like structures provides a new strategy for improving generator performance.
Collapse
Affiliation(s)
- Kun Ni
- Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Bentian Xu
- Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhiqi Wang
- Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Qinyi Ren
- Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Wenbo Gu
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Baoquan Sun
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Ruiyuan Liu
- Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaohong Zhang
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
32
|
Li P, Hu Y, He W, Lu B, Wang H, Cheng H, Qu L. Multistage coupling water-enabled electric generator with customizable energy output. Nat Commun 2023; 14:5702. [PMID: 37709765 PMCID: PMC10502115 DOI: 10.1038/s41467-023-41371-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Constant water circulation between land, ocean and atmosphere contains great and sustainable energy, which has been successfully employed to generate electricity by the burgeoning water-enabled electric generator. However, water in various forms (e.g. liquid, moisture) is inevitably discharged after one-time use in current single-stage water-enabled electric generators, resulting in the huge waste of inherent energy within water circulation. Herein, a multistage coupling water-enabled electric generator is proposed, which utilizes the internal liquid flow and subsequently generated moisture to produce electricity synchronously, achieving a maximum output power density of ~92 mW m-2 (~11 W m-3). Furthermore, a distributary design for internal water in different forms enables the integration of water-flow-enabled and moisture-diffusion-enabled electricity generation layers into mc-WEG by a "flexible building blocks" strategy. Through a three-stage adjustment process encompassing size control, space optimization, and large-scale integration, the multistage coupling water-enabled electric generator realizes the customized electricity output for diverse electronics. Twenty-two units connected in series can deliver ~10 V and ~280 μA, which can directly lighten a table lamp for 30 min without aforehand capacitor charging. In addition, multistage coupling water-enabled electric generators exhibit excellent flexibility and environmental adaptability, providing a way for the development of water-enabled electric generators.
Collapse
Affiliation(s)
- Puying Li
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing, 100084, P. R. China
| | - Yajie Hu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing, 100084, P. R. China
| | - Wenya He
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing, 100084, P. R. China
| | - Bing Lu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing, 100084, P. R. China
| | - Haiyan Wang
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing, 100084, P. R. China
| | - Huhu Cheng
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing, 100084, P. R. China.
| | - Liangti Qu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
33
|
Abstract
In recent years, excessive exploitation and rapid population growth have posed numerous challenges. The climate crisis is deepening because of the unabated use of fossil fuels and the ascendance of greenhouse gas levels, so there is still an urgent need to seek different clean energy sources and electricity generating methods with the purpose of adjusting energy structures and solving environmental problems. In the ubiquitous hydrologic cycle, at least 60 petawatts (1015 W) energy can be supplied, but little of it has yet been utilized. Nowadays, hydrovoltaic intelligence has emerged and exhibited an ecofriendly concept of electricity generation compared with traditional methods with the rise of nanoscience and nanomaterials. Hence, it provides the prospect of upgrading the mode of water energy use, constructing a renewable energy industry, and alleviating environmental issues. In this review, starting by introducing different types of hydrovoltaic effect mechanisms─energy harvesting based on drawing potential of liquids; energy harvesting based on water evaporation, and energy harvesting based on moisture adsorption─we summarize the fabrication processes, material classifications, intelligent applications, and representative advances in detail. Moreover, the future development trends of hydrovoltaic intelligence and the challenges for improvement in electrical output are further discussed.
Collapse
Affiliation(s)
- Luomin Wang
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Weifeng Zhang
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Yuan Deng
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| |
Collapse
|
34
|
Weng M, Zhou J, Ye Y, Qiu H, Zhou P, Luo Z, Guo Q. Self-chargeable supercapacitor made with MXene-bacterial cellulose nanofiber composite for wearable devices. J Colloid Interface Sci 2023; 647:277-286. [PMID: 37262990 DOI: 10.1016/j.jcis.2023.05.162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
The development of wearable electronics is restricted by the developments of supporting energy storage devices, especially flexible supercapacitors. Nowadays, miniaturized supercapacitors based on MXenes due to their obvious advantages in the specific capacity have received extensive attention. The energy existing in the surrounding environment has been used to directly charge energy storage devices. However, the hybrid wearable electronics integrated supercapacitors are mechanically connected through metal wires leading to non-compact devices. Thus, it is urgent to develop a general and universal method to fabricate high-performance robust MXene-based flexible electrodes with high electrical conductivity and apply them to self-chargeable supercapacitors and compact wearable devices. Herein, the bacterial cellulose (BC) nanofibers are used as a crosslinking agent to connect two-dimensional MXene nanosheets through the hydrogen bond, which greatly improves the mechanical strength of MXene-bacterial cellulose (MXene-BC) composite films (Young's modulus reaching 6.8 GPa). The supercapacitors made with the electrodes of MXene-BC composite films (BC content is 10%) present high capacitance behavior (areal capacitance up to 346 mF cm-2) because the introduction of BC nanofibers increases the interlayer spacing of MXene nanosheets, providing more storage space for the ions in the electrolyte. Then, a self-chargeable supercapacitor is proposed based on the combination of a zinc-air (Zn-air) battery and a supercapacitor. The self-chargeable supercapacitor can realize self-charging after dropping a drop of electrolyte solution into the Zn-air battery. The charging voltage of a single self-chargeable supercapacitor can reach 0.6 V after adding artificial sweat as the electrolyte. Finally, a smart wristband with the function of self-charging is proposed, which can absorb the sweat generated by the human for self-chargeable supercapacitors to drive the pedometer integrated within the smart wristband to work. The proposed self-chargeable supercapacitors are simple and effective, not restricted by the use environment, providing a promising way for self-powered wearable electronics.
Collapse
Affiliation(s)
- Mingcen Weng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Jiahao Zhou
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Yuanji Ye
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Huofeng Qiu
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Peidi Zhou
- Institute of Smart Marine and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Zhiling Luo
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China.
| | - Qiaohang Guo
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China
| |
Collapse
|