1
|
Yin S, Li R, Wu H, Huang X, Liu L, Li J, Li X, Zhang J, Ma Y, Zhao D, Lan K. Coordinated Ionic Self-Assembly of Highly Ordered Mesoporous Pt 2Sn 2S 6 Networks for Boosted Hydrogen Evolution. ACS NANO 2025; 19:10301-10311. [PMID: 40042299 DOI: 10.1021/acsnano.4c17914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Metal sulfide materials, endowed with ordered mesoporosity, offer ample opportunities in a variety of renewable energy applications due to the integration of intrinsic functional properties and enhanced reaction kinetics. Unfortunately, ordered mesoporous metal sulfides have rarely been reported due to immense synthetic difficulties by conventional self-assembly approaches. Herein, we explore a compatible coordinated ionic self-assembly strategy for the facile synthesis of highly ordered mesoporous Pt2Sn2S6 networks with templated mesopores at 4.2 nm in hexagonal mesophase (space group p6mm) and highly accessible surface area. The self-assembly mechanism is further investigated, revealing the role of the cationic surfactant and anionic sulfur pair in balancing suitable interaction and the utilized ammonia and ligand to retard fast precipitation of metal and sulfur source for effective assembly. Owing to the combination of ordered porosity and intrinsic functionality, the mesoporous Pt2Sn2S6 after crystallization exhibits excellent activity (overpotential of 13 mV, Tafel slope of 34 mV dec-1) and long-term durability over 100 h for electrochemical hydrogen evolution reaction (HER) in alkaline solution. Our study provides a toolbox for the rational synthesis of functional mesoporous compositions as advanced model platforms for future versatile technologies.
Collapse
Affiliation(s)
- Sixing Yin
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
- College of Chemistry and Materials, Department of Chemistry,Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Rongyao Li
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Hongfei Wu
- College of Chemistry and Materials, Department of Chemistry,Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Xirui Huang
- College of Chemistry and Materials, Department of Chemistry,Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Lu Liu
- College of Chemistry and Materials, Department of Chemistry,Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jialong Li
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Xiaoyu Li
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Jie Zhang
- College of Chemistry and Materials, Department of Chemistry,Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yuzhu Ma
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
- College of Chemistry and Materials, Department of Chemistry,Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Kun Lan
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| |
Collapse
|
2
|
Zhang X, Lv X, Du X, Qi M, Mao S, Wang Y. High-Temperature-Mediated Assembly of Polyoxometalate-Induced Ordered Carbonaceous Superstructures. Angew Chem Int Ed Engl 2025; 64:e202423242. [PMID: 39641278 DOI: 10.1002/anie.202423242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/07/2024]
Abstract
Constructing hierarchical superstructures through one-step bottom-up synthesis poses significant challenges due to strong interactions between additives and micelles, which hinders the formation of heterogeneous configurations. Here, we propose a high-temperature-mediated method to weaken these interactions and manipulate the thermal instability of micellar templates. This approach successfully synthesizes hierarchical superstructures that combine a carbonaceous nanosheet substrate with polyoxometalate (POM)-induced, highly ordered discontinuous nanodots in a single preparation step. The surface nanodots have a diameter of approximately 19 nm and are spaced about 32 nm apart. Besides, the nanodots with various arrangements can be generated by simply adjusting the amount of POM. Importantly, the superstructure features more exposed POM catalytic sites than conventional carbonaceous hybrids lacking surface architectures, resulting in excellent electrochemical performance in lithium-sulfur (Li-S) batteries. This high-temperature-mediated approach offers new insights for designing hierarchical superstructures and functional materials with enhanced activities.
Collapse
Affiliation(s)
- Xie Zhang
- Advanced Materials and Catalysis Group, ZJU-Zhejiang Xinhua Low-Carbon Research Center, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xucheng Lv
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiangbowen Du
- Advanced Materials and Catalysis Group, ZJU-Zhejiang Xinhua Low-Carbon Research Center, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Menghui Qi
- Advanced Materials and Catalysis Group, ZJU-Zhejiang Xinhua Low-Carbon Research Center, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shanjun Mao
- Advanced Materials and Catalysis Group, ZJU-Zhejiang Xinhua Low-Carbon Research Center, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yong Wang
- Advanced Materials and Catalysis Group, ZJU-Zhejiang Xinhua Low-Carbon Research Center, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
3
|
Zhan Y, Huang X, Liu M, Lin R, Yu H, Kou Y, Xing E, Elzatahry AA, Mady MF, Zhao D, Zhao T, Li X. Liquid-nano-liquid interface-oriented anisotropic encapsulation. Proc Natl Acad Sci U S A 2025; 122:e2417292121. [PMID: 39793061 PMCID: PMC11725832 DOI: 10.1073/pnas.2417292121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids. Specifically, functional nanoparticles such as magnetic nanoparticles, lanthanide fluorescent nanoparticles, and Au nanorods were anisotropically encapsulated by mesoporous polydopamine (mPDA). In this emulsion system, the wetting behavior of functional nanoparticles at the water/oil interface could be manipulated by the stabilizer of the emulsion (surfactant), leading to the anisotropic assembly of mPDA shell and resulting in various nanostructures, including core-shell, yolk-shell with small opening, ball-in-bowl, and multipetal structures. Due to their structural asymmetry, inherent magnetic properties, and photothermal properties, the ball-in-bowl structured Fe3O4@SiO2&mPDA nanohybrids, serving as proof of concept for nanomotors, demonstrated effective penetration of bacterial biofilm and promotion of infected wound healing. Overall, our approach offers a different perspective for designing morphologically controllable asymmetric structures based on liquid-nano-liquid interface in microemulsion systems that hold great potential for establishing innovative functional nanomaterials.
Collapse
Affiliation(s)
- Yating Zhan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Xirui Huang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Minchao Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Runfeng Lin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Hongyue Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Yufang Kou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Enyun Xing
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Ahmed A. Elzatahry
- William A. Brookshire Department of Chemical and Biomolecular Engineering, Cullen College of Engineering, University of Houston, Houston, TX77204
| | - Mohamed F. Mady
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha2713, Qatar
| | - Dongyuan Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Tiancong Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| | - Xiaomin Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200433, China
| |
Collapse
|
4
|
Zhang X, Lv X, Qian Z, Chen C, Mao S, Lu J, Wang Y. Template Evolution Induced Relay Self-Assembly for Mesoporous Carbonaceous Materials via Hydrothermal Carbonization. ACS NANO 2024; 18:17826-17836. [PMID: 38935973 DOI: 10.1021/acsnano.4c03744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Constructing carbonaceous materials with versatile surface structures still remains a great challenge due to limited self-assembly methods, especially at high temperatures. This study presents an innovative template evolution induced relay self-assembly (TEIRSA) for the fabrication of large polyoxometalate (POM)-mixed carbonaceous nanosheets featuring surface mesoporous structures through hydrothermal carbonization (HTC). The method employs POM and acetone as additives, cleverly modulating the Ostwald ripening-like process of P123-based micelles, effectively addressing the instability challenges inherent in traditional soft-template methods, especially within the demanding carbohydrate HTC process. Additionally, this method allows for the independent regulation of surface architectures through the selection of organic additives. The resulting nanosheets exhibit diverse surface morphologies, including surface spherical mesopores, 1D open channels, and smooth surfaces. Their unexpectedly versatile properties have swiftly garnered recognition, showing potential in the application of lithium-sulfur batteries.
Collapse
Affiliation(s)
- Xie Zhang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Xucheng Lv
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Zikai Qian
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chunhong Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Shanjun Mao
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
5
|
Zhong G, Chen G, Han J, Sun R, Zhao B, Xu H, Wang S, Yamauchi Y, Guan B. Anisotropic Interface Successive Assembly for Bowl-Shaped Metal-Organic Framework Nanoreactors with Precisely Controllable Meso-/Microporous Nanodomains. ACS NANO 2023; 17:25061-25069. [PMID: 38085532 DOI: 10.1021/acsnano.3c07635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Colloidal metal-organic framework (MOF) nanoparticles, with tailored asymmetric nanoarchitectures and hierarchical meso-/microporosities, have significant implications in high-performance nanocatalysts, nanoencapsulation carriers, and intricate assembly architectures. However, the methodology that could achieve precise control over the anisotropic growth of asymmetric MOF particles with tailored distributions of meso- and microporous regions has not yet been established. In this study, we introduce a facile anisotropic interface successive assembly approach to synthesize asymmetric core-shell MOF (ZIF-67) nanobowls with worm-like mesopores in the core and intrinsic micropores in the shell. Our synthesis pathway relies on anisotropic nucleation of mesoporous MOF nanohemispheres on emulsion interfaces through the cooperative assembly of surfactants and MOF precursors. This is followed by the growth of microporous MOF layers on both interfaces of mesoporous cores and emulsion droplets, resulting in a hierarchically porous core-shell nanostructure. By utilizing this multi-interface-driven approach, we enable the creation of diverse geometries and distributions of mesopores and micropores in asymmetric MOF nanoarchitectures. The obtained bowl-like meso-/microporous core-shell ZIF-67 particles exhibit enhanced catalytic activity for CO2 cycloaddition, attributed to reactant accumulation within the bowl-like architecture, active site accessibility in the open mesoporous core, and improved structural stability. Overall, our study provides insights and inspiration for exploring the intricate asymmetric nanostructures of hierarchically porous MOFs with diverse potential applications.
Collapse
Affiliation(s)
- Guiyuan Zhong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guangrui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ji Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ruigang Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bin Zhao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Haidong Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Buyuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|