1
|
Wang H, Wang H, Chen D, Tian X, Yang J, Liu W. Solvent Polarity-Induced Ultrahigh Strength Supramolecular Polyzwitterionic Organogels with Impact-Stiffening, Damping, and Anti-Freezing Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501737. [PMID: 40411837 DOI: 10.1002/smll.202501737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/12/2025] [Indexed: 05/26/2025]
Abstract
Widely used polyzwitterionic hydrogels usually suffer from significant mechanical loss, owing to the strong hydration of the zwitterionic groups. Herein, a novel solvent polarity-induced strategy is introduced for developing pure supramolecular polyzwitterionic organogels with ultrahigh strength by using a facile one-pot synthesis process. The mechanical properties of these polyzwitterionic organogels can be well-tuned by adjusting the polarity of dihydric alcohol solvents to regulate hydrogen bonding and dipole-dipole interactions between polymer chains in the organogel network. The polyzwitterionic organogels exhibit superior mechanical properties, including a tensile strength of 1.5 MPa, elongation at break of 669%, toughness of 3.2 MJ m- 3, and adhesive strength of 506 kPa. Additionally, the polyzwitterionic organogels display outstanding impact response performance (maximum strain-stiffening ratio of 140 times, and maximum impact-stiffening ratio of 450 times) and energy dissipation properties (energy dissipation ratio of above 60%, and maximum loss factor of 2.0 at 1 Hz), resulting from the presence of inter-molecular internal friction. Notably, the synergistic interactions between zwitterionic groups on polymer side chains and the organic solvents impart these organogels with mechanical flexibility and vibration absorption capabilities even in low-temperature environments. Furthermore, the polyzwitterionic organogels demonstrate flaw-insensitivity, self-healing ability, and water processability, broadening their applicability to more complex conditions.
Collapse
Affiliation(s)
- Haolun Wang
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Hongying Wang
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Danyang Chen
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xu Tian
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Jianhai Yang
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wenguang Liu
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
2
|
Li Y, Bai N, Chang Y, Liu Z, Liu J, Li X, Yang W, Niu H, Wang W, Wang L, Zhu W, Chen D, Pan T, Guo CF, Shen G. Flexible iontronic sensing. Chem Soc Rev 2025; 54:4651-4700. [PMID: 40165624 DOI: 10.1039/d4cs00870g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The emerging flexible iontronic sensing (FITS) technology has introduced a novel modality for tactile perception, mimicking the topological structure of human skin while providing a viable strategy for seamless integration with biological systems. With research progress, FITS has evolved from focusing on performance optimization and structural enhancement to a new phase of integration and intelligence, positioning it as a promising candidate for next-generation wearable devices. Therefore, a review from the perspective of technological development trends is essential to fully understand the current state and future potential of FITS devices. In this review, we examine the latest advancements in FITS. We begin by examining the sensing mechanisms of FITS, summarizing research progress in material selection, structural design, and the fabrication of active and electrode layers, while also analysing the challenges and bottlenecks faced by different segments in this field. Next, integrated systems based on FITS devices are reviewed, highlighting their applications in human-machine interaction, healthcare, and environmental monitoring. Additionally, the integration of artificial intelligence into FITS is explored, focusing on optimizing front-end device design and improving the processing and utilization of back-end data. Finally, building on existing research, future challenges for FITS devices are identified and potential solutions are proposed.
Collapse
Affiliation(s)
- Yang Li
- School of Integrated Circuits, Shandong University, Jinan, 250101, China
| | - Ningning Bai
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Yu Chang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China.
| | - Zhiguang Liu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jianwen Liu
- School of Integrated Circuits, Shandong University, Jinan, 250101, China
| | - Xiaoqin Li
- School of Integrated Circuits, Shandong University, Jinan, 250101, China
| | - Wenhao Yang
- School of Integrated Circuits, Shandong University, Jinan, 250101, China
| | - Hongsen Niu
- School of Information Science and Engineering, Shandong Provincial Key Laboratory of Ubiquitous Intelligent Computing, University of Jinan, Jinan, 250022, China
| | - Weidong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Liu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Wenhao Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Di Chen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Tingrui Pan
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China.
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
3
|
He X, Ma P, Ma S, Cao R, Li J, Lu Y, Liang Y, Tian X, Wang Z, Lu X. Super-stretchable, freezing-resistant and self-powered organohydrogels for extreme environment-adaptable high-performance strain sensors. NANOSCALE 2025; 17:11450-11460. [PMID: 40230277 DOI: 10.1039/d5nr00962f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The rapid development of wearable sensors has indeed driven the demand for multifunctional conductive soft materials to new heights. However, conventional flexible strain sensors find it difficult to adapt to complex environments due to their poor mechanical properties, susceptibility to freezing deactivation at low temperatures and insufficient long-term stability. In this study, acrylamide (AAm), [2-(methacryloyloxy)ethyl]dimethyl(3-sulfopropyl)ammonium hydroxide (DMAPS), and octadecyl acrylate (SA) were copolymerized in a glycerol/water system by one-step photopolymerization, and PEDOT : PSS was introduced to construct a super-stretching antifreeze amphiphilic ion hydrogel (HADP). Its synergistic network, comprising hydrogen bonding, electrostatic interactions, and high entanglement, endows it with exceptional properties: a tensile strength of 230 kPa, a strain at break of 5295%, a fracture toughness of 64 MJ m-3, and the ability to retain 3344.5% strain and 194.73 kPa strength even after 7 days of storage at -20 °C. Based on high sensitivity (GF = 4.55), a wide detection range (5-500% strain) and a fast response of 0.19 s, HADP can accurately monitor movements such as joint bending and swallowing and realize encrypted information transmission via Morse code. This study provides a paradigm of high-performance materials and multifunctional integrated design for wearable electronics in complex environments.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Penggai Ma
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Shuo Ma
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Runze Cao
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Jing Li
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yuanyuan Lu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yanling Liang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xin Tian
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Zhiqiang Wang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xiaoquan Lu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Wang Y, Huang Z, Li C, Dai O, Li M, Liu C, Hong W, Lei X, Wei H, Zhou T, Tong C, Qiu C, Pang J. Design and applications of antifreeze polysaccharide-based hydrogels for cryoprotection and biotechnological advancements: A review. Int J Biol Macromol 2025; 310:143317. [PMID: 40254201 DOI: 10.1016/j.ijbiomac.2025.143317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Polysaccharide-based hydrogels possess desirable characteristics such as flexibility, biocompatibility, and biodegradability. Nevertheless, these hydrogels frequently lose their inherent traits and functionality under low-temperature circumstances, which significantly restricts their potential applications in cold environments. Antifreeze hydrogels provide a promising solution to this challenge by maintaining their properties at cold temperatures, showcasing remarkable advantages. This review commences with a bibliometric analysis via VOS Viewer to acquire a comprehensive comprehension of the development tendencies in antifreeze hydrogels. It subsequently summarizes diverse antifreeze mechanisms in polysaccharide-based hydrogels, encompassing solute ion modification, organic alcohol modification, ion gels, eutectic gels, and intrinsic antifreeze properties through molecular chain polymerization. Additionally, the review explores the applications of antifreeze hydrogels in food preservation, flexible wearable devices, and energy storage. Finally, the future directions for the development of antifreeze polysaccharide-based hydrogels are deliberated, with an emphasis on the utilization of natural polysaccharide resources to create hydrogels that integrate antifreeze performance, mechanical properties, and stability, thereby facilitating advancements in related industries.
Collapse
Affiliation(s)
- Yueguang Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zifeng Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Charlie Li
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Oujun Dai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meining Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengchu Liu
- University of Maryland-UME Sea Grant Extension Program, College Park, MD 20742, USA
| | - Wanxin Hong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanyu Wei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Taoyi Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cailing Tong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Jiang H, Cheng Y, Zhang X, Li M, Wang Q, Yang L, Shuai C. Progress of Ionogels in Flexible Pressure Sensors: A Mini-Review. Polymers (Basel) 2025; 17:1093. [PMID: 40284358 PMCID: PMC12030016 DOI: 10.3390/polym17081093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
This paper reviews the research progress on ionogels in flexible pressure sensors. Ionogels comprise solid carrier networks and ionic liquids (ILs) dispersed therein and have good non-volatility, high conductivity, thermal stability, a wide electrochemical window, and mechanical properties. These characteristics give ionogels broad application prospects in wearable electronic devices, intelligent robots, and healthcare. The article first introduces the classification of ionogels, including the classification based on ILs and solid carrier networks. Then, the preparation methods and processing technologies of ionogels, such as the direct mixing method, in situ polymerization/gel method, and solvent exchange method, are discussed. Subsequently, the article expounds in detail on the properties and modification methods of ionogels, including toughness, conductivity, hydrophobicity, self-healing, and adhesiveness. Finally, the article focuses on the application of ionogels in flexible pressure sensors and points out the challenges faced in future research. The language of this mini-review is academic but not overly technical, making it accessible to even researchers new to the field and establishing an overall impression of research. We believe this mini-review serves as a solid introductory resource for a niche topic, with large and clear references for further research.
Collapse
Affiliation(s)
- Huaning Jiang
- Institute of Noise and Vibration, Naval University of Engineering, Wuhan 430030, China; (H.J.)
- No. 32281 Unit of PLA, Chengdu 610200, China
| | - Yuqiang Cheng
- Institute of Noise and Vibration, Naval University of Engineering, Wuhan 430030, China; (H.J.)
| | - Xingying Zhang
- Institute of Noise and Vibration, Naval University of Engineering, Wuhan 430030, China; (H.J.)
| | - Mengqing Li
- Institute of Noise and Vibration, Naval University of Engineering, Wuhan 430030, China; (H.J.)
| | - Qinqin Wang
- Institute of Noise and Vibration, Naval University of Engineering, Wuhan 430030, China; (H.J.)
| | - Liang Yang
- No. 91697 Unit of PLA, Qingdao 266000, China;
| | - Changgeng Shuai
- Institute of Noise and Vibration, Naval University of Engineering, Wuhan 430030, China; (H.J.)
| |
Collapse
|
6
|
Yin J, Jia P, Ren Z, Zhang Q, Lu W, Yao Q, Deng M, Zhou X, Gao Y, Liu N. Mechanically Enhanced, Environmentally Stable, and Bioinspired Charge-Gradient Hydrogel Membranes for Efficient Ion Gradient Power Generation and Linear Self-Powered Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417944. [PMID: 40200670 DOI: 10.1002/adma.202417944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/27/2025] [Indexed: 04/10/2025]
Abstract
The soft hydrogel power source is an interesting example of generating electricity from clean energy. However, ion-selective hydrogel membranes in the systems are often limited by low ion selectivity, high membrane resistance, insufficient mass transfer, and ion concentration polarization, resulting in a generally low power output. Inspired by the unique structure of the electric ray's electric organ, a vertically stacked hydrogel artificial electric organ is proposed, aiming to increase the output current to a greater extent. By constructing the charge gradient in ultrathin ion-selective hydrogel membranes, ion transport is accelerated while mitigating the ion concentration polarization. A single hydrogel artificial electric organ achieves high outputs of ≈290 mV and ≈1.46 mA cm-2 with rechargeability, surpassing similar devices. Density functional theory further reveals that the energy barrier of ion transport in charge-gradient membranes is lower than that in nongradient membranes. More impressively, the device can still be applied as a linear self-powered pressure sensor for monitoring human activities after the ion gradient is completely dissipated. This study elucidates the key role of the structure and design of ion-selective membranes in the artificial gel power generation system, providing new insights into the further development and multifunctional application of flexible gel power source.
Collapse
Affiliation(s)
- Jianyu Yin
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Peixue Jia
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Ziqi Ren
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Qixiang Zhang
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Wenzhong Lu
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Qianqian Yao
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Mingfang Deng
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Xubin Zhou
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Yihua Gao
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Nishuang Liu
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| |
Collapse
|
7
|
Wang H, Du J, Mao Y. Hydrogel-Based Continuum Soft Robots. Gels 2025; 11:254. [PMID: 40277689 PMCID: PMC12026835 DOI: 10.3390/gels11040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
This paper comprehensively reviews the latest advances in hydrogel-based continuum soft robots. Hydrogels exhibit exceptional flexibility and adaptability compared to traditional robots reliant on rigid structures, making them ideal as biomimetic robotic skins and platforms for constructing highly accurate, real-time responsive sensory interfaces. The article systematically summarizes recent research developments across several key dimensions, including application domains, fabrication methods, actuator technologies, and sensing mechanisms. From an application perspective, developments span healthcare, manufacturing, and agriculture. Regarding fabrication techniques, the paper extensively explores crosslinking methods, additive manufacturing, microfluidics, and other related processes. Additionally, the article categorizes and thoroughly discusses various hydrogel-based actuators responsive to solute/solvent variations, pH, chemical reactions, temperature, light, magnetic fields, electric fields, hydraulic/electro-osmotic stimuli, and humidity. It also details the strategies for designing and implementing diverse sensors, including strain, pressure, humidity, conductive, magnetic, thermal, gas, optical, and multimodal sensors. Finally, the paper offers an in-depth discussion of the prospective applications of hydrogel-based continuum soft robots, particularly emphasizing their potential in medical and industrial fields. Concluding remarks include a forward-looking outlook highlighting future challenges and promising research directions.
Collapse
Affiliation(s)
- Honghong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China
| | - Jingli Du
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China
| | - Yi Mao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
8
|
Deng Q, Wang Y. Cellulose/Sodium Polyacrylate Interpenetrating Network Hydrogel with Intrinsic Anti-Freezing Property. Polymers (Basel) 2025; 17:908. [PMID: 40219298 PMCID: PMC11991314 DOI: 10.3390/polym17070908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Generally, small molecule alcohols and concentrated electrolyte ions can be introduced into the medium of hydrogels as anti-freezing agents to achieve significant anti-freezing properties. However, due to the exchange effect with the external environment, the anti-freezing agents may leak or change in composition causing contamination and unstable material performance during use. Here, cellulose and sodium polyacrylate (PAAS) were used to construct interpenetrating network hydrogels, with cellulose comprising up to 63% of the system. Sodium ions and carboxylic acid groups ionized from the polyacrylate network restricting the formation of water clusters through strong hydration and significantly reduced the ice crystal formation temperature. The rigid cellulose networks provided mechanical strength for the hydrogels. The new interpenetrating network hydrogels exhibited a low anti-freezing temperature (lowest at -56.12 °C), a high water content (over 82.5 wt%), and considerable toughness (up to 2.53 MJ m-3). The intrinsic anti-freezing hydrogel constructed in this work provides a new reference strategy for expanding the practicability of anti-freezing hydrogels.
Collapse
Affiliation(s)
- Qianyun Deng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China;
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China;
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| |
Collapse
|
9
|
Hong S, Lee J, Park T, Jeong J, Lee J, Joo H, Mesa JC, Alston CB, Ji Y, Vega SR, Barinaga C, Yi J, Lee Y, Kim J, Won KJ, Solorio L, Kim YL, Lee H, Kim DR, Lee CH. Spider Silk-Inspired Conductive Hydrogels for Enhanced Toughness and Environmental Resilience via Dense Hierarchical Structuring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500397. [PMID: 39905746 PMCID: PMC11948067 DOI: 10.1002/advs.202500397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Indexed: 02/06/2025]
Abstract
Conductive hydrogels, known for their biocompatibility and responsiveness to external stimuli, hold promise for biomedical applications like wearable sensors, soft robotics, and implantable electronics. However, their broader use is often constrained by limited toughness and environmental resilience, particularly under mechanical stress or extreme conditions. Inspired by the hierarchical structures of natural materials like spider silk, a strategy is developed to enhance both toughness and environmental tolerance in conductive hydrogels. By leveraging multiscale dynamics including pores, crystallization, and intermolecular interactions, a dense hierarchical structure is created that significantly improves toughness, reaching ≈90 MJ m⁻3. This hydrogel withstands temperatures from -150 to 70 °C, pressure of 12 psi, and one-month storage under ambient conditions, while maintaining a lightweight profile of 0.25 g cm⁻3. Additionally, its tunable rheological properties allow for high-resolution printing of desired shapes down to 220 µm, capable of supporting loads exceeding 164 kg m⁻2. This study offers a versatile framework for designing durable materials for various applications.
Collapse
Affiliation(s)
- Seokkyoon Hong
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Jiwon Lee
- School of Mechanical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Taewoong Park
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Jinheon Jeong
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Junsang Lee
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Hyeonseo Joo
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- School of Mechanical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Juan C. Mesa
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Center for Implantable DevicesPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
| | | | - Yuhyun Ji
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Sergio Ruiz Vega
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Center for Implantable DevicesPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
| | - Cristian Barinaga
- Center for Implantable DevicesPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
- Elmore Family School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Jonghun Yi
- School of Mechanical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Youngjun Lee
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Jun Kim
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Kate J. Won
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Luis Solorio
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Young L. Kim
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Hyowon Lee
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Center for Implantable DevicesPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
| | - Dong Rip Kim
- School of Mechanical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Chi Hwan Lee
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Center for Implantable DevicesPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
- Elmore Family School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteIN47907USA
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIN47907USA
- School of Materials EngineeringPurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
10
|
Zhuo F, Ding Z, Yang X, Chu F, Liu Y, Gao Z, Jin H, Dong S, Wang X, Luo J. Advanced Morphological and Material Engineering for High-Performance Interfacial Iontronic Pressure Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413141. [PMID: 39840613 PMCID: PMC11848549 DOI: 10.1002/advs.202413141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/12/2024] [Indexed: 01/23/2025]
Abstract
High-performance flexible pressure sensors are crucial for applications such as wearable electronics, interactive systems, and healthcare technologies. Among these, iontronic pressure sensors have garnered particular attention due to their superior sensitivity, enabled by the giant capacitance variation of the electric double layer (EDL) at the ionic-electronic interface under deformation. Key advancements, such as incorporating microstructures into ionic layers and employing diverse materials, have significantly improved sensor properties like sensitivity, accuracy, stability, and response time. This review highlights advancements in flexible EDL pressure sensors, focusing on structural designs and material engineering. These strategies are tailored to optimize key metrics such as sensitivity, detection limit, linearity, stability, response speed, hysteresis, transparency, wearability, selectivity, and multifunctionality. Key fabrication techniques, including micropatterning and externally assisted methods, are reviewed, along with strategies for sensor comparison and guidelines for selecting appropriate sensors. Emerging applications in healthcare, environmental and aerodynamic sensing, human-machine interaction, robotics, and machine learning-assisted intelligent sensing are explored. Finally, this review discusses the challenges and future directions for advancing EDL-based pressure sensors.
Collapse
Affiliation(s)
- Fengling Zhuo
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
- International Joint Innovation CenterZhejiang UniversityHaining314400China
| | - Zhi Ding
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
| | - Xi Yang
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
- International Joint Innovation CenterZhejiang UniversityHaining314400China
| | - Fengjian Chu
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
| | - Yulu Liu
- Research Institute of Medical and Biological EngineeringNingbo UniversityNingbo315211China
| | - Zhuoqing Gao
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
- International Joint Innovation CenterZhejiang UniversityHaining314400China
| | - Hao Jin
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
- International Joint Innovation CenterZhejiang UniversityHaining314400China
| | - Shurong Dong
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
- International Joint Innovation CenterZhejiang UniversityHaining314400China
| | - Xiaozhi Wang
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
- International Joint Innovation CenterZhejiang UniversityHaining314400China
| | - Jikui Luo
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
- International Joint Innovation CenterZhejiang UniversityHaining314400China
| |
Collapse
|
11
|
Yang J, Yan Y, Huang L, Ma M, Li M, Peng F, Huan W, Bian J. Conductive Eutectogels Fabricated by Dialdehyde Xylan/Liquid Metal-Initiated Rapid Polymerization for Multi-Response Sensors and Self-Powered Applications. ACS NANO 2025; 19:2171-2184. [PMID: 39791699 DOI: 10.1021/acsnano.4c11127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Conductive eutectogels have emerged as candidates for constructing functional flexible electronics as they are free from the constraints posed by inherent defects associated with solvents and feeble network structures. Nevertheless, developing a facile, environmentally friendly, and rapid polymerization strategy for the construction of conductive eutectogels with integrated multifunctionality is still immensely challenging. Herein, a conductive eutectogel is fabricated through a one-step dialdehyde xylan (DAX)/liquid metal (LM)-initiated polymerization of a deep eutectic solvent. DAX acts as a stabilizer for the preparation of LM nanodroplets and plays a crucial role in facilitating ultrafast gelation (less than 2 min) by virtue of its reducing dialdehyde groups. Notably, this fabrication strategy obviates the use of toxic chemical initiators and cross-linkers. The resultant eutectogels exhibit extremely high stretchability (2860%), desirable self-healing ability, high conductivity (0.72 S m-1), biocompatibility, excellent environmental stability, and exceptional responsiveness to tensile strain (GF = 4.08) and temperature (TCR = 5.35% K-1). Benefiting from these integrated features, the conductive eutectogels serve as multifunctional flexible sensors for human motion recognition and temperature monitoring. Furthermore, the eutectogel serves as a pliable electrode in the assembly of a triboelectric nanogenerator (TENG), designed to harvest mechanical energy, convert it into stable electrical outputs, and enable self-powered sensing. This study offers an approach to fabricating multifunctional integrated conductive eutectogels, making it a step closer to the development of intelligent flexible electronics.
Collapse
Affiliation(s)
- Jiyou Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yin Yan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Lingzhi Huang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Mingguo Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Mingfei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
12
|
Cui L, Hu C, Wang W, Zheng J, Zhu Z, Liu B. An adhesive, stretchable, and freeze-resistant conductive hydrogel strain sensor for handwriting recognition and depth motion monitoring. J Colloid Interface Sci 2025; 677:273-281. [PMID: 39094488 DOI: 10.1016/j.jcis.2024.07.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Wearable electronics based on conductive hydrogels (CHs) offer remarkable flexibility, conductivity, and versatility. However, the flexibility, adhesiveness, and conductivity of traditional CHs deteriorate when they freeze, thereby limiting their utility in challenging environments. In this work, we introduce a PHEA-NaSS/G hydrogel that can be conveniently fabricated into a freeze-resistant conductive hydrogel by weakening the hydrogen bonds between water molecules. This is achieved through the synergistic interaction between the charged polar end group (-SO3-) and the glycerol-water binary solvent system. The conductive hydrogel is simultaneously endowed with tunable mechanical properties and conductive pathways by the modulation caused by varying material compositions. Due to the uniform interconnectivity of the network structure resulting from strong intermolecular interactions and the enhancement effect of charged polar end-groups, the resulting hydrogel exhibits 174 kPa tensile strength, 2105 % tensile strain, and excellent sensing ability (GF = 2.86, response time: 121 ms), and the sensor is well suited for repeatable and stable monitoring of human motion. Additionally, using the Full Convolutional Network (FCN) algorithm, the sensor can be used to recognize English letter handwriting with an accuracy of 96.4 %. This hydrogel strain sensor provides a simple method for creating multi-functional electronic devices, with significant potential in the fields of multifunctional electronics such as soft robotics, health monitoring, and human-computer interaction.
Collapse
Affiliation(s)
- Liangliang Cui
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China; Department of Textile & Garment Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Jian Zheng
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhijia Zhu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China.
| | - Baojiang Liu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
13
|
Xu R, Xu T, She M, Ji X, Li G, Zhang S, Zhang X, Liu H, Sun B, Shen G, Tian M. Skin-Friendly Large Matrix Iontronic Sensing Meta-Fabric for Spasticity Visualization and Rehabilitation Training via Piezo-Ionic Dynamics. NANO-MICRO LETTERS 2024; 17:90. [PMID: 39694974 DOI: 10.1007/s40820-024-01566-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 12/20/2024]
Abstract
Rehabilitation training is believed to be an effectual strategy that can reduce the risk of dysfunction caused by spasticity. However, achieving visualization rehabilitation training for patients remains clinically challenging. Herein, we propose visual rehabilitation training system including iontronic meta-fabrics with skin-friendly and large matrix features, as well as high-resolution image modules for distribution of human muscle tension. Attributed to the dynamic connection and dissociation of the meta-fabric, the fabric exhibits outstanding tactile sensing properties, such as wide tactile sensing range (0 ~ 300 kPa) and high-resolution tactile perception (50 Pa or 0.058%). Meanwhile, thanks to the differential capillary effect, the meta-fabric exhibits a "hitting three birds with one stone" property (dryness wearing experience, long working time and cooling sensing). Based on this, the fabrics can be integrated with garments and advanced data analysis systems to manufacture a series of large matrix structure (40 × 40, 1600 sensing units) training devices. Significantly, the tunability of piezo-ionic dynamics of the meta-fabric and the programmability of high-resolution imaging modules allow this visualization training strategy extendable to various common disease monitoring. Therefore, we believe that our study overcomes the constraint of standard spasticity rehabilitation training devices in terms of visual display and paves the way for future smart healthcare.
Collapse
Affiliation(s)
- Ruidong Xu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Tong Xu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Minghua She
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xinran Ji
- Academy of Arts & Design of Qingdao University, Qingdao, 266071, People's Republic of China
| | - Ganghua Li
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Shijin Zhang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xinwei Zhang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Liu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Bin Sun
- College of Electronics and Information, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
14
|
Zheng Y, Cui T, Wang J, Hu Y, Gui Z. Engineering robust and transparent dual-crosslinked hydrogels for multimodal sensing without conductive additives. J Colloid Interface Sci 2024; 675:14-23. [PMID: 38964121 DOI: 10.1016/j.jcis.2024.06.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Conductive hydrogels are pivotal for the advancement of flexible sensors, electronic skin, and healthcare monitoring systems, facilitating transformative innovations. However, issues such as inadequate intrinsic compatibility, mismatched mechanical properties, and limited stability curtail their potential, resulting in compromised device efficacy and performance degradation. In this research, we engineered functional hydrogels featuring a dual-crosslinked network composed of (PA/PVA)-P(AM-AA) to address these challenges. This design eliminates the need for conductive additives, thereby enhancing intrinsic compatibility. Notably, the hydrogels exhibit exceptional mechanical properties, with high tensile strength (∼700 %), Young's modulus (∼5.33 MPa), increased strength (∼2.46 MPa) and toughness (∼6.59 MJ m-3). They also achieve a compressive strength of ∼7.33 MPa at 80 % maximal compressive strain and maintain about 89 % transparency. Moreover, flexible sensors derived from these hydrogels demonstrate enhanced multimodal sensing capabilities, including temperature, strain, and pressure detection, enabling precise monitoring of human movements. The integration of multiple hydrogels into a three-dimensional sensor array facilitates detailed spatial pressure distribution mapping. By strategically applying dual-crosslinked network engineering and eliminating conductive additives, we have streamlined the design and manufacturing of hydrogels to meet the rising demand for high-performance wearable sensors.
Collapse
Affiliation(s)
- Yapeng Zheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China
| | - Tianyang Cui
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China
| | - Jingwen Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China.
| | - Zhou Gui
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
15
|
Lv Y, Li C, Yang Z, Gan M, Wang Y, Lu M, Zhang X, Min L. Monomer Trapping Synthesis Toward Dynamic Nanoconfinement Self-healing Eutectogels for Strain Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410446. [PMID: 39279471 PMCID: PMC11558160 DOI: 10.1002/advs.202410446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Indexed: 09/18/2024]
Abstract
The rapid advancement in attractive platforms such as biomedicine and human-machine interaction has generated urgent demands for intelligent materials with high strength, flexibility, and self-healing capabilities. However, existing self-healing ability materials are challenged by a trade-off between high strength, low elastic modulus, and healing ability due to the inherent low strength of noncovalent bonding. Here, drawing inspiration from human fibroblasts, a monomer trapping synthesis strategy is presented based on the dissociation and reconfiguration in amphiphilic ionic restrictors (7000-times volume monomer trapping) to develop a eutectogel. Benefiting from the nanoconfinement and dynamic interfacial interactions, the molecular chain backbone of the formed confined domains is mechanically reinforced while preserving soft movement capabilities. The resulting eutectogels demonstrate superior mechanical properties (1799% and 2753% higher tensile strength and toughness than pure polymerized deep eutectic solvent), excellent self-healing efficiency (>90%), low tangential modulus (0.367 MPa during the working stage), and the ability to sensitively monitor human activities. This strategy is poised to offer a new perspective for developing high strength, low modulus, and self-healing wearable electronics tailored to human body motion.
Collapse
Affiliation(s)
- Yuesong Lv
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Changchun Li
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Zhangqin Yang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Mingxi Gan
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Yuyan Wang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Minxun Lu
- Orthopedic Research InstituteDepartment of OrthopedicsWest China Hospital of Sichuan UniversityChengdu610065China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan provinceWest China HospitalSichuan Universitychengdu610065China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Li Min
- Orthopedic Research InstituteDepartment of OrthopedicsWest China Hospital of Sichuan UniversityChengdu610065China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan provinceWest China HospitalSichuan Universitychengdu610065China
| |
Collapse
|
16
|
Chen G, Zhang Y, Li S, Zheng J, Yang H, Ren J, Zhu C, Zhou Y, Chen Y, Fu J. Flexible Artificial Tactility with Excellent Robustness and Temperature Tolerance Based on Organohydrogel Sensor Array for Robot Motion Detection and Object Shape Recognition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408193. [PMID: 39255513 DOI: 10.1002/adma.202408193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Indexed: 09/12/2024]
Abstract
Hydrogel-based flexible artificial tactility is equipped to intelligent robots to mimic human mechanosensory perception. However, it remains a great challenge for hydrogel sensors to maintain flexibility and sensory performances during cyclic loadings at high or low temperatures due to water loss or freezing. Here, a flexible robot tactility is developed with high robustness based on organohydrogel sensor arrays with negligent hysteresis and temperature tolerance. Conductive polyaniline chains are interpenetrated through a poly(acrylamide-co-acrylic acid) network with glycerin/water mixture with interchain electrostatic interactions and hydrogen bonds, yielding a high dissipated energy of 1.58 MJ m-3, and ultralow hysteresis during 1000 cyclic loadings. Moreover, the binary solvent provides the gels with outstanding tolerance from -100 to 60 °C and the organohydrogel sensors remain flexible, fatigue resistant, conductive (0.27 S m-1), highly strain sensitive (GF of 3.88) and pressure sensitive (35.8 MPa-1). The organohydrogel sensor arrays are equipped on manipulator finger dorsa and pads to simultaneously monitor the finger motions and detect the pressure distribution exerted by grasped objects. A machine learning model is used to train the system to recognize the shape of grasped objects with 100% accuracy. The flexible robot tactility based on organohydrogels is promising for novel intelligent robots.
Collapse
Affiliation(s)
- Guoqi Chen
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yunting Zhang
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shengnan Li
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jingxia Zheng
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hailong Yang
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiayuan Ren
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chanjie Zhu
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yecheng Zhou
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yongming Chen
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jun Fu
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
17
|
Varanges V, Rana VK, Phillippe V, Bourban PE, Pioletti DP. Development and Performance Evaluation of Hybrid Iono-organogels for Efficient Impact Mitigation. ACS APPLIED ENGINEERING MATERIALS 2024; 2:2369-2378. [PMID: 39479566 PMCID: PMC11519838 DOI: 10.1021/acsaenm.4c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/02/2024]
Abstract
Dissipative materials are essential for mitigating impact in various automotive, aerospace, and sports equipment applications. This study investigates the efficiency of a novel hybrid iono-organogel in dissipating and absorbing impact energies. The gel consists of a covalently cross-linked poly(acrylic acid)-co-poly(zwitterionic (DMAPS)) in a hybrid solvent system composed of the ionic liquid [C2OHMIM][BF4] and the oligomer PEG200. The optimal solvent hybridization ratio for achieving the lowest deceleration during impact testing is 40 vol % of the ionic liquid and 60 vol % of PEG200. The gel exhibits efficient mechanical dissipative properties with a loss factor exceeding 0.5 when solicited under various dynamic conditions with this optimized ratio. Moreover, the gel demonstrates high strength and toughness, enabling it to withstand impacts without experiencing catastrophic failure. The developed gel presents stable mechanical properties over broad temperature (0-100 °C) and frequency (0.01-2000 Hz) ranges. It maintains its performance during successive impacts, thanks to its self-recovery abilities. The remarkable mechanical properties of the gel are attributed to the abundance of combined functional groups within the gel polymeric network. Indeed, reversible H-bonds, ion-dipole, and dipole-dipole interactions were observed in different studies to enhance mechanical performance. Their unique synergy effect in the developed hybrid gels held promise for better control of impact properties and durability in numerous dynamic applications.
Collapse
Affiliation(s)
- Vincent Varanges
- Laboratory
of Biomechanical Orthopedics, Ecole Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
- Laboratory
for Processing of Advanced Composites, Ecole
Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Vijay Kumar Rana
- Laboratory
of Biomechanical Orthopedics, Ecole Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Valentin Phillippe
- Laboratory
for Processing of Advanced Composites, Ecole
Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Pierre-Etienne Bourban
- Laboratory
for Processing of Advanced Composites, Ecole
Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Dominique P. Pioletti
- Laboratory
of Biomechanical Orthopedics, Ecole Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
18
|
Wang XX, Wang CY, Yin M, Chen KZ, Qiao SL. Tannic Acid-Enabled Antioxidant and Stretchable MXene/Silk Strain Sensors for Diving Training Healthcare. ACS Sens 2024; 9:5156-5166. [PMID: 39316657 DOI: 10.1021/acssensors.4c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
MXene-based conductive hydrogels hold significant promise as epidermal sensors, yet their susceptibility to oxidation represents a formidable limitation. This study addresses this challenge by incorporating MXene into a tannic acid (TA) cross-linked silk fibroin matrix. The resulting conductive hydrogel (denoted as e-dive) exhibits favorable characteristics such as adjustable mechanical properties, self-healing capabilities (both mechanically and electrically), and strong underwater adhesion. The existence of a percolation network of MXene within the nanocomposites guarantees good electrical conductivity. Importantly, the surface interaction of MXene nanosheets with the hydrophobic moiety from TA substantially reduced moisture and oxygen interactions with MXene, thereby effectively mitigating MXene oxidation within hydrogel matrices. This preservation of the electrical characteristics ensures prolonged functional stability. Furthermore, the e-dive demonstrates inherent antibacterial properties, making it suitable for use in underwater environments where bacterial contamination is a concern. The utilization of this advanced e-dive system extends to the correction of diving postures and the facilitation of underwater healthcare and security alerts. Our study presents a robust methodology for enhancing the stability of MXene-based conductive hydrogel electronics, thereby expanding their scope of potential applications.
Collapse
Affiliation(s)
- Xiao-Xue Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| | - Chen-Yu Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| | - Meng Yin
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| |
Collapse
|
19
|
Cui L, Wang W, Zheng J, Hu C, Zhu Z, Liu B. Wide-humidity, anti-freezing and stretchable multifunctional conductive carboxymethyl cellulose-based hydrogels for flexible wearable strain sensors and arrays. Carbohydr Polym 2024; 342:122406. [PMID: 39048200 DOI: 10.1016/j.carbpol.2024.122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Hydrogels play an important role in the design and fabrication of wearable sensors with outstanding flexibility, high sensitivity and versatility. Since hydrogels lose and absorb water during changes in humidity and temperature, it is critical and challenging to obtain hydrogels that function properly under different environmental conditions. Herein, a dual network hydrogel based on tannic acid (TA) reinforced polyacrylamide (PAM) and sodium carboxymethylcellulose (CMC) was constructed, while the introduction of the green solvents Solketal and LiCl endowed the hydrogel with greater possibilities for further modification to improve the water content and consistency of the mechanical properties over 30-90 % RH. This composite hydrogel (PTSL) has long-term stability, excellent mechanical strength, and freezing resistance. As strain sensors, they are linear over the entire strain range (R2 = 0.994) and have a high sensitivity (GF = 2.52 over 0-680 % strain range). Furthermore, the hydrogel's exceptional electrical conductivity and freezing resistance are a result of the synergistic effect of Solketal and LiCl, which intensifies the contact between the water molecules and the colloidal phase. This research could address the suitability of hydrogels over a wide range of humidity and temperature, suggesting great applications for smart flexible wearable electronics in harsh environmental conditions.
Collapse
Affiliation(s)
- Liangliang Cui
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Department of Textile &Garment Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Jian Zheng
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhijia Zhu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| | - Baojiang Liu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
20
|
Huang Z, Xie J, Li T, Xu L, Liu P, Peng J. Highly Transparent, Mechanically Robust, and Conductive Eutectogel Based on Oligoethylene Glycol and Deep Eutectic Solvent for Reliable Human Motions Sensing. Polymers (Basel) 2024; 16:2761. [PMID: 39408471 PMCID: PMC11478370 DOI: 10.3390/polym16192761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Recently, eutectogels have emerged as ideal candidates for flexible wearable strain sensors. However, the development of eutectogels with robust mechanical strength, high stretchability, excellent transparency, and desirable conductivity remains a challenge. Herein, a covalently cross-linked eutectogel was prepared by exploiting the high solubility of oligoethylene glycol in a polymerizable deep eutectic solvent (DES) form of acrylic acid (AA) and choline chloride (ChCl). The resulting eutectogel exhibited high transparency (90%), robust mechanical strength (up to 1.5 MPa), high stretchability (up to 962%), and desirable ionic conductivity (up to 1.22 mS cm-1). The resistive strain sensor fabricated from the eutectogel exhibits desirable linear sensitivity (GF: 1.66), wide response range (1-200%), and reliable stability (over 1000 cycles), enabling accurate monitoring of human motions (fingers, wrists, and footsteps). We believe that our DES-based eutectogel has great potential for applications in wearable strain sensors with high sensitivity and reliability.
Collapse
Affiliation(s)
- Zhenkai Huang
- School of Materials and Energy, Foshan University, Foshan 528000, China; (Z.H.)
| | - Jiahuan Xie
- School of Materials and Energy, Foshan University, Foshan 528000, China; (Z.H.)
| | - Tonggen Li
- School of Materials and Energy, Foshan University, Foshan 528000, China; (Z.H.)
| | - Liguo Xu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China;
| | - Peijiang Liu
- Reliability Physics and Application Technology of Electronic Component Key Laboratory, The 5th Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, China
| | - Jianping Peng
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| |
Collapse
|
21
|
Chen Y, Chen Y, Gao R, Yu X, Lu C. Reversible Molecule Interactions Enable Ultrastretchable and Recyclable Ionogels for Wearable Piezoionic Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50027-50035. [PMID: 39270305 DOI: 10.1021/acsami.4c11268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Ionogel-based piezoionic sensors feel motions and strains like human skin relying on reversible ion migrations under external mechanical stimulus and are of great importance to artificial intelligence. However, conventional ion-conductive polymers behave with degraded electrical and mechanical properties after thousands of strain cycles, and the discarded materials and devices become electronic wastes as well. Here, we develop ultrastretchable ionogels with superior electrical properties via the mediation of metal-organic frameworks, whose properties are attributed to reversible molecule interactions inside the material system. Ionogels present excellent mechanical properties with breaking elongation as high as 850%, exceeding most previously reported similar materials, and the high conductivity enables further application in sensor devices. In addition, our ionogels display superior recyclability because of the reversible physical and chemical interactions inside material molecules, which are eco-friendly to the environment. As a result, the ionogel-based piezoionic sensors deliver high sensitivity, flexibility, cyclic stability, and signal reliability, which are of great significance to wearable applications in human-motion detections such as throat vibration, facial expression, joint mobility, and finger movement. Our study paves the way for ultrastretchable and eco-friendly ionogel design for flexible electrochemical devices.
Collapse
Affiliation(s)
- Yunxuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanyu Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Rizhong Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinpeng Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
22
|
Yang J, Yuan G, Shen Y, Guo C, Li Z, Yan F, Chen X, Mei L, Wang T. Pushing Pressure Detection Sensitivity to New Limits by Modulus-Tunable Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403779. [PMID: 38978349 PMCID: PMC11425887 DOI: 10.1002/advs.202403779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/15/2024] [Indexed: 07/10/2024]
Abstract
Only microstructures are used to improve the sensitivity of iontronic pressure sensors. By modulating the compressive modulus, a breakthrough in the sensitivity of the iontronic pressure sensor is achieved. Furthermore, it allows for programmatic tailoring of sensor performance according to the requirements of different applications. Such a new strategy pushes the sensitivity up to a record-high of 25 548.24 kPa-1 and expands the linear pressure range from 15 to 127 kPa. Additionally, the sensor demonstrates excellent mechanical stability over 10 000 compression-release cycles. Based on this, a well-controlled robotic hand that precisely tracks the pressure behavior inside a balloon to autonomously regulate the gripping angle is developed. This paves the way for the application of iontronic pressure sensors in precise sensing scenarios.
Collapse
Affiliation(s)
- Jing Yang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Guojiang Yuan
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yong Shen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Caili Guo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhibin Li
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Fengling Yan
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Xiaolong Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Lin Mei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Taihong Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
23
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
24
|
Zhang H, Yan Z, Zhang T, Wang J, Wang X, Chen Y, Zhu S, Li Z, Chen Y, Hong W, Zhao Y, Chen S, Hong Q, Xu Y, Guo X. Bioinspired High-Linearity, Wide-Sensing-Range Flexible Stretchable Bioelectronics Based on MWCNTs/GR/Nd 2Fe 14B/PDMS Nanocomposites for Human-Computer Interaction and Biomechanics Detection. ACS Sens 2024; 9:3947-3957. [PMID: 39046188 DOI: 10.1021/acssensors.4c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
In recent years, flexible and stretchable strain sensors have emerged as a prominent area of research, primarily due to their remarkable stretchability and extremely low strain detection threshold. Nevertheless, the advancement of sensors is currently constrained by issues such as complexity, high costs, and limited durability. To tackle the aforementioned issues, this study introduces a lepidophyte-inspired flexible, stretchable strain sensor (LIFSSS). The stretchable bioelectronics composites were composed of multiwalled carbon nanotubes, graphene, neodymium iron boron, and polydimethylsiloxane. Unique biolepidophyted microstructures and magnetic conductive nanocomposites interact with each other through synergistic interactions, resulting in the effective detection of tensile strain and magnetic excitation. The LIFSSS exhibits a 170% tensile range, a linearity of 0.99 in 50-170% strain (0.96 for full-scale range), and a fine durability of 7000 cycles at 110% tensile range. The sensor accurately detects variations in linear tensile force, human movement, and microexpressions. Moreover, LIFSSS demonstrates enhanced efficacy in sign language recognition for individuals with hearing impairments and magnetic grasping for robotic manipulators. Hence, the LIFSSS proposed in this study shows potential applications in various fields, including bioelectronics, electronic skin, and physiological activity monitoring.
Collapse
Affiliation(s)
- Huishan Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education, College of Electronic and Information Engineering, Anhui University, Hefei 230601, China
| | - Zihao Yan
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Tianxu Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Junyi Wang
- School of Wendian, Anhui University, Hefei 230601, China
| | - Xinchen Wang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Yifei Chen
- School of Artificial Intelligence, Anhui University, Hefei 230601, China
| | - Shengxin Zhu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Zhaobin Li
- Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education, College of Electronic and Information Engineering, Anhui University, Hefei 230601, China
| | - Yinuo Chen
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Weiqiang Hong
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
| | - Yunong Zhao
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Shitao Chen
- Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education, College of Electronic and Information Engineering, Anhui University, Hefei 230601, China
| | - Qi Hong
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Yaohua Xu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Xiaohui Guo
- Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education, College of Electronic and Information Engineering, Anhui University, Hefei 230601, China
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| |
Collapse
|
25
|
Zhang J, Li H, Zhou X, Hu Q, Chen J, Tang L, Yang X, Gao J, Liu B, Zhang Y, Zhao G, Dong S, Zhang S. Adhesive Zwitterionic Poly(ionic liquid) with Unprecedented Organic Solvent Resistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403039. [PMID: 38805574 DOI: 10.1002/adma.202403039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The resistance of adhesives to organic solvents is of paramount importance in diverse industries. Unfortunately, many currently available adhesives exhibit either weak intermolecular chain interactions, resulting in insufficient resistance to organic solvents, or possess a permanent covalent crosslinked network, impeding recyclability. This study introduces an innovative approach to address this challenge by formulating zwitterionic poly(ionic liquid) (ZPIL) derivatives with robust dipole-dipole interactions, incorporating sulfonic anions and imidazolium cations. Due to its unique dynamic and electrostatic self-crosslinking structure, the ZPIL exhibits significant adhesion to various substrates and demonstrates excellent recyclability even after multiple adhesion tests. Significantly, ZPIL exhibits exceptional adhesion stability across diverse nonpolar and polar organic solvents, including ionic liquids, distinguishing itself from nonionic polymers and conventional poly(ionic liquid)s. Its adhesive performance remains minimally affected even after prolonged exposure to soaking conditions. The study presents a promising solution for the design of highly organic solvent-resistant materials for plastics, coatings, and adhesives.
Collapse
Affiliation(s)
- Jun Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Hui Li
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Xuan Zhou
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Qinyu Hu
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Jiayin Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Liang Tang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Xiaoqing Yang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Jie Gao
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Bei Liu
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Yan Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Gai Zhao
- State Key Laboratory of Mechanics and Control of Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| |
Collapse
|
26
|
Wang W, Zhou H, Xu Z, Li Z, Zhang L, Wan P. Flexible Conformally Bioadhesive MXene Hydrogel Electronics for Machine Learning-Facilitated Human-Interactive Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401035. [PMID: 38552161 DOI: 10.1002/adma.202401035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/19/2024] [Indexed: 05/01/2024]
Abstract
Wearable epidermic electronics assembled from conductive hydrogels are attracting various research attention for their seamless integration with human body for conformally real-time health monitoring, clinical diagnostics and medical treatment, and human-interactive sensing. Nevertheless, it remains a tremendous challenge to simultaneously achieve conformally bioadhesive epidermic electronics with remarkable self-adhesiveness, reliable ultraviolet (UV) protection ability, and admirable sensing performance for high-fidelity epidermal electrophysiological signals monitoring, along with timely photothermal therapeutic performances after medical diagnostic sensing, as well as efficient antibacterial activity and reliable hemostatic effect for potential medical therapy. Herein, a conformally bioadhesive hydrogel-based epidermic sensor, featuring superior self-adhesiveness and excellent UV-protection performance, is developed by dexterously assembling conducting MXene nanosheets network with biological hydrogel polymer network for conformally stably attaching onto human skin for high-quality recording of various epidermal electrophysiological signals with high signal-to-noise ratios (SNR) and low interfacial impedance for intelligent medical diagnosis and smart human-machine interface. Moreover, a smart sign language gesture recognition platform based on collected electromyogram (EMG) signals is designed for hassle-free communication with hearing-impaired people with the help of advanced machine learning algorithms. Meanwhile, the bioadhesive MXene hydrogel possesses reliable antibacterial capability, excellent biocompatibility, and effective hemostasis properties for promising bacterial-infected wound bleeding.
Collapse
Affiliation(s)
- Wei Wang
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hailiang Zhou
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhishan Xu
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zehui Li
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liqun Zhang
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengbo Wan
- College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
27
|
Liu K, Zhao Z, Zheng S, Liu A, Wang Y, Chen L, Miao Q. High Ion-Conducting PVA Nanocomposite Hydrogel-Based Wearable Piezoelectric and Triboelectric Sensors for Harsh Environments. Biomacromolecules 2024; 25:4384-4393. [PMID: 38822786 DOI: 10.1021/acs.biomac.4c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Traditional hydrogel-based wearable sensors with flexibility, biocompatibility, and mechanical compliance exhibit potential applications in flexible wearable electronics. However, the low sensitivity and poor environmental resistance of traditional hydrogels severely limit their practical application. Herein, high-ion-conducting poly(vinyl alcohol) (PVA) nanocomposite hydrogels were fabricated and applied for harsh environments. MXene ion-conducting microchannels and poly(sodium 4-styrenesulfonate) ion sources contributed to the directional transport of abundant free ions in the hydrogel, which significantly improved the sensitivity and mechanical-electric conversion of the nanocomposite hydrogel-based piezoelectric and triboelectric sensors. More importantly, the glycerol as an antifreezing agent enabled the hydrogel-based sensors to function in harsh environments. Therefore, the nanocomposite hydrogel exhibited high gauge factor (GF) at -20 °C (GF = 3.37) and 60 °C (GF = 3.62), enabling the hydrogel-based sensor to distinguish different writing letters and sounding words. Meanwhile, the hydrogel-based piezoelectric and triboelectric generators showed excellent mechanical-electric conversion performance regardless of low- (-20 °C) or high- (60 °C) temperature environments, which can be applied as a visual feedback system for information transmission without external power sources. This work provides self-powered nanocomposite hydrogel-based sensors that exhibit potential applications in flexible wearable electronics under harsh environmental conditions.
Collapse
Affiliation(s)
- Kai Liu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, P. R. China
| | - Zhipeng Zhao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, P. R. China
| | - Siyu Zheng
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, P. R. China
| | - Afei Liu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, P. R. China
| | - Yingyue Wang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, P. R. China
| | - Lihui Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, P. R. China
| | - Qingxian Miao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
28
|
Gong M, Wang X, Wu Z, Yue L, Chen Q, Li H, Lin X, Zhang L, Wang D. Nature-Inspired Molecular-Crowding Enabling Wide-Humidity Range Applicable, Anti-Freezing, and Robust Zwitterionic Hydrogels for On-Skin Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400161. [PMID: 38431936 DOI: 10.1002/smll.202400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Hydrogels are currently in the limelight for applications in soft electronics but they suffer from the tendency to lose water or freeze when exposed to dry environments or low temperatures. Molecular crowding is a prevalent occurrence in living cells, in which molecular crowding agents modify the hydrogen bonding structure, causing a significant reduction in water activity. Here, a wide-humidity range applicable, anti-freezing, and robust hydrogel is developed through the incorporation of natural amino acid proline (Pro) and conductive MXene into polyvinyl alcohol (PVA) hydrogel networks. Theoretical calculations reveal that Pro can transform "free water" into "locked water" via the molecular-crowding effect, thereby suppressing water evaporation and ice forming. Accordingly, the prepared hydrogel exhibits high water retention capability, with 77% and 55% being preserved after exposure to 20 °C, 28% relative humidity (RH) and 35 °C, 90% RH for 12 h. Meanwhile, Pro lowers the freezing temperature of the hydrogel to 34 °C and enhances its stretchability and strength. Finally, the PVA/Pro/MXene hydrogels are assembled as multifunctional on-skin strain sensors and conductive electrodes to monitor human motions and detect tiny electrophysiological signals. Collectively, this work provides a molecular crowding strategy that will motivate researchers to develop more advanced hydrogels for versatile applications.
Collapse
Affiliation(s)
- Min Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaobo Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhen Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Liancong Yue
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qiuji Chen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hejian Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiang Lin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Liang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongrui Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
29
|
Wang H, Liu B, Chen D, Wang Z, Wang H, Bao S, Zhang P, Yang J, Liu W. Low hysteresis zwitterionic supramolecular polymer ion-conductive elastomers with anti-freezing properties, high stretchability, and self-adhesion for flexible electronic devices. MATERIALS HORIZONS 2024; 11:2628-2642. [PMID: 38501271 DOI: 10.1039/d4mh00174e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The fabrication of stretchable ionic conductors with low hysteresis and anti-freezing properties to enhance the durability and reliability of flexible electronics even at low temperatures remains an unmet challenge. Here, we report a facile strategy to fabricate low hysteresis, high stretchability, self-adhesion and anti-freezing zwitterionic supramolecular polymer ion-conductive elastomers (ICEs) by photoinitiated polymerization of aqueous precursor solutions containing a newly designed zwitterionic monomer carboxybetaine ureido acrylate (CBUIA) followed by solvent evaporation. The resultant poly(carboxybetaine ureido acrylate) (PCBUIA) ICEs are highly stretchable and self-adhesive owing to the presence of strong hydrogen bonds between ureido groups and dipole-dipole interactions of zwitterions. The zwitterion groups on the polymer side chains and loaded-lithium chloride endow PCBUIA ICEs with excellent anti-freezing properties, demonstrating mechanical flexibility and ionic transport properties even at a low temperature (-20 °C). Remarkably, the PCBUIA ICEs demonstrate a low hysteresis (≈10%) during cyclic mechanical loading-unloading (≤500%), and are successfully applied as wearable strain sensors and triboelectric nanogenerators (TENGs) for energy harvesting and human motion monitoring. In addition, the PCBUIA ICE-based TENG was used as a wireless sensing terminal for Internet of Things smart devices to enable wireless sensing of finger motion state detection.
Collapse
Affiliation(s)
- Hongying Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Baocheng Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China.
| | - Danyang Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Zhuoya Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Haolun Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Siyu Bao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Ping Zhang
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China.
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
30
|
Chen H, Shi J, Ji C, Fan W, Sui K. Facile Multiple Graded Wrinkle Construction Strategy for Vastly Boosting the Sensing Performance of Ionic Skins. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38700267 DOI: 10.1021/acsami.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The construction of surface microstructures (e.g., micropyramids and wrinkles) has been proven as the most effective means to boost the sensitivity of ionic skins (I-skins). However, the single-scale micronano patterns constructed by the common fabrication strategy generally lead to a limited pressure-response range. Here, a convenient repeated stretching/coordinating/releasing strategy is developed to controllably construct multiple graded wrinkles on the polyelectrolyte hydrogel-based I-skins for increasing their sensitivity over a broad pressure range. We find that the small wrinkles allow for high sensitivity yet small pressure detection range, while the large wrinkles can reduce structural stiffening to generate large pressure-response range but incur limited sensitivity. The multiple graded wrinkles can combine the merits of both the small and large wrinkles to simultaneously improve the sensitivity and broaden the pressure-response range. In particular, the sensing performance of multiple-wrinkle-based I-skins substantially outperforms the superposition of the sensing performance of different single-wrinkle-based I-skins. As a proof of concept, the triple-wrinkle-based I-skins can provide an extremely high sensitivity of 17,309 kPa-1 and an ultrawide pressure detection range of 0.38 Pa to 372 kPa. The approach and insight contribute to the future development of I-skins with a broader pressure-response range and higher sensitivity.
Collapse
Affiliation(s)
- Hongen Chen
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Jianzhuang Shi
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Changbin Ji
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Wenxin Fan
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Kunyan Sui
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
31
|
Xu S, Jia Q, Zhang K, Lu C, Wang C, Wang J, Yong Q, Chu F. Recyclable and mechanically tough nanocellulose reinforced natural rubber composite conductive elastomers for flexible multifunctional sensor. Int J Biol Macromol 2024; 268:131946. [PMID: 38692545 DOI: 10.1016/j.ijbiomac.2024.131946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
The development of flexible wearable multifunctional electronics has gained great attention in the field of human motion monitoring. However, developing mechanically tough, highly stretchable, and recyclable composite conductive materials for application in multifunctional sensors remained great challenges. In this work, a mechanically tough, highly stretchable, and recyclable composite conductive elastomer with the dynamic physical-chemical dual-crosslinking network was fabricated by the combination of multiple hydrogen bonds and dynamic ester bonds. To prepare the proposed composite elastomers, the polyaniline-modified carboxylate cellulose nanocrystals (C-CNC@PANI) were used as both conductive filler to yield high conductivity of 15.08 mS/m, and mechanical reinforcement to construct the dynamic dual-crosslinking network with epoxidized natural rubber latex to realize the high mechanical strength (8.65 MPa) and toughness (29.57 MJ/m3). Meanwhile, the construction of dynamic dual-crosslinking network endowed the elastomer with satisfactory recyclability. Based on these features, the composite conductive elastomers were used as strain sensors, and electrode material for assembling flexible and recyclable self-powered sensors for monitoring human motions. Importantly, the composite conductive elastomers maintained reliable sensing and energy harvesting performance even after multiple recycling process. This study provides a new strategy for the preparation of recyclable, mechanically tough composite conductive materials for wearable sensors.
Collapse
Affiliation(s)
- Shijian Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 29937, China
| | - Qianqian Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 29937, China
| | - Kai Zhang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chuanwei Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 29937, China; State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Chunpeng Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China
| | - Jifu Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 29937, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China
| |
Collapse
|
32
|
Wu Y, Zhang Y, Liao Z, Wen J, Zhang H, Wu H, Liu Z, Shi Y, Song P, Tang L, Xue H, Gao J. Water vapor assisted aramid nanofiber reinforcement for strong, tough and ionically conductive organohydrogels as high-performance strain sensors. MATERIALS HORIZONS 2024; 11:1272-1282. [PMID: 38165275 DOI: 10.1039/d3mh01560b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Conductive organohydrogels have gained increasing attention in wearable sensors, flexible batteries, and soft robots due to their exceptional environment adaptability and controllable conductivity. However, it is still difficult for conductive organohydrogels to achieve simultaneous improvement in mechanical and electrical properties. Here, we propose a novel "water vapor assisted aramid nanofiber (ANF) reinforcement" strategy to prepare robust and ionically conductive organohydrogels. Water vapor diffusion can induce the pre-gelation of the polymer solution and ensure the uniform dispersion of ANFs in organohydrogels. ANF reinforced organohydrogels have remarkable mechanical properties with a tensile strength, stretchability and toughness of up to 1.88 ± 0.04 MPa, 633 ± 30%, and 6.75 ± 0.38 MJ m-3, respectively. Furthermore, the organohydrogels exhibit great crack propagation resistance with the fracture energy and fatigue threshold as high as 3793 ± 167 J m-2 and ∼328 J m-2, respectively. As strain sensors, the conductive organohydrogel demonstrates a short response time of 112 ms, a large working strain and superior cycling stability (1200 cycles at 40% strain), enabling effective monitoring of a wide range of complex human motions. This study provides a new yet effective design strategy for high performance and multi-functional nanofiller reinforced organohydrogels.
Collapse
Affiliation(s)
- Yongchuan Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Ya Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Zimin Liao
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Jing Wen
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Hechuan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Haidi Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Zhanqi Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Campus, QLD 4300, Australia
| | - Longcheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| |
Collapse
|
33
|
He K, Cai P, Ji S, Tang Z, Fang Z, Li W, Yu J, Su J, Luo Y, Zhang F, Wang T, Wang M, Wan C, Pan L, Ji B, Li D, Chen X. An Antidehydration Hydrogel Based on Zwitterionic Oligomers for Bioelectronic Interfacing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311255. [PMID: 38030137 DOI: 10.1002/adma.202311255] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/27/2023] [Indexed: 12/01/2023]
Abstract
Hydrogels are ideal interfacing materials for on-skin healthcare devices, yet their susceptibility to dehydration hinders their practical use. While incorporating hygroscopic metal salts can prevent dehydration and maintain ionic conductivity, concerns arise regarding metal toxicity due to the passage of small ions through the skin barrier. Herein, an antidehydration hydrogel enabled by the incorporation of zwitterionic oligomers into its network is reported. This hydrogel exhibits exceptional water retention properties, maintaining ≈88% of its weight at 40% relative humidity, 25 °C for 50 days and about 84% after being heated at 50 °C for 3 h. Crucially, the molecular weight design of the embedded oligomers prevents their penetration into the epidermis, as evidenced by experimental and molecular simulation results. The hydrogel allows stable signal acquisition in electrophysiological monitoring of humans and plants under low-humidity conditions. This research provides a promising strategy for the development of epidermis-safe and biocompatible antidehydration hydrogel interfaces for on-skin devices.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pingqiang Cai
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shaobo Ji
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zihan Tang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Zhou Fang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wenlong Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Jing Yu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yifei Luo
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Feilong Zhang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changjin Wan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Liang Pan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Baohua Ji
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Dechang Li
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
34
|
Chen Y, Zhang C, Yin R, Yu M, Liu Y, Liu Y, Wang H, Liu F, Cao F, Chen G, Zhao W. Ultra-robust, high-adhesive, self-healing, and photothermal zwitterionic hydrogels for multi-sensory applications and solar-driven evaporation. MATERIALS HORIZONS 2023; 10:3807-3820. [PMID: 37417340 DOI: 10.1039/d3mh00629h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Zwitterionic hydrogels have received considerable attention owing to their characteristic structures and integrating multifunctionality. However, the superhydrophilicity-induced poor mechanical properties severely hinder their potential applications. Besides, from the perspective of wide applications, zwitterionic hydrogels with integrated high mechanical properties, conductivity and multifunctionalities including self-adhesive, self-healing, and photothermal properties are highly desirable yet challenging. Herein, a new class of high-performance and multifunctional zwitterionic hydrogels are designed based on the incorporation of polydopamine-coated liquid metal nanoparticles (LM@PDA). Due to the efficient energy dissipation endowed by the isotropically extensible deformation of LM@PDA and the multiple interactions within the hydrogel matrix, the resultant hydrogels exhibited ultrahigh robustness with tensile strength of up to 1.3 MPa, strain of up to 1555% and toughness of up to 7.3 MJ m-3, superior or comparable to those of most zwitterionic hydrogels. The introduced LM@PDA also endows the hydrogels with high conductivity, versatile adhesion, autonomous self-healing, excellent injectability, three-dimensional printability, degradability, and photothermal conversion performance. These preferable properties enable the hydrogels promising as wearable sensors with multiple sensory capabilities for a wide range of strain values (1-500%), pressures (0.5-200 kPa) and temperatures (20-80 °C) with an impressive temperature coefficient of resistance (up to 0.15 °C-1). Moreover, these hydrogels can be also applied as solar evaporators with a high water evaporation rate (up to 2.42 kg m-2 h-1) and solar-thermal conversion efficiency (up to 90.3%) for solar desalination and wastewater purification. The present work can pave the way for the future development of zwitterionic hydrogels and beyond.
Collapse
Affiliation(s)
- Youyou Chen
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Chen Zhang
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Rui Yin
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Minghan Yu
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Yijie Liu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Yaming Liu
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Haoran Wang
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Feihua Liu
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Feng Cao
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Guoqing Chen
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
| | - Weiwei Zhao
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| |
Collapse
|