1
|
Shi J, Kong L, Wang N, Li Z, Zhao C, Chen C. Strong Bioadhesives from Helical Polypeptides. ACS Macro Lett 2025; 14:299-305. [PMID: 40098459 DOI: 10.1021/acsmacrolett.5c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Bioadhesives have emerged as versatile and powerful tools for tissue repair and integration with biomedical devices, offering a wide range of applications that have captured significant clinical and scientific interest. Synthetic polypeptide adhesives are particularly promising candidates for bioadhesives, but often face limitations in adhesive strength. In this study, inspired by marine adhesive proteins, the secondary structure and hydrophobic-hydrophilic balance of polypeptides were precisely regulated to transform the polyelectrolyte to a strong adhesive. The resulting polypeptide adhesive demonstrated an adhesive strength exceeding 1.0 MPa, more than 10× higher than that of the previously reported synthetic polypeptide adhesive. The cohesion and adhesion of polypeptide adhesive can be optimized by adjusting the content of the secondary structure and hydrophobic residue ratios. More helices in polypeptides enhance the interactions between the polypeptide backbone and side chains as well as the interactions between polypeptides and substrates. In addition, these polypeptide adhesives exhibit excellent tolerance to strong acids or alkalis, remarkable adhesion to variable materials and tissues, and an impressive sealing performance.
Collapse
Affiliation(s)
- Jiangyan Shi
- School of Materials Science and Chemical Engineering, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China
| | - Liufen Kong
- School of Materials Science and Chemical Engineering, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China
| | - Ning Wang
- School of Materials Science and Chemical Engineering, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China
| | - Zhimin Li
- School of Materials Science and Chemical Engineering, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China
| | - Chuanzhuang Zhao
- School of Materials Science and Chemical Engineering, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China
| | - Chongyi Chen
- School of Materials Science and Chemical Engineering, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Li G, Pu Z, Guo S, Liu Z, Deng M, Liu N, Li Z. Durable and biocompatible low adhesion wound dressing material based on interfacial behaviors for wound management. Colloids Surf B Biointerfaces 2025; 247:114413. [PMID: 39613500 DOI: 10.1016/j.colsurfb.2024.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Wound-dressing adhesion is a problem that has not been effectively addressed in the field of wound care for bleeding or burn wounds. Design of low adhesion wound dressing materials by leveraging interfacial behaviors has been an effective solution to this problem. However, previously reported superhydrophobic low adhesion materials either had durability or biocompatibility issue. To bridge this gap, this study presents a durable and biocompatible superhydrophobic low adhesion wound dressing material, which is designed on a normal gauze substrate with biocompatible components using a hybrid coating strategy. Outstanding low adhesion properties have been verified in vivo with bleeding wound or burn wound, with a peeling force that is only 0.3 %-14.5 % of the conventional non-woven gauze. Prepared low adhesion materials can robustly retain their superhydrophobicity and blood-repelling properties against harsh tests. Moreover, their biocompatibility has been confirmed through a series of tests including cell biocompatibility, hemolysis and skin irritation tests. With these demonstrated merits, the durable and biocompatible low adhesion material developed in this study will provide an effective solution to the wound adhesion problem in the practice of wound management.
Collapse
Affiliation(s)
- Guohao Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China
| | - Zuo Pu
- Department of Vascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Peripheral vascular ward (Cardiac Surgery Ward 1), Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Shuang Guo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China
| | - Zhuopeng Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China
| | - Maosen Deng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China
| | - Na Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China
| | - Zhe Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China.
| |
Collapse
|
3
|
Lei R, Wang W, Li G, Yu Q, Fang H, Xu J, Zhang K, Ye Y. Supramolecular interactions-driven aggregation to prepare lipoic acid-bioadhesives for seawater-immersed wounds. J Nanobiotechnology 2025; 23:86. [PMID: 39910583 PMCID: PMC11800535 DOI: 10.1186/s12951-025-03175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Seawater-immersed wounds can be threatened by high pH, high permeability and infection, which may lead to the development of chronic wounds. The present study develops an aggregation strategy for the rapid preparation of α-lipoic acid (LA)-based bioadhesives at room temperature with strong and underwater adhesion for emergency treatment of trauma in maritime activities. The bioadhesives are fabricated from the aggregation of LA, MXene and Ag+ through their supramolecular interactions, which can be rapidly formed in mild environments, showing strong interface adhesion without adhesive failure caused by depolymerization, while exhibiting mechanical self-reinforcing. To further improve the adhesive strength, the formation of MXene/Ag+/LA interactions was integrated into poly(2-hydroxyethyl methacrylate) (pHEMA) electrospinning to manufacture electrospun film with the adhesion strength as high as 2 MPa. The bioadhesives are sensitive to alkaline environments and can lead to deprotonation of LA. The released H+ can instantly adjust the pH of weakly alkaline seawater-immersed wounds to normal pH, while deprotonated LA is released into wounds to exert anti-inflammatory functions. Together with antibacterial property, bioadhesives applied to seawater-immersed wounds provide stable barrier protection and correct adverse microenvironment, promoting wound healing.
Collapse
Affiliation(s)
- Rui Lei
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Wenjun Wang
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Guan Li
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Qian Yu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Haowei Fang
- Department of Medical Aesthetic, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital), Wenzhou, 325000, P. R. China
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China.
| | - Kunxi Zhang
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China.
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yinghai Ye
- Department of Medical Aesthetic, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital), Wenzhou, 325000, P. R. China.
| |
Collapse
|
4
|
Nie X, Xu L, Wang Q, Ding X, Xu X, Shi Q, Li J. Bifunctional Electrospun Nanocomposite Dressing: Integrating Antibacterial Efficacy and Controllable Antioxidant Properties for Expedited Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:297-310. [PMID: 39680838 DOI: 10.1021/acsami.4c14837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Current wound dressings are insufficient in simultaneously addressing bacterial infections and oxidative stress, which severely affects wound healing outcomes. To solve this problem, we introduced poly(ionic liquid) (PIL) with strong antibacterial properties and cerium oxide nanoparticles (CeO2NPs) with excellent antioxidant capabilities into polyacrylonitrile (PAN) nanofiber membranes to prepare a novel composite dressing. The PIL-CeO2NPs-PAN nanofiber membrane provides sustained antibacterial activity through stably embedded PIL, while the uniformly distributed CeO2NPs achieve controlled release, avoiding safety issues caused by the rapid release of active substances. In vitro and in vivo experiments demonstrated that the membrane exhibits outstanding biocompatibility, significant antibacterial effects (inhibition rates of 88.3% against Escherichia coli and 93.2% against Staphylococcus aureus), and excellent antioxidant performance (64.7% reactive oxygen species scavenging rate). More importantly, PIL-CeO2NPs-PAN achieved a 94.1% wound healing rate within 14 days, significantly superior to traditional treatment methods. The results indicate that this composite membrane significantly improves wound healing by simultaneously resisting infection and oxidative stress, providing a safe and effective new option for clinical applications. Our work offers an innovative design strategy that combines antibacterial and antioxidant mechanisms for wound care.
Collapse
Affiliation(s)
- Xiaojuan Nie
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Lanlan Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Qingwu Wang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Xu Ding
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Xiaodong Xu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Junqing Li
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
5
|
Chen X, Li Z, Ge X, Qi X, Xiang Y, Shi Y, Li Y, Pan Y, Wang Y, Ru Y, Huang K, Shao J, Shen J, Li H. Ferric Iron/Shikonin Nanoparticle-Embedded Hydrogels with Robust Adhesion and Healing Functions for Treating Oral Ulcers in Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405463. [PMID: 39392368 PMCID: PMC11615794 DOI: 10.1002/advs.202405463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/25/2024] [Indexed: 10/12/2024]
Abstract
Oral ulcers can be addressed using various biomaterials designed to deliver medications or cytokines. Nevertheless, the effectiveness of these substances is frequently limited in many patients due to poor adherence, short retention time in the mouth, and less-than-optimal drug efficacy. In this study, a new hydrogel patch (FSH3) made of a silk fibroin/hyaluronic acid matrix with light-sensitive adhesive qualities infused with ferric iron/shikonin nanoparticles to enhance healing effects is presented. Initially, this hydrogel forms an adhesive barrier over mucosal lesions through a straightforward local injection, solidifying when exposed to UV light. Subsequently, FSH3 demonstrates superior reactive oxygen species elimination and near-infrared photothermal bactericidal activity. These characteristics support bacterial elimination and regulate oxidative levels, promoting a wound's progression from inflammation to tissue regeneration. In a diabetic rat model mimicking oral ulcers, FSH3 significantly speeds up healing by adjusting the inflammatory environment of the injured tissue, maintaining balance in oral microbiota, and promoting faster re-epithelialization. Overall, the light-sensitive FSH3 hydrogel shows potential for rapid wound recovery and may transform therapeutic methods for managing oral ulcers in diabetes.
Collapse
Affiliation(s)
- Xiaojing Chen
- Department of OtolaryngologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Zhangping Li
- The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People's HospitalQuzhou324000China
| | - XinXin Ge
- School & Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Xiaoliang Qi
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Yajing Xiang
- School & Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Yizuo Shi
- School & Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Ying Li
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| | - Yao Pan
- Department of OtolaryngologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yingying Wang
- Department of OtolaryngologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Yiyu Ru
- Department of OtolaryngologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Kelei Huang
- Department of OtolaryngologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Jiatan Shao
- Department of OtolaryngologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiang325027China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| | - He Li
- Department of OtolaryngologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| |
Collapse
|
6
|
Zhang Z, Fan C, Xu Q, Guo F, Li W, Zeng Z, Xu Y, Yu J, Ge H, Yang C, Chang J. A New Strategy to Inhibit Scar Formation by Accelerating Normal Healing Using Silicate Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407718. [PMID: 39340818 DOI: 10.1002/advs.202407718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Inspired by the scar-free wound healing in infants, an anti-scar strategy is proposed by accelerating wound healing using silicate bioactive materials. Bioglass/alginate composite hydrogels are applied, which significantly inhibit scar formation in rabbit ear scar models. The underlining mechanisms include stimulation of Integrin Subunit Alpha 2 expression in dermal fibroblasts to accelerate wound healing, and induction of apoptosis of hypertrophic scar fibroblasts by directly stimulating the N-Acylsphingosine Amidohydrolase 2 expression in hypertrophic scar fibroblasts, and indirectly upregulating the secretion of Cathepsin K in dermal fibroblasts. Considering specific functions of the bioactive silicate materials, two scar treatment regimes are tested. For severe scars, a regenerative intervention is applied by surgical removal of the scar followed by the treatment with bioactive hydrogels to reduce the formation of scars by activating dermal fibroblasts. For mild scars, the bioactive dressing is applied on the formed scar and reduces scar by inducing scar fibroblasts apoptosis.
Collapse
Affiliation(s)
- Zhaowenbin Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Chen Fan
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Qing Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Feng Guo
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200050, P. R. China
| | - Wenbo Li
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200050, P. R. China
| | - Zhen Zeng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Yuze Xu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jing Yu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Hongping Ge
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Chen Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
7
|
Liu X, Luo D, Dai S, Cai Y, Chen T, Bao X, Hu M, Liu Z. Artificial Bacteriophages for Treating Oral Infectious Disease via Localized Bacterial Capture and Enhanced Catalytic Sterilization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400394. [PMID: 39159066 PMCID: PMC11538703 DOI: 10.1002/advs.202400394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/30/2024] [Indexed: 08/21/2024]
Abstract
With the rapid emergence of antibiotic-resistant pathogens, nanomaterial-assisted catalytic sterilization has been well developed to combat pathogenic bacteria by elevating the level of reactive oxygen species including hydroxyl radical (·OH). Although promising, the ultra-short lifetime and limited diffusion distance of ·OH severely limit their practical antibacterial usage. Herein, the rational design and preparation of novel virus-like copper silicate hollow spheres (CSHSs) are reported, as well as their applications as robust artificial bacteriophages for localized bacterial capture and enhanced catalytic sterilization in the treatment of oral infectious diseases. During the whole process of capture and killing, CSHSs can efficiently capture bacteria via shortening the distance between bacteria and CSHSs, produce massive ·OH around bacteria, and further iinducing the admirable effect of bacterial inhibition. By using mucosal infection and periodontitis as typical oral infectious diseases, it is easily found that the bacterial populations around lesions in animals after antibacterial treatment fall sharply, as well as the well-developed nanosystem can decrease the inflammatory reaction and promote the hard or soft tissue repair. Together, the high Fenton-like catalytic activity, strong bacterial affinity, excellent antibacterial activity, and overall safety of the nanoplatform promise its great therapeutic potential for further catalytic bacterial disinfection.
Collapse
Affiliation(s)
- Xiaocan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Danfeng Luo
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Shuang Dai
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Yanting Cai
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Tianyan Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Xingfu Bao
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Min Hu
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
- Key Laboratory of PathobiologyMinistry of EducationJilin UniversityChangchun130021China
| | - Zhen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
8
|
Zeng J, Fang H, Pan H, Gu H, Zhang K, Song Y. Rapidly Gelled Lipoic Acid-Based Supramolecular Hydrogel for 3D Printing of Adhesive Bandage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53515-53531. [PMID: 39319463 DOI: 10.1021/acsami.4c11704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Developing a strongly adhesive, easily removable, and robust bandage is valuable in trauma emergencies. Poly(lipoic acid) (PLA)-based adhesives with good mechanical properties have been well-developed through a thermal ring-opening polymerization (ROP) method that is easiness. However, the additive manufacturing of PLA-based adhesives remains a challenge. Herein, α-lipoic acid (LA) and trometamol (Tris) are found to rapidly form a supramolecular hydrogel at room temperature with injectability and 3D printing potential. Meanwhile, the synthesized LA-grafted hyaluronic acid and cellulose nanocrystals are involved not only to optimize the extrusion of 3D printing but also to effectively promote fidelity and prevent the inverse closed-loop depolymerization of PLA in water. The hydrogel bandage exhibits strong adhesion to skin while it can be removed with no residue by water flushing, showing protection to neo-tissue during dressing replacement. The in vivo application of the hydrogel bandage significantly promoted wound healing by closing the wound, forming a physical barrier, and providing an anti-inflammatory effect, showing great potential in future clinical applications.
Collapse
Affiliation(s)
- Jiujiang Zeng
- Department of Emergency, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P. R. China
| | - Haowei Fang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Haiyang Pan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai 201199, P. R. China
| | - Kunxi Zhang
- Department of Emergency, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P. R. China
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Yanli Song
- Department of Emergency, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P. R. China
| |
Collapse
|
9
|
Shoudho K, Uddin S, Rumon MMH, Shakil MS. Influence of Physicochemical Properties of Iron Oxide Nanoparticles on Their Antibacterial Activity. ACS OMEGA 2024; 9:33303-33334. [PMID: 39130596 PMCID: PMC11308002 DOI: 10.1021/acsomega.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
The increasing occurrence of infectious diseases caused by antimicrobial resistance organisms urged the necessity to develop more potent, selective, and safe antimicrobial agents. The unique magnetic and tunable properties of iron oxide nanoparticles (IONPs) make them a promising candidate for different theragnostic applications, including antimicrobial agents. Though IONPs act as a nonspecific antimicrobial agent, their antimicrobial activities are directly or indirectly linked with their synthesis methods, synthesizing precursors, size, shapes, concentration, and surface modifications. Alteration of these parameters could accelerate or decelerate the production of reactive oxygen species (ROS). An increase in ROS role production disrupts bacterial cell walls, cell membranes, alters major biomolecules (e.g., lipids, proteins, nucleic acids), and affects metabolic processes (e.g., Krebs cycle, fatty acid synthesis, ATP synthesis, glycolysis, and mitophagy). In this review, we will investigate the antibacterial activity of bare and surface-modified IONPs and the influence of physiochemical parameters on their antibacterial activity. Additionally, we will report the potential mechanism of IONPs' action in driving this antimicrobial activity.
Collapse
Affiliation(s)
- Kishan
Nandi Shoudho
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
- Department
of Chemical Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Shihab Uddin
- Department
of Bioengineering, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Kingdom
of Saudi Arabia
| | - Md Mahamudul Hasan Rumon
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
10
|
Wang C, Zhang X, Fan Y, Yu S, Liu M, Feng L, Sun Q, Pan P. Principles and Design of Bionic Hydrogel Adhesives for Skin Wound Treatment. Polymers (Basel) 2024; 16:1937. [PMID: 39000792 PMCID: PMC11244016 DOI: 10.3390/polym16131937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Over millions of years of evolution, nature has developed a myriad of unique features that have inspired the design of adhesives for wound healing. Bionic hydrogel adhesives, capable of adapting to the dynamic movements of tissues, possess superior biocompatibility and effectively promote the healing of both external and internal wounds. This paper provides a systematic review of the design and principles of these adhesives, focusing on the treatment of skin wounds, and explores the feasibility of incorporating nature-inspired properties into their design. The adhesion mechanisms of bionic adhesives are analyzed from both chemical and physical perspectives. Materials from natural and synthetic polymers commonly used as adhesives are detailed regarding their biocompatibility and degradability. The multifunctional design elements of hydrogel adhesives for skin trauma treatment, such as self-healing, drug release, responsive design, and optimization of mechanical and physical properties, are further explored. The aim is to overcome the limitations of conventional treatments and offer a safer, more effective solution for the application of bionic wound dressings.
Collapse
Affiliation(s)
- Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Xinyu Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Yinuo Fan
- Marine College, Shandong University, Weihai 264209, China
| | - Shuhan Yu
- Marine College, Shandong University, Weihai 264209, China
| | - Man Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Linhan Feng
- Marine College, Shandong University, Weihai 264209, China
| | - Qisen Sun
- Marine College, Shandong University, Weihai 264209, China
| | - Panpan Pan
- Marine College, Shandong University, Weihai 264209, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai 200025, China
| |
Collapse
|
11
|
Zhang M, Zhao X, Bai M, Xue J, Liu R, Huang Y, Wang M, Cao J. High-Performance Engineered Composites Biofabrication Using Fungi. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309171. [PMID: 38196296 DOI: 10.1002/smll.202309171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/21/2023] [Indexed: 01/11/2024]
Abstract
Various natural polymers offer sustainable alternatives to petroleum-based adhesives, enabling the creation of high-performance engineered materials. However, additional chemical modifications and complicated manufacturing procedures remain unavoidable. Here, a sustainable high-performance engineered composite that benefits from bonding strategies with multiple energy dissipation mechanisms dominated by chemical adhesion and mechanical interlocking is demonstrated via the fungal smart creative platform. Chemical adhesion is predominantly facilitated by the extracellular polymeric substrates and glycosylated proteins present in the fungal outer cell walls. The dynamic feature of non-covalent interactions represented by hydrogen bonding endows the composite with extensive unique properties including healing, recyclability, and scalable manufacturing. Mechanical interlocking involves multiple mycelial networks (elastic modulus of 2.8 GPa) binding substrates, and the fungal inner wall skeleton composed of chitin and β-glucan imparts product stability. The physicochemical properties of composite (modulus of elasticity of 1455.3 MPa, internal bond strength of 0.55 MPa, hardness of 82.8, and contact angle of 110.2°) are comparable or even superior to those of engineered lignocellulosic materials created using petroleum-based polymers or bioadhesives. High-performance composite biofabrication using fungi may inspire the creation of other sustainable engineered materials with the assistance of the extraordinary capabilities of living organisms.
Collapse
Affiliation(s)
- Mingchang Zhang
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Xiaoqi Zhao
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Mingyang Bai
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Jing Xue
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
- Public Analysis and Test Center, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Ru Liu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, P. R. China
| | - Yuxiang Huang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, P. R. China
| | - Mingzhi Wang
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Jinzhen Cao
- MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| |
Collapse
|
12
|
Yang R, Zhang H, Chen Y, Zhang L, Chu J, Sun K, Yuan C, Tao K. Hemostatic and Ultrasound-Controlled Bactericidal Silk Fibroin Hydrogel via Integrating a Perfluorocarbon Nanoemulsion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21582-21594. [PMID: 38634578 DOI: 10.1021/acsami.4c01686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Excessive blood loss and infections are the prominent risks accounting for mortality and disability associated with acute wounds. Consequently, wound dressings should encompass adequate adhesive, hemostatic, and bactericidal attributes, yet their development remains challenging. This investigation presented the benefits of incorporating a perfluorocarbon nanoemulsion (PPP NE) into a silk-fibroin (SF)-based hydrogel. By stimulating the β-sheet conformation of the SF chains, PPP NEs drastically shortened the gelation time while augmenting the elasticity, mechanical stability, and viscosity of the hydrogel. Furthermore, the integration of PPP NEs improved hemostatic competence by boosting the affinity between cells and biomacromolecules. It also endowed the hydrogel with ultrasound-controlled bactericidal ability through the inducement of inner cavitation by perfluorocarbon and reactive oxygen species (ROS) generated by the sonosensitizer protoporphyrin. Ultimately, we employed a laparotomy bleeding model and a Staphylococcus aureus-infected trauma wound to demonstrate the first-aid efficacy. Thus, our research suggested an emulsion-incorporating strategy for managing emergency wounds.
Collapse
Affiliation(s)
- Ruihao Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Haoran Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yumo Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Linxuan Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jing Chu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Congli Yuan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
13
|
Zhang H, Feng Y, Wang T, Zhang J, Song Y, Zhang J, Li Y, Zhou D, Gu Z. Natural polyphenolic antibacterial bio-adhesives for infected wound healing. Biomater Sci 2024; 12:2282-2291. [PMID: 38415775 DOI: 10.1039/d3bm02122j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Bio-adhesives used clinically, commonly have the ability to fill surgical voids and support wound healing, but which are devoid of antibacterial activity, and thus, could not meet the particular needs of the infected wound site. Herein, a series of natural polyphenolic antibacterial bio-adhesives were prepared via simple mixing and heating of polyphenols and acid anhydrides without any solvent or catalyst. Upon the acid anhydride ring opening and acylation reactions, various natural polyphenolic bio-adhesives could adhere to various substrates (i.e., tissue, wood, glass, rubber, paper, plastic, and metal) based on multi-interactions. Moreover, these bio-adhesives showed excellent antibacterial and anti-infection activity, rapid hemostatic performance and appropriate biodegradability, which could be widely used in promoting bacterial infection wound healing and hot burn infection wound repair. This work could provide a new strategy for strong adhesives using naturally occurring molecules, and provide a method for the preparation of novel multifunctional wound dressings for infected wound healing.
Collapse
Affiliation(s)
- Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuqi Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuxian Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Dingzi Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610065, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
14
|
Gao S, Rao Y, Wang X, Zhang Q, Zhang Z, Wang Y, Guo J, Yan F. Chlorella-Loaded Antibacterial Microneedles for Microacupuncture Oxygen Therapy of Diabetic Bacterial Infected Wounds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307585. [PMID: 38307004 DOI: 10.1002/adma.202307585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Hypoxia and infection are urgent clinical problems in chronic diabetic wounds. Herein, living Chlorella-loaded poly(ionic liquid)-based microneedles (PILMN-Chl) are constructed for microacupuncture oxygen and antibacterial therapy against methicillin-resistant Staphylococcus aureus (MRSA)-infected chronic diabetic wounds. The PILMN-Chl can stably and continuously produce oxygen for more than 30 h due to the photosynthesis of the loaded self-supported Chlorella. By combining the barrier penetration capabilities of microneedles, the continuous and sufficient oxygen supply of Chlorella, and the sterilization activities of PIL, the PILMN-Chl can accelerate chronic diabetic wounds in vivo by topical targeted sterilization and hypoxia relief in deep parts of wounds. Thus, the self-oxygen produced microneedles modality may provide a promising and facile therapeutic strategy for treating chronic, hypoxic, and infected diabetic wounds.
Collapse
Affiliation(s)
- Shuna Gao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yu Rao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaowei Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qiuyang Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zijun Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yuxuan Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
15
|
Wang D, Xing J, Zhang Y, Guo Z, Deng S, Guan Z, He B, Ma R, Leng X, Dong K, Dong Y. Metal-Phenolic Networks for Chronic Wounds Therapy. Int J Nanomedicine 2023; 18:6425-6448. [PMID: 38026522 PMCID: PMC10640828 DOI: 10.2147/ijn.s434535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Chronic wounds are recalcitrant complications of a variety of diseases, with pathologic features including bacterial infection, persistent inflammation, and proliferation of reactive oxygen species (ROS) levels in the wound microenvironment. Currently, the use of antimicrobial drugs, debridement, hyperbaric oxygen therapy, and other methods in clinical for chronic wound treatment is prone to problems such as bacterial resistance, wound expansion, and even exacerbation. In recent years, researchers have proposed many novel materials for the treatment of chronic wounds targeting the disease characteristics, among which metal-phenolic networks (MPNs) are supramolecular network structures that utilize multivalent metal ions and natural polyphenols complexed through ligand bonds. They have a flexible and versatile combination of structural forms and a variety of formations (nanoparticles, coatings, hydrogels, etc.) that can be constructed. Functionally, MPNs combine the chemocatalytic and bactericidal properties of metal ions as well as the anti-inflammatory and antioxidant properties of polyphenol compounds. Together with the excellent properties of rapid synthesis and negligible cytotoxicity, MPNs have attracted researchers' great attention in biomedical fields such as anti-tumor, anti-bacterial, and anti-inflammatory. This paper will focus on the composition of MPNs, the mechanisms of MPNs for the treatment of chronic wounds, and the application of MPNs in novel chronic wound therapies.
Collapse
Affiliation(s)
- Danyang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jianfeng Xing
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ying Zhang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ziyang Guo
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shujing Deng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Zelin Guan
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Binyang He
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ruirui Ma
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xue Leng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Kai Dong
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|