1
|
Pan M, Sun Z, Zhang Y, Chen J, Zhao Z, He H, Zeng H, Li Q, Gu N. Aggregation-Disruption-Induced Multi-Scale Mediating Strategy for Anticoagulation in Blood-Contacting Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412701. [PMID: 39344862 DOI: 10.1002/adma.202412701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Minimally invasive blood-contacting interventional devices are increasingly used to treat cardiovascular diseases. However, the risk of device-related thrombosis remains a significant concern, particularly the formation of cycling thrombi, which pose life-threatening risks. To better understand the interactions between these devices and blood, the initial stages of coagulation contact activation on extrinsic surfaces are investigated. Direct force measurements reveals that activated contact factors stimulate the intrinsic coagulation pathway and promote surface crosslinking of fibrin. Furthermore, fibrin aggregation is disrupted by surface-grafted inhibitors, as confirmed by ex vivo coagulation tests. An engineered serum protein with zwitterion grafts to resist the deposition of biological species such as fibrin, platelets, and red blood cells is also developed. Simultaneously, a protease inhibitor-based coacervate is incorporated into the coating to inhibit the intrinsic pathway effectively. The loaded coacervate can be released and reloaded through modulation of catechol-amine interactions, facilitating material regeneration. The strategy offers a novel multi-scale mediation strategy that simultaneously inhibits nanoscale coagulation factors and resists microscale thrombus aggregation, providing a long-term solution for anticoagulation in blood-contacting devices.
Collapse
Affiliation(s)
- Mingfei Pan
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Zhaoyun Sun
- Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210028, China
| | - Yuhao Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Jiangwei Chen
- Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210028, China
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Hongliang He
- State Key Laboratory of Digital Medical Engineering, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Qingguo Li
- Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210028, China
| | - Ning Gu
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
2
|
Wang Z, Wu T, Yu S, Song H, Zhao F, Zhao C, Chen L, Wang W, Xing J. Biodegradable Plant Oil-Based Bioadhesive with Ultrastrong Wet-Tissue Adhesion for Instant Sealing Hemostasis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39052487 DOI: 10.1021/acsami.4c07517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The key to saving lives is to achieve instant and effective sealing hemostasis in the event of emergency bleeding. Herein, a plant oil-based EMTA/Zn2+ bioadhesive is prepared by a facile reaction of epoxidized soybean oil (ESO) with methacrylic acid (MAA) and tannic acid (TA), followed by the addition of zinc ions for coordination with TA. The EMTA/Zn2+ bioadhesive can be rapidly cured in situ at the wound site through photo-cross-linking under ultraviolet (UV) light-emitting diode (LED) irradiation within 30 s, achieving ultrastrong wet-tissue adhesion performance of 92.4 and 51.8 kPa to porcine skin and aortic skin after 7 days underwater, respectively. Especially, the EMTA/Zn2+ bioadhesive exhibits outstanding sealing performance in vitro with the high burst pressure of 525 mmHg (70 kPa) and 337.5 mmHg (45 kPa) to porcine skin and aortic skin, respectively. Moreover, the EMTA/Zn2+ bioadhesive not only has outstanding hemocompatibility and good biodegradability but also exhibits excellent cytocompatibility and antibacterial properties. Notably, the EMTA/Zn2+ bioadhesive has remarkable instant sealing hemostatic ability for hemorrhaging liver in vivo. Therefore, the prepared plant oil-based EMTA/Zn2+ bioadhesive can serve as a charming alternative candidate for instant sealing hemostasis in clinical applications, especially in traumatic internal organs and arterial bleeding.
Collapse
Affiliation(s)
- Zhen Wang
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Tong Wu
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Siyuan Yu
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Fangzheng Zhao
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Chunyue Zhao
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| |
Collapse
|
3
|
Li M, Jin M, Yang H. Remodelers of the vascular microenvironment: The effect of biopolymeric hydrogels on vascular diseases. Int J Biol Macromol 2024; 264:130764. [PMID: 38462100 DOI: 10.1016/j.ijbiomac.2024.130764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Vascular disease is the leading health problem worldwide. Vascular microenvironment encompasses diverse cell types, including those within the vascular wall, blood cells, stromal cells, and immune cells. Initiation of the inflammatory state of the vascular microenvironment and changes in its mechanics can profoundly affect vascular homeostasis. Biomedical materials play a crucial role in modern medicine, hydrogels, characterized by their high-water content, have been increasingly utilized as a three-dimensional interaction network. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular microenvironment have enabled the treatment of vascular diseases. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the various vascular diseases including atherosclerosis, aneurysm, vascular ulcers of the lower limbs and myocardial infarction. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments.
Collapse
Affiliation(s)
- Minhao Li
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
4
|
Shin HH, Ryu JH. Bio-Inspired Self-Healing, Shear-Thinning, and Adhesive Gallic Acid-Conjugated Chitosan/Carbon Black Composite Hydrogels as Suture Support Materials. Biomimetics (Basel) 2023; 8:542. [PMID: 37999183 PMCID: PMC10669539 DOI: 10.3390/biomimetics8070542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The occurrence of leakage from anastomotic sites is a significant issue given its potential undesirable complications. The management of anastomotic leakage after gastrointestinal surgery is particularly crucial because it is directly associated with mortality and morbidity in patients. If adhesive materials could be used to support suturing in surgical procedures, many complications caused by leakage from the anastomosis sites could be prevented. In this study, we have developed self-healing, shear-thinning, tissue-adhesive, carbon-black-containing, gallic acid-conjugated chitosan (CB/Chi-gallol) hydrogels as sealing materials to be used with suturing. The addition of CB into Chi-gallol solution resulted in the formation of a crosslinked hydrogel with instantaneous solidification. In addition, these CB/Chi-gallol hydrogels showed enhancement of the elastic modulus (G') values with increased CB concentration. Furthermore, these hydrogels exhibited excellent self-healing, shear-thinning, and tissue-adhesive properties. Notably, the hydrogels successfully sealed the incision site with suturing, resulting in a significant increase in the bursting pressure. The proposed self-healing and adhesive hydrogels are potentially useful in versatile biomedical applications, particularly as suture support materials for surgical procedures.
Collapse
Affiliation(s)
- Hyun Ho Shin
- Department of Chemical Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
| | - Ji Hyun Ryu
- Department of Chemical Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
- Department of Carbon Convergence Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea
- Smart Convergence Materials Analysis Center, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea
| |
Collapse
|