1
|
Yang H, Wang H, Wang L, Sun M, Xu F, Ye H, Ren J, Yuan ZY. Optimized electronic structure induced by cobalt metaphosphate/phosphide for highly efficient hydrazine-assisted water splitting at high current densities. J Colloid Interface Sci 2025; 695:137765. [PMID: 40319518 DOI: 10.1016/j.jcis.2025.137765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Hydrazine oxidation reaction (HzOR) emerges as a superior alternative to the sluggish oxidation reaction (OER) due to the ultralow thermodynamic potential. Herein, abundant Co2P4O12/Co2P heterostructures were constructed in N-doped carbon (denoted Co2P4O12/Co2P@NC) derived from the waste cigarette butts through the carbonization and subsequent phosphorization process. Owing to the hierarchically wave-like architecture, well-defined electron transfer pathway, and strong interfacial coupling between Co2P4O12 and Co2P, Co2P4O12/Co2P@NC expressed outstanding electrocatalytic performance, requiring ultralow potentials of -207 and 91 mV at a large current density of 500 mA cm-2 for the hydrogen evolution reaction (HER) and HzOR, respectively. When integrated into a hydrazine-assisted water electrolysis as both electrodes, the device required only 0.79 V to drive 500 mA cm-2, significantly lower than that for traditional water electrolysis. Density functional theory (DFT) calculations revealed that the presence of Co2P4O12 optimized the energy barriers of crucial reaction intermediates and accelerated the reaction kinetics for HER and HzOR effectively. Furthermore, an innovative and economic parallel integrated system, entirely driven by solar energy, was proposed as a concept for successive energy-saving hydrogen. This work provides a promising and pragmatic path for energy-efficient hydrogen generation and high-value reutilization of cigarette butt simultaneously.
Collapse
Affiliation(s)
- Huimin Yang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Haoyu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Minglei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Feng Xu
- Tianjin Workstation, Technology Center of Shanghai Tobacco Group Co. Ltd., Tianjin 300163, China.
| | - Hongyu Ye
- Tianjin Workstation, Technology Center of Shanghai Tobacco Group Co. Ltd., Tianjin 300163, China
| | - Jintao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Ji K, Wang G, Wang S, Yao S, Ji Y, Ni BJ, Yang Z, Yan YM. Electrocatalytic N-H bond transformations: a zero-carbon paradigm for sustainable energy storage and conversion. Chem Commun (Camb) 2025; 61:7585-7599. [PMID: 40302689 DOI: 10.1039/d5cc01213a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
With the escalating challenges of environmental pollution and energy scarcity, the exploration of novel energy storage and conversion systems has become imperative. In contrast to traditional energy systems centered on C-H bonds, electrocatalytic energy systems based on N-H bonds offer a transformative approach by circumventing the limitations of carbon cycles and enabling a complete cycle from energy storage to conversion. This review comprehensively introduces the concept and advantages of zero-carbon energy systems based on electrocatalytic N-H bond formation and cleavage. We delve into the reaction mechanisms of key electrocatalytic processes within these systems, along with the development and applications of associated electrocatalysts. Finally, we discuss the development prospect and challenges of zero-carbon energy systems based on the N-H bond, which provides guidance for the application of clean energy storage and conversion.
Collapse
Affiliation(s)
- Kang Ji
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Guixi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Shiyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Shuyun Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Yingjie Ji
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney NSW 2052, Australia.
| | - Zhiyu Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Yi-Ming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
3
|
Fu X, Cheng D, Zhang A, Zhou J, Wang S, Wan C, Zhao X, Chen J, Sautet P, Huang Y, Duan X. High-Performance Cu 6Sn 5 Alloy Electrocatalysts for Formaldehyde Oxidative Dehydrogenation and Bipolar Hydrogen Production. Angew Chem Int Ed Engl 2025:e202503828. [PMID: 40328674 DOI: 10.1002/anie.202503828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/30/2025] [Accepted: 05/06/2025] [Indexed: 05/08/2025]
Abstract
Aldehyde-assisted water electrolysis offers an attractive pathway for energy-saving bipolar hydrogen production with combined faradaic efficiency (FE) of 200% while converting formaldehyde into value-added formate. Herein we report the design and synthesis of noble metal-free Cu6Sn5 alloy as a highly effective electrocatalyst for formaldehyde electro-oxidative dehydrogenation, demonstrating a geometric current density of 915 ± 46 mA cm-2 at 0.4 V versus reversible hydrogen electrode, outperforming many noble metal electrocatalysts reported previously. The formaldehyde-assisted water electrolyzer delivers 100 mA cm-2 at a low cell voltage of 0.124 V, and a current density of 486 ± 20 mA cm-2 at a cell voltage of 0.6 V without any iR compensation and exhibits nearly 200% faradaic efficiency for bipolar hydrogen production at 100 mA cm-2 in 88 h long-term operation. Density functional theory calculations further confirm the notably lowered barriers for dehydrogenation and Tafel steps on the Cu₆Sn₅ surface compared to Cu, underscoring its potential as a highly active catalyst.
Collapse
Affiliation(s)
- Xiaoyang Fu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dongfang Cheng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ao Zhang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jingxuan Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sibo Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Chengzhang Wan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xun Zhao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Philippe Sautet
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yu Huang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
4
|
Wang HY, Yuan ZY. Hydrazine-assisted water electrolysis system: performance enhancement and application expansion. MATERIALS HORIZONS 2025. [PMID: 40289549 DOI: 10.1039/d5mh00118h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Powered by renewable energy sources, water electrolysis has emerged as a highly promising technology for energy conversion, attracting significant attention in recent years, but it faces severe challenges, especially at the anode. Accordingly, hydrazine-assisted water electrolysis, incorporating the electro-oxidation of hydrazine at the anode, holds great promise for greatly reducing the input voltage and optimizing the system by application expansion. In this review, we present an in-depth overview of hydrazine-assisted water electrolysis, introducing its reaction mechanisms, basic parameters, specific advantages compared with conventional water electrolysis and other hybrid water electrolysis systems, strategies for developing efficient electrocatalysts with enhanced electrocatalytic performances, and especially its potential application expansion. An analysis of its technical and economic aspects, feasibility studies, mechanistic investigations, and relevant comparisons are also presented for providing a deeper insight into hydrazine-assisted water electrolysis. Finally, the potential avenues and opportunities for future research on hydrazine-assisted water electrolysis are discussed.
Collapse
Affiliation(s)
- Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300050, China.
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300050, China.
| |
Collapse
|
5
|
Zhou Y, Zhang L, Yang X, Xu G, Meng C, Li G, Lin Y, Sun C, Zhang N, Yi R, Zhang K, Jia L. Bifunctional transition-metal catalysts for energy-saving hydrogen generation from nitrogenous wastewater. Chem Commun (Camb) 2025; 61:4739-4756. [PMID: 40047462 DOI: 10.1039/d5cc00206k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Wastewater from industrial chemical synthesis, agricultural activities, and domestic sewage usually contains high levels of nitrogenous compounds, endangering environmental health and human well-being. Nitrogenous wastewater electrolysis (NWE), despite its ecological merits, is inherently hampered by sluggish kinetics. To improve process efficiency, lower costs, and avoid cross-contamination between the anode and cathode, a range of bifunctional transition-metal catalysts capable of efficient operation at both electrodes have recently been developed. This review outlines the progress in these catalysts for the energy-saving production of hydrogen from nitrogenous wastewater, including urea, hydrazine, and ammonia. It highlights their dual role in both degrading nitrogenous pollutants and generating hydrogen energy. The review meticulously introduces the key performance metrics of the NWE system and surveys the latest advancements in bifunctional transition-metal catalysts, along with their catalytic mechanisms. It culminates in a detailed summary and comparative analysis of representative bifunctional catalysts, emphasizing their electricity consumption and energy-saving efficiency. Lastly, the existing challenges and research prospects are thoroughly discussed.
Collapse
Affiliation(s)
- Yue Zhou
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Liang Zhang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Xin Yang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Guiyue Xu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Chao Meng
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Guoqiang Li
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Yan Lin
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Chongzheng Sun
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Ning Zhang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Ran Yi
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison 53706, USA.
| | - Kun Zhang
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Lichao Jia
- School of Materials Science and Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
6
|
Jiang S, Liu Y, Yang R, Zhang L, Liu W, Deng K, Yu H, Wang H, Wang L. Amorphous Ni(OH) 2 Coated Cu Dendrites with Superaerophobic Interface for Bipolar Hydrogen Production Assisted with Formaldehyde Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410478. [PMID: 39806856 DOI: 10.1002/smll.202410478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Since formaldehyde oxidation reaction (FOR) can release H2, it is attractive to construct a bipolar hydrogen production system consisting of FOR and hydrogen evolution reaction (HER). Although copper-based catalysts have attracted much attention due to their low cost and high FOR activity, the performance enhancement mechanism lacks in-depth investigation. Here, an amorphous-crystalline catalyst of amorphous nickel hydroxide-coated copper dendrites on copper foam (Cu@Ni(OH)2/CF) is prepared. The modification of Ni(OH)2 resulted in hydrophilic and aerophobic states on the Cu@Ni(OH)2/CF surface, facilitating the transport of liquid-phase species on the electrode surface and accelerating the release of H2. The Open circuit potential (OCP) and density functional theory (DFT) calculations indicate that this core-shell structure facilitates the adsorption of HCHO and OH-. In addition, the catalytic mechanism and reaction pathway of FOR are investigated through in situ FTIR and DFT calculations, and the results showed that the modification of Ni(OH)2 lowered the energy barrier for C─H bond breaking and H─H bond formation. In the HER//FOR system, Pt/C//Cu@Ni(OH)2/CF can provide a current density of 0.5 A cm-2 at 0.36 V and achieve efficient and stable H2 production. This work offers new ideas for designing electrocatalysts for bipolar hydrogen production system assisted with formaldehyde oxidation.
Collapse
Affiliation(s)
- Shaojian Jiang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yuhang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ruidong Yang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Lijun Zhang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wenke Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
7
|
Li W, Liu X, Li X, Lin H, Yan S, Lu J, Chen C, Lv Y. MoC x/CoP Janus Structure Embedded Carbon Frame for Boosting Hydrazine Oxidation and Hydrogen Evolution Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500135. [PMID: 39901536 DOI: 10.1002/smll.202500135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/21/2025] [Indexed: 02/05/2025]
Abstract
The integration of hydrazine electrooxidation (HzOR) and hydrogen evolution reaction (HER) presents an efficient pathway for high-purity hydrogen production. However, developing bifunctional catalysts remains challenging for the demands of multiple active-centers and tailored electronic properties. Here, a unique Janus nano-catalysts of MoCx/CoP embedded on carbon frameworks (MoCx/CoP@C) is introduced, featuring dual electronic states (depletion and accumulation)driven by charge redistribution within MoCx/CoP, acting as dual active-sites (DAS) for both HER and HzOR. Theoretical analysis reveals these independent DAS in MoCx/CoP significantly enhance catalytic activity for both HER and HzOR. Specifically, accumulated electrons at MoCx/CoP interfaces weaken the bonding strength of N-H in N2H4, thereby decreasing dehydrogenation energy barrier while electronic-deficient Mo sites within MoCx accelerate H* desorption, thus promoting HER kinetics. This catalyst exhibits ultra-low potential of -73 mV at 10 mA cm-2 for anodic HzOR, comparable to noble catalysts and low overpotential of 95 mV at 10 mA cm-2 for cathodic HER. When employed in an overall hydrazine splitting (OHzS) system, MoCx/CoP@C shows promising commercial potential, with low energy consumption (0.16 V), high Faradaic efficiency (95.4%) and long-term stability. This study underscores the feasibility of designing independent DAS catalysts and elucidates the mechanistic origins of bifunctional activities.
Collapse
Affiliation(s)
- Wenjin Li
- Analytical & Testing Center, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Xuan Liu
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, China
| | - Xinzhe Li
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, China
| | - Huihui Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Shuguang Yan
- Analytical & Testing Center, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Cheng Chen
- Analytical & Testing Center, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, No.29 Wangjiang Road, Chengdu, Sichuan, 610064, China
- Department of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| |
Collapse
|
8
|
Xu J, Zhong M, Yan S, Chen X, Li W, Xu M, Wang C, Lu X. Partial oxidation of Rh/Ru nanoparticles within carbon nanofibers for high-efficiency hydrazine oxidation-assisted hydrogen generation. J Colloid Interface Sci 2025; 679:171-180. [PMID: 39362142 DOI: 10.1016/j.jcis.2024.09.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Hydrazine oxidation reaction (HzOR), an alternative to oxygen evolution reaction, effectively mitigates hydrazine pollution while achieving energy-efficient hydrogen production. Herein, partially oxidized Ru/Rh nanoparticles embedded in carbon nanofibers (CNFs) are fabricated as a bifunctional electrocatalyst for hydrogen evolution reaction (HER) and HzOR. The presence of multiple components including metallic Ru and Rh and their oxides provides numerous electrochemically active sites and superior charge transfer properties, thus improving the electrocatalytic performance. Additionally, the confinement of the active components within CNFs further enhances structural stability. Consequently, the optimized electrocatalyst exhibits ultralow overpotentials of 16 mV at 10 mA cm-2 and 176 mV to reach an industry-level current density of 1 A cm-2 for HER, considerably outperforming the benchmark Pt/C catalyst. Furthermore, it shows an outstanding anodic HzOR activity, achieving a small potential of -0.019 V to generate 10 mAcm-2. A two-electrode overall hydrazine splitting (OHzS) cell prepared using the electrocatalyst operates at a compelling voltage that is 1.953 V lower than that of the overall water splitting (OWS) cell at 200 mA cm-2. Furthermore, the OHzS cell achieves a hydrogen production rate of 1.17 mmol h-1, which is 15-fold that of OWS. Additionally, Rh1Ru1Ox-CNFs-350 is used to construct a Zn-hydrazine battery with excellent performance. This study presents an effective system for achieving high-yielding green H2 production with low energy consumption while simultaneously addressing hydrazine pollution.
Collapse
Affiliation(s)
- Jiaqi Xu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Mengxiao Zhong
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, Jilin Province, 130012 PR China.
| | - Su Yan
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Xiaojie Chen
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Weimo Li
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Meijiao Xu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
9
|
Li J, Ma Y, Mu X, Wang X, Li Y, Ma H, Guo Z. Recent Advances and Perspectives on Coupled Water Electrolysis for Energy-Saving Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411964. [PMID: 39777433 PMCID: PMC11831450 DOI: 10.1002/advs.202411964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Overall water splitting (OWS) to produce hydrogen has attracted large attention in recent years due to its ecological-friendliness and sustainability. However, the efficiency of OWS has been forced by the sluggish kinetics of the four-electron oxygen evolution reaction (OER). The replacement of OER by alternative electrooxidation of small molecules with more thermodynamically favorable potentials may fundamentally break the limitation and achieve hydrogen production with low energy consumption, which may also be accompanied by the production of more value-added chemicals than oxygen or by electrochemical degradation of pollutants. This review critically assesses the latest discoveries in the coupled electrooxidation of various small molecules with OWS, including alcohols, aldehydes, amides, urea, hydrazine, etc. Emphasis is placed on the corresponding electrocatalyst design and related reaction mechanisms (e.g., dual hydrogenation and N-N bond breaking of hydrazine and C═N bond regulation in urea splitting to inhibit hazardous NCO- and NO- productions, etc.), along with emerging alternative electrooxidation reactions (electrooxidation of tetrazoles, furazans, iodide, quinolines, ascorbic acid, sterol, trimethylamine, etc.). Some new decoupled electrolysis and self-powered systems are also discussed in detail. Finally, the potential challenges and prospects of coupled water electrolysis systems are highlighted to aid future research directions.
Collapse
Affiliation(s)
- Jiachen Li
- Department of ChemistryThe University of Hong KongHong Kong999077China
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Yuqiang Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | | | | | - Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical MaterialsSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Haixia Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
- Zhijian LaboratoryXi'an710025China
| | - Zhengxiao Guo
- Department of ChemistryThe University of Hong KongHong Kong999077China
| |
Collapse
|
10
|
Gong F, Chen Z, Chang C, Song M, Zhao Y, Li H, Gong L, Zhang Y, Zhang J, Zhang Y, Wei S, Liu J. Hollow Mo/MoS Vn Nanoreactors with Tunable Built-in Electric Fields for Sustainable Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415269. [PMID: 39648536 PMCID: PMC11795732 DOI: 10.1002/adma.202415269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Constructing built-in electric field (BIEF) in heterojunction catalyst is an effective way to optimize adsorption/desorption of reaction intermediates, while its precise tailor to achieve efficient bifunctional electrocatalysis remains great challenge. Herein, the hollow Mo/MoSVn nanoreactors with tunable BIEFs are elaborately prepared to simultaneously promote hydrogen evolution reaction (HER) and urea oxidation reaction (UOR) for sustainable hydrogen production. The BIEF induced by sulfur vacancies can be modulated from 0.79 to 0.57 to 0.42 mV nm-1, and exhibits a parabola-shaped relationship with HER and UOR activities, the Mo/MoSV1 nanoreactor with moderate BIEF presents the best bifunctional activity. Theoretical calculations reveal that the moderate BIEF can evidently facilitate the hydrogen adsorption/desorption in the HER and the breakage of N─H bond in the UOR. The electrolyzer assembled with Mo/MoSV1 delivers a cell voltage of 1.49 V at 100 mA cm-2, which is 437 mV lower than that of traditional water electrolysis, and also presents excellent durability at 200 mA cm-2 for 200 h. Life cycle assessment indicates the HER||UOR system possesses notable superiority across various environment impact and energy consumption. This work can provide theoretical and experimental direction on the rational design of advanced materials for energy-saving and eco-friendly hydrogen production.
Collapse
Affiliation(s)
- Feilong Gong
- Key Laboratory of Surface and Interface Science and Technology of Henan ProvinceCollege of Material and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouHenan450000P. R. China
| | - Zhilin Chen
- Key Laboratory of Surface and Interface Science and Technology of Henan ProvinceCollege of Material and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouHenan450000P. R. China
| | - Chaoqun Chang
- Key Laboratory of Surface and Interface Science and Technology of Henan ProvinceCollege of Material and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouHenan450000P. R. China
| | - Min Song
- Key Laboratory of Surface and Interface Science and Technology of Henan ProvinceCollege of Material and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouHenan450000P. R. China
| | - Yang Zhao
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Haitao Li
- College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhotInner Mongolia010021P. R. China
| | - Lihua Gong
- Key Laboratory of Surface and Interface Science and Technology of Henan ProvinceCollege of Material and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouHenan450000P. R. China
| | - Yali Zhang
- School of Economics and ManagementInner Mongolia UniversityHohhotInner Mongolia010021P. R. China
| | - Jie Zhang
- Key Laboratory of Surface and Interface Science and Technology of Henan ProvinceCollege of Material and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouHenan450000P. R. China
| | - Yonghui Zhang
- Key Laboratory of Surface and Interface Science and Technology of Henan ProvinceCollege of Material and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouHenan450000P. R. China
| | - Shizhong Wei
- Key Laboratory of Surface and Interface Science and Technology of Henan ProvinceCollege of Material and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouHenan450000P. R. China
| | - Jian Liu
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
- College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhotInner Mongolia010021P. R. China
- DICP‐Surrey Joint Centre for Future MaterialsDepartment of Chemical and Process Engineering and Advanced Technology Institute of University of SurreyGuildfordSurreyGU2 7XHUK
| |
Collapse
|
11
|
Guan Y, Kümper J, Kumari S, Heiming N, Mürtz SD, Steinmann SN, Palkovits S, Palkovits R, Sautet P. Probing the Electric Double-Layer Capacitance to Understand the Reaction Environment in Conditions of Electrochemical Amination of Acetone. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4087-4097. [PMID: 39746032 PMCID: PMC11744509 DOI: 10.1021/acsami.4c14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/19/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
To elucidate interfacial dynamics during electrocatalytic reactions, it is crucial to understand the adsorption behavior of organic molecules on catalytic electrodes within the electric double layer (EDL). However, the EDL structure in aqueous environments remains intricate when it comes to the electrochemical amination of acetone, using methylamine as a nitrogen source. Specifically, the interactions of acetone and methylamine with the copper electrode in water remain unclear, posing challenges in the prediction and optimization of reaction outcomes. In this study, initial investigations employed impedance spectroscopy at the potential of zero charge to explore the surface preconfiguration. Here, the capacitance of the EDL was utilized as a primary descriptor to analyze the adsorption tendencies of both acetone and methylamine. Acetone shows an increase in the EDL capacitance, while methylamine shows a decrease. Experiments are interpreted using combined grand canonical density functional theory and ab initio molecular dynamics to delve into the microscopic configurations, focusing on their capacitance and polarizability. Methylamine and acetone have larger molecular polarizability than water. Acetone shows a partial hydrophobic character due to the methyl groups, forming a distinct adlayer at the interface and increasing the polarizability of the liquid interface component. In contrast, methylamine interacts more strongly with water due to its ability to both donate and accept hydrogen bonds, leading to a more significant disruption of the hydrogen bond network. This disruption of the hydrogen network decreases the local polarizability of the interface and decreases the effective capacitance. Our findings underscore the pivotal role of EDL capacitance and polarizability in determining the local reaction environment, shedding light on the fundamental processes important for electro-catalysis.
Collapse
Affiliation(s)
- Yani Guan
- Department
of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Justus Kümper
- Chair
of Heterogeneous Catalysis and Technical Chemistry RWTH Aachen University Worringerweg 2, 52074 Aachen, Germany
| | - Simran Kumari
- Department
of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Nick Heiming
- Chair
of Heterogeneous Catalysis and Technical Chemistry RWTH Aachen University Worringerweg 2, 52074 Aachen, Germany
| | - Sonja D. Mürtz
- Chair
of Heterogeneous Catalysis and Technical Chemistry RWTH Aachen University Worringerweg 2, 52074 Aachen, Germany
| | - Stephan N. Steinmann
- CNRS,
Laboratoire de Chimie UMR 5182, ENS de Lyon, 46 allée d’Italie, Lyon F-69342, France
| | - Stefan Palkovits
- Chair
of Heterogeneous Catalysis and Technical Chemistry RWTH Aachen University Worringerweg 2, 52074 Aachen, Germany
| | - Regina Palkovits
- Chair
of Heterogeneous Catalysis and Technical Chemistry RWTH Aachen University Worringerweg 2, 52074 Aachen, Germany
- Institute
for Sustainable Hydrogen Economy (INW-2), Forschungszentrum Jülich, Marie-Curie-Str. 5, 52428 Jülich, Germany
| | - Philippe Sautet
- Department
of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
12
|
Chang Y, Kong L, Xu D, Lu X, Wang S, Li Y, Bao J, Wang Y, Liu Y. Mo Migration-Induced Crystalline to Amorphous Conversion and Formation of RuMo/NiMoO 4 Heterogeneous Nanoarray for Hydrazine-Assisted Water Splitting at Large Current Density. Angew Chem Int Ed Engl 2025; 64:e202414234. [PMID: 39225452 DOI: 10.1002/anie.202414234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
Manipulating the atomic structure of the catalyst and tailoring the dissociative water-hydrogen bonding network at the catalyst-electrolyte interface is essential for propelling alkaline hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR), but remains a great challenge. Herein, we constructed an advanced a-RuMo/NiMoO4/NF heterogeneous electrocatalyst with amorphous RuMo alloy nanoclusters anchored to amorphous NiMoO4 skeletons on Ni foam by a heteroatom implantation strategy. Theoretical calculations and in situ Raman tests show that the amorphous and alloying structure of a-RuMo/NiMoO4/NF not only induces the directional evolution of interfacial H2O, but also lowers the d-band center (from -0.43 to -2.22 eV) of a-RuMo/NiMoO4/NF, the Gibbs free energy of hydrogen adsorption (ΔGH*, from -1.29 to -0.06 eV), and the energy barrier of HzOR (ΔGN2(g)=1.50 eV to ΔGN2*=0.47 eV). Profiting from these favorable factors, the a-RuMo/NiMoO4/NF exhibits excellent electrocatalytic performances, especially at large current densities, with an overpotential of 13 and 129 mV to reach 10 and 1000 mA cm-2 for HER. While for HzOR, it needs only -91 and 276 mV to deliver 10 and 500 mA cm-2, respectively. Further, the constructed a-RuMo/NiMoO4/NF||a-RuMo/NiMoO4/NF electrolyzer demands only 7 and 420 mV to afford 10 and 500 mA cm-2.
Collapse
Affiliation(s)
- Yanan Chang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Lingyi Kong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Dongdong Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Xuyun Lu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Shasha Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Yafei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Jianchun Bao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Yu Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Ying Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| |
Collapse
|
13
|
Sun ML, Wang HY, Feng Y, Ren JT, Wang L, Yuan ZY. Electrodegradation of nitrogenous pollutants in sewage: from reaction fundamentals to energy valorization applications. Chem Soc Rev 2024; 53:11908-11966. [PMID: 39498737 DOI: 10.1039/d4cs00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The excessive accumulation of nitrogen pollutants (mainly nitrate, nitrite, ammonia nitrogen, hydrazine, and urea) in water bodies seriously disrupts the natural nitrogen cycle and poses a significant threat to human life and health. Electrolysis is considered a promising method to degrade these nitrogenous pollutants in sewage, with the advantages of high efficiency, wide generality, easy operability, retrievability, and environmental friendliness. For particular energy devices, including metal-nitrate batteries, direct fuel cells, and hybrid water electrolyzers, the realization of energy valorization from sewage purification processes (e.g., valuable chemical generation, electricity output, and hydrogen production) becomes feasible. Despite the progress in the research on pollutant electrodegradation, the development of electrocatalysts with high activity, stability, and selectivity for pollutant removal, coupled with corresponding energy devices, remains a challenge. This review comprehensively provides advanced insights into the electrodegradation processes of nitrogenous pollutants and relevant energy valorization strategies, focusing on the reaction mechanisms, activity descriptors, electrocatalyst design, and actuated electrodes and operation parameters of tailored energy conversion devices. A feasibility analysis of electrodegradation on real wastewater samples from the perspective of pollutant concentration, pollutant accumulation, and electrolyte effects is provided. Challenges and prospects for the future development of electrodegradation systems are also discussed in detail to bridge the gap between experimental trials and commercial applications.
Collapse
Affiliation(s)
- Ming-Lei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Yi Feng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| |
Collapse
|
14
|
Schott C, Schneider PM, Song KT, Yu H, Götz R, Haimerl F, Gubanova E, Zhou J, Schmidt TO, Zhang Q, Alexandrov V, Bandarenka AS. How to Assess and Predict Electrical Double Layer Properties. Implications for Electrocatalysis. Chem Rev 2024; 124:12391-12462. [PMID: 39527623 PMCID: PMC11613321 DOI: 10.1021/acs.chemrev.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
The electrical double layer (EDL) plays a central role in electrochemical energy systems, impacting charge transfer mechanisms and reaction rates. The fundamental importance of the EDL in interfacial electrochemistry has motivated researchers to develop theoretical and experimental approaches to assess EDL properties. In this contribution, we review recent progress in evaluating EDL characteristics such as the double-layer capacitance, highlighting some discrepancies between theory and experiment and discussing strategies for their reconciliation. We further discuss the merits and challenges of various experimental techniques and theoretical approaches having important implications for aqueous electrocatalysis. A strong emphasis is placed on the substantial impact of the electrode composition and structure and the electrolyte chemistry on the double-layer properties. In addition, we review the effects of temperature and pressure and compare solid-liquid interfaces to solid-solid interfaces.
Collapse
Affiliation(s)
- Christian
M. Schott
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Peter M. Schneider
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Kun-Ting Song
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Haiting Yu
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Rainer Götz
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Felix Haimerl
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- BMW
AG, Petuelring 130, 80809 München, Germany
| | - Elena Gubanova
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Jian Zhou
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Thorsten O. Schmidt
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Qiwei Zhang
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- State
Key Laboratory of Urban Water Resource and Environment, School of
Environment, Harbin Institute of Technology, Harbin 150090, People’s Republic of China
| | - Vitaly Alexandrov
- Department
of Chemical and Biomolecular Engineering and Nebraska Center for Materials
and Nanoscience, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Aliaksandr S. Bandarenka
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Straße 1, 85748 Garching bei München, Germany
| |
Collapse
|
15
|
Pan S, Xie Y, Li C, Li C, Sun Y, Yang Z. Hydrogen spillover for boosted catalytic activity towards hydrazine oxidation. Chem Commun (Camb) 2024. [PMID: 39555607 DOI: 10.1039/d4cc05659k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A nanoflower-like MoO2-Rh electrocatalyst exhibits a 3.5-fold higher mass activity in the hydrazine oxidation reaction compared with metallic Rh, attributed to the hydrogen spillover, acting as a hydrogen pump to deplete hydrogen from the Rh active site.
Collapse
Affiliation(s)
- Shuyuan Pan
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China.
| | - Yuhua Xie
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China.
| | - Chen Li
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, China.
| | - Chunsheng Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, China.
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, China
| | - Yan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, China.
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, China
| | - Zehui Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China.
| |
Collapse
|
16
|
Cui WG, Gao F, Na G, Wang X, Li Z, Yang Y, Niu Z, Qu Y, Wang D, Pan H. Insights into the pH effect on hydrogen electrocatalysis. Chem Soc Rev 2024; 53:10253-10311. [PMID: 39239864 DOI: 10.1039/d4cs00370e] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future.
Collapse
Affiliation(s)
- Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Guoquan Na
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xingqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhenglong Li
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhiqiang Niu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| |
Collapse
|
17
|
Chen L, Zhao W, Zhang J, Liu M, Jia Y, Wang R, Chai M. Recent Research on Iridium-Based Electrocatalysts for Acidic Oxygen Evolution Reaction from the Origin of Reaction Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403845. [PMID: 38940392 DOI: 10.1002/smll.202403845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/18/2024] [Indexed: 06/29/2024]
Abstract
As the anode reaction of proton exchange membrane water electrolysis (PEMWE), the acidic oxygen evolution reaction (OER) is one of the main obstacles to the practical application of PEMWE due to its sluggish four-electron transfer process. The development of high-performance acidic OER electrocatalysts has become the key to improving the reaction kinetics. To date, although various excellent acidic OER electrocatalysts have been widely researched, Ir-based nanomaterials are still state-of-the-art electrocatalysts. Hence, a comprehensive and in-depth understanding of the reaction mechanism of Ir-based electrocatalysts is crucial for the precise optimization of catalytic performance. In this review, the origin and nature of the conventional adsorbate evolution mechanism (AEM) and the derived volcanic relationship on Ir-based electrocatalysts for acidic OER processes are summarized and some optimization strategies for Ir-based electrocatalysts based on the AEM are introduced. To further investigate the development strategy of high-performance Ir-based electrocatalysts, several unconventional OER mechanisms including dual-site mechanism and lattice oxygen mediated mechanism, and their applications are introduced in detail. Thereafter, the active species on Ir-based electrocatalysts at acidic OER are summarized and classified into surface Ir species and O species. Finally, the future development direction and prospect of Ir-based electrocatalysts for acidic OER are put forward.
Collapse
Affiliation(s)
- Ligang Chen
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Wei Zhao
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Juntao Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Min Liu
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Yin Jia
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Ruzhi Wang
- Institute of Advanced Energy Materials and Devices, College of Material Science and Engineering; Key Laboratory of Advanced Functional Materials of Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Maorong Chai
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| |
Collapse
|
18
|
Guan Y, Kümper J, Mürtz SD, Kumari S, Hausoul PJC, Palkovits R, Sautet P. Origin of copper dissolution under electrocatalytic reduction conditions involving amines. Chem Sci 2024:d4sc01944j. [PMID: 39170715 PMCID: PMC11331451 DOI: 10.1039/d4sc01944j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Cu dissolution has been identified as the dominant process that causes cathode degradation and losses even under cathodic conditions involving methylamine. Despite extensive experimental research, our fundamental and theoretical understanding of the atomic-scale mechanism for Cu dissolution under electrochemical conditions, eventually coupled with surface restructuring processes, is limited. Here, driven by the observation that the working Cu electrode is corroded using mixtures of acetone and methylamine even under reductive potential conditions (-0.75 V vs. RHE), we employed Grand Canonical density functional theory to understand this dynamic process under potential from a microscopic perspective. We show that amine ligands in solution directly chemisorb on the electrode, coordinate with the metal center, and drive the rearrangement of the copper surface by extracting Cu as adatoms in low coordination positions, where other amine ligands can coordinate and stabilize a surface copper-ligand complex, finally forming a detached Cu-amine cationic complex in solution, even under negative potential conditions. Calculations predict that dissolution would occur for a potential of -1.1 V vs. RHE or above. Our work provides a fundamental understanding of Cu dissolution facilitated by surface restructuring in amine solutions under electroreduction conditions, which is required for the rational design of durable Cu-based cathodes for electrochemical amination or other amine involving reduction processes.
Collapse
Affiliation(s)
- Yani Guan
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles Los Angeles CA 90095 USA
| | - Justus Kümper
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Sonja D Mürtz
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Simran Kumari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles Los Angeles CA 90095 USA
| | - Peter J C Hausoul
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Regina Palkovits
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
- Institute for Sustainable Hydrogen Economy (INW-2), Forschungszentrum Jülich Am Brainergy Park 4 52428 Jülich Germany
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles Los Angeles CA 90095 USA
- Department of Chemistry and Biochemistry, University of California Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
19
|
Li Y, Niu S, Liu P, Pan R, Zhang H, Ahmad N, Shi Y, Liang X, Cheng M, Chen S, Du J, Hu M, Wang D, Chen W, Li Y. Ruthenium Nanoclusters and Single Atoms on α-MoC/N-Doped Carbon Achieves Low-Input/Input-Free Hydrogen Evolution via Decoupled/Coupled Hydrazine Oxidation. Angew Chem Int Ed Engl 2024; 63:e202316755. [PMID: 38739420 DOI: 10.1002/anie.202316755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/13/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
The hydrazine oxidation-assisted H2 evolution method promises low-input and input-free hydrogen production. However, developing high-performance catalysts for hydrazine oxidation (HzOR) and hydrogen evolution (HER) is challenging. Here, we introduce a bifunctional electrocatalyst α-MoC/N-C/RuNSA, merging ruthenium (Ru) nanoclusters (NCs) and single atoms (SA) into cubic α-MoC nanoparticles-decorated N-doped carbon (α-MoC/N-C) nanowires, through electrodeposition. The composite showcases exceptional activity for both HzOR and HER, requiring -80 mV and -9 mV respectively to reach 10 mA cm-2. Theoretical and experimental insights confirm the importance of two Ru species for bifunctionality: NCs enhance the conductivity, and its coexistence with SA balances the H ad/desorption for HER and facilitates the initial dehydrogenation during the HzOR. In the overall hydrazine splitting (OHzS) system, α-MoC/N-C/RuNSA excels as both anode and cathode materials, achieving 10 mA cm-2 at just 64 mV. The zinc hydrazine (Zn-Hz) battery assembled with α-MoC/N-C/RuNSA cathode and Zn foil anode can exhibit 97.3 % energy efficiency, as well as temporary separation of hydrogen gas during the discharge process. Therefore, integrating Zn-Hz with OHzS system enables self-powered H2 evolution, even in hydrazine sewage. Overall, the amalgamation of NCs with SA achieves diverse catalytic activities for yielding multifold hydrogen gas through advanced cell-integrated-electrolyzer system.
Collapse
Affiliation(s)
- Yapeng Li
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shuwen Niu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shangdong, 266071, P. R. China
| | - Peigen Liu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Rongrong Pan
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huaikun Zhang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Nazir Ahmad
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yi Shi
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingyu Cheng
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Junyi Du
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, P. R. China
| | - Maolin Hu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
20
|
Gao X, Chen Y, Wang Y, Zhao L, Zhao X, Du J, Wu H, Chen A. Next-Generation Green Hydrogen: Progress and Perspective from Electricity, Catalyst to Electrolyte in Electrocatalytic Water Splitting. NANO-MICRO LETTERS 2024; 16:237. [PMID: 38967856 PMCID: PMC11226619 DOI: 10.1007/s40820-024-01424-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 07/06/2024]
Abstract
Green hydrogen from electrolysis of water has attracted widespread attention as a renewable power source. Among several hydrogen production methods, it has become the most promising technology. However, there is no large-scale renewable hydrogen production system currently that can compete with conventional fossil fuel hydrogen production. Renewable energy electrocatalytic water splitting is an ideal production technology with environmental cleanliness protection and good hydrogen purity, which meet the requirements of future development. This review summarizes and introduces the current status of hydrogen production by water splitting from three aspects: electricity, catalyst and electrolyte. In particular, the present situation and the latest progress of the key sources of power, catalytic materials and electrolyzers for electrocatalytic water splitting are introduced. Finally, the problems of hydrogen generation from electrolytic water splitting and directions of next-generation green hydrogen in the future are discussed and outlooked. It is expected that this review will have an important impact on the field of hydrogen production from water.
Collapse
Affiliation(s)
- Xueqing Gao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yutong Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yujun Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Luyao Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Xingyuan Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Haixia Wu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
21
|
Zhu Y, Chen Y, Feng Y, Meng X, Xia J, Zhang G. Constructing Ru-O-TM Bridge in NiFe-LDH Enables High Current Hydrazine-assisted H 2 Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401694. [PMID: 38721895 DOI: 10.1002/adma.202401694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Hydrazine oxidation-assisted water splitting is a critical technology to tackle the high energy consumption in large-scale H2 production. Ru-based electrocatalysts hold promise for synergetic hydrogen reduction (HER) and hydrazine oxidation (HzOR) catalysis but are hindered by excessive superficial adsorption of reactant intermediate. Herein, this work designs Ru cluster anchoring on NiFe-LDH (denoted as Ruc/NiFe-LDH), which effectively enhances the intermediate adsorption capacity of Ru by constructing Ru─O─Ni/Fe bridges. Notably, it achieves an industrial current density of 1 A cm-2 at an unprecedentedly low voltage of 0.43 V, saving 3.94 kWh m-3 H2 in energy, and exhibits remarkable stability over 120 h at a high current density of 5 A cm-2. Advanced characterizations and theoretical calculation reveal that the presence of Ru─O─Ni/Fe bridges widens the d-band width (Wd) of the Ru cluster, leading to a lower d-band center and higher electron occupation on antibonding orbitals, thereby facilitating moderate adsorption energy and enhanced catalytic activity of Ru.
Collapse
Affiliation(s)
- Yin Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yanxu Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yafei Feng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiangmin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Science, Beijing, 100190, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Science, Beijing, 100190, China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
22
|
Gao J, Yu W, Liu J, Qin L, Cheng H, Cui X, Jiang L. Regulation of hydrogen binding energy via oxygen vacancy enables an efficient trifunctional Rh-Rh 2O 3 electrocatalyst for fuel cells and water splitting. J Colloid Interface Sci 2024; 664:766-778. [PMID: 38492378 DOI: 10.1016/j.jcis.2024.03.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Developing multi-functional electrocatalysts is of great practical significance for fuel cells and water splitting. Herein, Rh-Rh2O3 nanoclusters are prepared and the surface oxygen vacancy content is regulated elaborately by post-treatment. The optimized Rh-Rh2O3/C-400 exhibits superior trifunctional catalytic activity for hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR), i.e., the mass activity for HOR is 2.29 mA μgRh-1, and the overpotential for HER and HzOR at 10 mA cm-2 is as low as 12 mV and 31 mV, respectively, superior to the benchmark Pt/C. Rh-Rh2O3/C-400 also displays promising performance in practical devices, with the H2-O2 anion-exchange-membrane fuel cell delivering a peak power density of 0.66 W cm-2, and the hydrazine-assisted water splitting electrolyzer requiring a low electrolysis voltage of 0.161 V at 0.1 A cm-2. The experimental and theoretical investigations discover that the hydrogen binding energy (HBE) is linearly depended on surface oxygen vacancy contents, and the HBE directly determines the catalytic activity for HOR, HER and HzOR. This work not only innovates an efficient Rh-based nanocluster tri-functional electrocatalyst, but also eludicates the intrinsic relationship of surface structure-intermediate adsorption-catalytic activity.
Collapse
Affiliation(s)
- Jie Gao
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Wanqing Yu
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jing Liu
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| | - Lishuai Qin
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Haodong Cheng
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xuejing Cui
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Luhua Jiang
- Electrocatalysis & Nanomaterial Laboratory, College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| |
Collapse
|
23
|
Zhao S, Sun Y, Li H, Zeng S, Yao Q, Li R, Chen H, Qu K. Highly bifunctional Rh 2P on N,P-codoped carbon for hydrazine oxidation assisted energy-saving hydrogen production. Chem Commun (Camb) 2024; 60:5928-5931. [PMID: 38757204 DOI: 10.1039/d4cc01267d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Highly pure Rh2P nanoparticles on N,P-codoped carbon were synthesized by a simple "mix-and-pyrolyze" method using one kind of low-cost nucleotide as the carbon, nitrogen and phosphorus source, which exhibits excellent bifunctional activity for the hydrogen reduction and hydrazine oxidation reactions, achieving energy-efficient hydrogen production.
Collapse
Affiliation(s)
- Simeng Zhao
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | - Yu Sun
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | - Haibo Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | - Suyuan Zeng
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | - Rui Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | - Hongyan Chen
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| | - Konggang Qu
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
24
|
Cai L, Bai H, Kao CW, Jiang K, Pan H, Lu YR, Tan Y. Platinum-Ruthenium Dual-Atomic Sites Dispersed in Nanoporous Ni 0.85Se Enabling Ampere-Level Current Density Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311178. [PMID: 38224219 DOI: 10.1002/smll.202311178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Alkaline anion-exchange-membrane water electrolyzers (AEMWEs) using earth-abundant catalysts is a promising approach for the generation of green H2. However, the AEMWEs with alkaline electrolytes suffer from poor performance at high current density compared to proton exchange membrane electrolyzers. Here, atomically dispersed Pt-Ru dual sites co-embedded in nanoporous nickel selenides (np/Pt1Ru1-Ni0.85Se) are developed by a rapid melt-quenching approach to achieve highly-efficient alkaline hydrogen evolution reaction. The np/Pt1Ru1-Ni0.85Se catalyst shows ampere-level current density with a low overpotential (46 mV at 10 mA cm-2 and 225 mV at 1000 mA cm-2), low Tafel slope (32.4 mV dec-1), and excellent long-term durability, significantly outperforming the benchmark Pt/C catalyst and other advanced large-current catalysts. The remarkable HER performance of nanoporous Pt1Ru1-Ni0.85Se is attributed to the strong intracrystal electronic metal-support interaction (IEMSI) between Pt-Se-Ru sites and Ni0.85Se support which can greatly enlarge the charge redistribution density, reduce the energy barrier of water dissociation, and optimize the potential determining step. Furthermore, the assembled alkaline AEMWE with an ultralow Pt and Ru loading realizes an industrial-level current density of 1 A cm-2 at 1.84 volts with high durability.
Collapse
Affiliation(s)
- Lebin Cai
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R., 999078, China
| | - Cheng-Wei Kao
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Kang Jiang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R., 999078, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yongwen Tan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
25
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
26
|
Feng J, Duan N, Yang S, Tian H, Sun B. A colorimetric probe for the detection of hydrazine and its application. ANAL SCI 2024; 40:439-444. [PMID: 38085444 DOI: 10.1007/s44211-023-00473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/13/2023] [Indexed: 02/27/2024]
Abstract
A colorimetric probe was developed to detect N2H4 content based on the colour change in natural light, and the recognition mechanism is the N2H4 cutting the ester bond of probe 1. As the N2H4 concentration increases, the Ultraviolet absorption ratio (A352nm/A505nm) of the probe solution was gradually increases, and the colour of the solution changed from colourless to pink under natural light. The detection limit of probe 1 for N2H4 was 0.1 μM. The probe can also be applied to test paper detection, and the test paper of probe was changed from colourless to fluorescent yellow under UV light as the concentration of N2H4 increased. There was a linear functional relationship between the RGB (Red, Green, Blue) values of the photos and the N2H4 concentration. Probe 1 is a rapid detection tool for N2H4 concentration using a smartphone. Furthermore, the probe can also be used to detect N2H4 in tap water, tea and apple juice.
Collapse
Affiliation(s)
- Jingyi Feng
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Ning Duan
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Shaoxiang Yang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, 100048, People's Republic of China.
| | - Hongyu Tian
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| |
Collapse
|
27
|
Sun M, Wang H, Wu H, Yang Y, Liu J, Cong R, Liang Z, Huang Z, Zheng J. Anion doping and interfacial effects in B-Ni 5P 4/Ni 2P for promoting urea-assisted hydrogen production in alkaline media. Dalton Trans 2024; 53:3559-3572. [PMID: 38284391 DOI: 10.1039/d3dt03340f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A bifunctional catalyst used for urea oxidation-assisted hydrogen production can efficiently catalyze the urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) simultaneously, thus simplifying electrolytic cell installation and reducing the cost. Constructing the heterointerface of two components or species and doping heteroatom are effective strategies to improve the performance of electrocatalysts, which could regulate the local electronic structure of the catalysts at their interface region, adjust their orbital overlap, and achieve enhanced catalytic performance. In this study, a simple hydrothermal method was studied for the preparation of B-doped Ni5P4/Ni2P heterostructures on nickel foam (B-Ni5P4/Ni2P@NF). Under 1 M KOH at a current density of 10 mA cm-2, an overpotential of 76 mV was obtained for the HER. When 0.3 M urea was added to 1 M KOH, the performance of the prepared catalyst was greatly improved. When the current density reached 10 mA cm-2, the potential was only 1.35 V. In addition, urea-assisted overall water splitting voltage was only 1.41 V. Thus, the B-Ni5P4/Ni2P catalyst possess excellent electrocatalytic activity. The main reason for the excellent properties of the electrocatalyst is the construction of heterostructure, which regulates the electronic structure of the catalyst at its interface and generates a new efficient active site. In addition, the doping of B atoms further promotes the charge transfer rate, thus strengthening the interaction between two phases and improving the catalytic performance. This study provides a simple, environmentally friendly, and rapid design method to prepare an active bi-functional electrocatalyst that has a positive effect on urea-assisted overall water splitting.
Collapse
Affiliation(s)
- Mingming Sun
- Basic Experimental Center for Natural Science, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huichao Wang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongjing Wu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuquan Yang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiajia Liu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Riyu Cong
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhengwenda Liang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Zhongning Huang
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| |
Collapse
|
28
|
Yang Y, Li X, Liu G, Liu H, Shi Y, Ye C, Fang Z, Ye M, Shen J. Hierarchical Ohmic Contact Interface Engineering for Efficient Hydrazine-Assisted Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307979. [PMID: 37879754 DOI: 10.1002/adma.202307979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Indexed: 10/27/2023]
Abstract
Hydrazine oxidation reaction coupled with hydrogen evolution reaction (HER) is an effective strategy to achieve low energy water splitting for hydrogen production. In order to realize the application of hydrazine-assisted HER system, researchers have been focusing on the development of electrocatalysts with integrated dual active sites, while the performance under high current density is still unsatisfying. In this work, hierarchical Ohmic contact interface engineering is designed and used as a bridge between the NiMo and Ni2 P heterojunction toward industrial current density applications, with the charge transfer impedance greatly eliminated via such a pathway with low energy barrier. As a proof-of-concept, the importance of charge redistribution and energy barrier at the Ohmic contact interface is investigated by significantly reducing the voltage of overall hydrazine splitting (OHzS) at high current density. Intriguingly, the NiMo/Ni2 P hierarchical Ohmic contact heterojunction can drive current densities of 100 and 500 mA cm-2 with only 181 and 343 mV cell voltage in the OHzS electrolyzer with high electrocatalytic stability. The proposed hierarchical Ohmic contact interface engineering paves new avenue for hydrogen production with low energy consumption.
Collapse
Affiliation(s)
- Yifan Yang
- Institute of Special Materials and Technology, Fudan University, Shanghai, 200433, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xuanyang Li
- Institute of Special Materials and Technology, Fudan University, Shanghai, 200433, P. R. China
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Guanglei Liu
- Institute of Special Materials and Technology, Fudan University, Shanghai, 200433, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Huixiang Liu
- Institute of Special Materials and Technology, Fudan University, Shanghai, 200433, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yuehao Shi
- Institute of Special Materials and Technology, Fudan University, Shanghai, 200433, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Chuming Ye
- Institute of Special Materials and Technology, Fudan University, Shanghai, 200433, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Zhan Fang
- Institute of Special Materials and Technology, Fudan University, Shanghai, 200433, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Mingxin Ye
- Institute of Special Materials and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Jianfeng Shen
- Institute of Special Materials and Technology, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
29
|
Yuan H, Jiang D, Li Z, Liu X, Tang Z, Zhang X, Zhao L, Huang M, Liu H, Song K, Zhou W. Laser Synthesis of PtMo Single-Atom Alloy Electrode for Ultralow Voltage Hydrogen Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305375. [PMID: 37930270 DOI: 10.1002/adma.202305375] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/10/2023] [Indexed: 11/07/2023]
Abstract
Maximizing atom-utilization efficiency and high current stability are crucial for the platinum (Pt)-based electrocatalysts for hydrogen evolution reaction (HER). Herein, the Pt single-atom anchored molybdenum (Mo) foil (Pt-SA/Mo-L) as a single-atom alloy electrode is synthesized by the laser ablation strategy. The local thermal effect with fast rising-cooling rate of laser can achieve the single-atom distribution of the precious metals (e.g., Pt, Rh, Ir, and Ru) onto the Mo foil. The synthesized self-standing Pt-SA/Mo-L electrode exhibits splendid catalytic activity (31 mV at 10 mA cm-2 ) and high-current-density stability (≈850 mA cm-2 for 50 h) for HER in acidic media. The strong coordination of Pt-Mo bonding in Pt-SA/Mo-L is critical for the efficient and stable HER. In addition, the ultralow electrolytic voltage of 0.598 V to afford the current density of 50 mA cm-2 is realized by utilization of the anodic molybdenum oxidation instead of the oxygen evolution reaction (OER). Here a universal synthetic strategy of single-atom alloys (PtMo, RhMo, IrMo, and RuMo) as self-standing electrodes is provided for ultralow voltage and membrane-free hydrogen production.
Collapse
Affiliation(s)
- Haifeng Yuan
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Di Jiang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Zhimeng Li
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Xiaoyu Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shandanan Road, Jinan, Shandong, 250100, P. R. China
| | - Zhenfei Tang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Xuzihan Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- School of Physics and Technology, University of Jinan, Jinan, 250022, P. R. China
| | - Lili Zhao
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Man Huang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shandanan Road, Jinan, Shandong, 250100, P. R. China
| | - Kepeng Song
- Electron Microscopy Center, Shandong University, 27 Shandanan Road, Jinan, Shandong, 250100, P. R. China
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
30
|
Hu T, Liu J, Yuan H, Zhang L, Wang Y. Interface Charge Distribution Engineering of Pd-CeO 2 /C for Efficient Carbohydrazide Oxidation Reaction. CHEMSUSCHEM 2024; 17:e202301078. [PMID: 37723645 DOI: 10.1002/cssc.202301078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Carbohydrazide electrooxidation reaction (COR) is a potential alternative to oxygen evolution reaction in water splitting process. However, the sluggish kinetics process impels to develop efficient catalysts with the aim of the widespread use of such catalytic system. Since COR concerns the adsorption/desorption of reactive species on catalysts, the electronic structure of electrocatalyst can affect the catalytic activity. Interface charge distribution engineering can be considered to be an efficient strategy for improving catalytic performance, which facilitates the cleavage of chemical bond. Herein, highly dispersed Pd nanoparticles on CeO2 /C catalyst are prepared and the COR catalytic performance is investigated. The self-driven charge transfer between Pd and CeO2 can form the local nucleophilic and electrophilic region, promoting to the adsorption of electron-withdrawing and electron-donating group in carbohydrazide molecule, which facilitates the cleavage of C-N bond and the carbohydrazide oxidation. Due to the local charge distribution, the Pd-CeO2 /C exhibits superior COR catalytic activity with a potential of 0.27 V to attain 10 mA cm-2 . When this catalyst is used for energy-efficient electrolytic hydrogen production, the carbohydrazide electrolysis configuration exhibits a low cell voltage (0.6 V at 10 mA cm-2 ). This interface charge distribution engineering can provide a novel strategy for improving COR catalytic activity.
Collapse
Affiliation(s)
- Tianjun Hu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Jiali Liu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Hongjie Yuan
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Limin Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Ying Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| |
Collapse
|
31
|
Feng G, Pan Y, Su D, Xia D. Constructing Fully-Active and Ultra-Active Sites in High-Entropy Alloy Nanoclusters for Hydrazine Oxidation-Assisted Electrolytic Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2309715. [PMID: 38118066 DOI: 10.1002/adma.202309715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Indexed: 12/22/2023]
Abstract
The development of sufficiently high-efficiency systems and effective catalysts for electrocatalytic hydrogen production is of great significance but challenging. Here, high-entropy alloy nanoclusters (HEANCs) with full-active sites and super-active sites are innovatively constructed for hydrazine oxidation-assisted electrolytic hydrogen production. The HEANCs show an average size of only seven atomic layers (1.48 nm). As the catalysts for both hydrogen evolution reaction (HER) and hydrazine oxidation reaction, the HEANC/C exhibits the best-level performance among reported electrocatalysts. Especially, the HEANC/C achieves an ultrahigh mass activity of 12.85 A mg-1 noble metals at -0.07 V and overpotential of only 9.5 mV for 10 mA cm-2 for alkaline HER. Further, with HEANC/C as both anode and cathode catalysts, an overall hydrazine oxidation-assisted splitting (OHzS) electrolyzer shows a record mass activity of 250.2 mA mg-1 catalysts at 0.1 V and only requires working voltages of 0.025 and 0.181 V to reach 10 and 100 mA cm-2 , respectively, outperforming those of overall water-splitting system and other reported chemicals-assisted hydrogen production systems. Active site libraries including 72 sites on HEANC surface are originally constructed by theoretical calculations, revealing that all sites on HEANC surface are effective active sites for OHzS; especially some are super-active sites, endowing the best-level performance of HEANC/C.
Collapse
Affiliation(s)
- Guang Feng
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yue Pan
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dingguo Xia
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Institute of Carbon Neutrality, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
32
|
Zhao Y, Sun Y, Li H, Zeng S, Li R, Yao Q, Chen H, Zheng Y, Qu K. Highly enhanced hydrazine oxidation on bifunctional Ni tailored by alloying for energy-efficient hydrogen production. J Colloid Interface Sci 2023; 652:1848-1856. [PMID: 37683412 DOI: 10.1016/j.jcis.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
The low-potential hydrazine oxidation reaction (HzOR) can replace the oxygen evolution reaction (OER) and thus assemble with the hydrogen evolution reaction (HER), consequently achieving energy-saving hydrogen (H2) production. Notably, developing sophisticated bifunctional electrocatalysts for HER and HzOR is a prerequisite for efficient H2 production. Alloying noble metals with eligible non-precious ones can increase affordability, catalytic activity, and stability, alongside rendering bifunctionality. Herein, RuNi alloy deposited onto carbon (RuNi/C) was directly prepared by a simple and highly practical co-reduction method, showing excellent performance for HER and HzOR. Interestingly, to achieve 10 mA cm-2, RuNi/C only required an ultralow potential of 24 mV for HER, on par with commercial 20 wt% platinum in carbon (Pt/C), and -65 mV for HzOR, surpassing most reported counterparts. Moreover, the two-electrode electrolyzer only required small operation voltages of 57.8 and 327 mV to drive 10 and 100 mA cm-2, respectively. Driven by a homemade hydrazine (N2H4) fuel cell and solar panel, appreciable H2 yields of 1.027 and 1.406 mmol h-1 were achieved, respectively, exhibiting the energy-saving advantages alongside robust practicability. Moreover, theoretical calculations revealed that alloying with Ru endows bifunctional Ni sites not only with a lower H2O dissociation barrier but also with more favorable H* adsorption alongside the reduced energy barrier between HzOR intermediates.
Collapse
Affiliation(s)
- Yujun Zhao
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Yu Sun
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Haibo Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Suyuan Zeng
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Hongyan Chen
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Konggang Qu
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
33
|
Zhu L, Xu D, Yi C. Ultrathin RhCo alloy nanowires with defect-rich active sites for alkaline hydrogen evolution electrocatalysis. Chem Commun (Camb) 2023; 59:13978-13981. [PMID: 37937406 DOI: 10.1039/d3cc04195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
One-dimensional RhCo alloy nanowires (NWs) with an ultrathin thickness (2.6 nm) and abundant defect sites were prepared in an aqueous solution by a nanoconfined attachment growth route within assembled columnar micelles. Thanks to dual synergies between advantageous anisotropic ultrathin structures and alloy compositions, they endowed one-dimensional RhCo NWs with superior activity and high stability for alkaline hydrogen evolution electrocatalysis.
Collapse
Affiliation(s)
- Luyu Zhu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Chenglin Yi
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
34
|
Meng G, Chang Z, Zhu L, Chen C, Chen Y, Tian H, Luo W, Sun W, Cui X, Shi J. Adsorption Site Regulations of [W-O]-Doped CoP Boosting the Hydrazine Oxidation-Coupled Hydrogen Evolution at Elevated Current Density. NANO-MICRO LETTERS 2023; 15:212. [PMID: 37707720 PMCID: PMC10501108 DOI: 10.1007/s40820-023-01185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023]
Abstract
Hydrazine oxidation reaction (HzOR) assisted hydrogen evolution reaction (HER) offers a feasible path for low power consumption to hydrogen production. Unfortunately however, the total electrooxidation of hydrazine in anode and the dissociation kinetics of water in cathode are critically depend on the interaction between the reaction intermediates and surface of catalysts, which are still challenging due to the totally different catalytic mechanisms. Herein, the [W-O] group with strong adsorption capacity is introduced into CoP nanoflakes to fabricate bifunctional catalyst, which possesses excellent catalytic performances towards both HER (185.60 mV at 1000 mA cm-2) and HzOR (78.99 mV at 10,00 mA cm-2) with the overall electrolyzer potential of 1.634 V lower than that of the water splitting system at 100 mA cm-2. The introduction of [W-O] groups, working as the adsorption sites for H2O dissociation and N2H4 dehydrogenation, leads to the formation of porous structure on CoP nanoflakes and regulates the electronic structure of Co through the linked O in [W-O] group as well, resultantly boosting the hydrogen production and HzOR. Moreover, a proof-of-concept direct hydrazine fuel cell-powered H2 production system has been assembled, realizing H2 evolution at a rate of 3.53 mmol cm-2 h-1 at room temperature without external electricity supply.
Collapse
Affiliation(s)
- Ge Meng
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ziwei Chang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Libo Zhu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Chang Chen
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yafeng Chen
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Han Tian
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Wenshu Luo
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wenping Sun
- State Key Laboratory of Clean Energy Utilization, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiangzhi Cui
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, People's Republic of China.
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|