1
|
Zhu Y, Wang D, Du C, Wu T, Wei P, Zheng H, Li G, Zheng S, Su L, Yan L, Hu Y, Wang H, Lin L, Ding C, Chen X. Ruthenium Single-Atom Nanozyme Driven Sonosensitizer with Oxygen Vacancies Enhances Electron-Hole Separation Efficacy and Remodels Tumor Microenvironment for Sonodynamic-Amplified Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416997. [PMID: 40279631 DOI: 10.1002/advs.202416997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/28/2025] [Indexed: 04/27/2025]
Abstract
Sonodynamic therapy (SDT) has emerged as a promising noninvasive approach for tumor therapy. However, the effectiveness of traditional inorganic semiconductor sonosensitizers is hindered by rapid electron (e-) and hole (h+) recombination under ultrasonic (US) stimulation, as well as the hypoxic and reductive conditions of tumor microenvironment (TME), which limit the generation of reactive oxygen species (ROS). Herein, a ruthenium (Ru) single-atom nanozyme-driven superimposition-enhanced titanium dioxide-based sonosensitizer (Ru/TiO2-x SAE) is presented that features sufficient oxygen vacancies and high e-/h+ separation efficiency. Through synchrotron radiation-based X-ray absorption spectroscopy and extended X-ray absorption fine structure analysis it is confirmed that oxygen vacancies in TiO2-x nanoparticles promote the immobilization of single-atomic Ru, forming Ru-O₄ active sites. Density functional theory calculations demonstrate that oxygen vacancies alter the electronic structure of nanosensitizer, enhanced e-/h+ separation, increasing oxygen adsorption, and accelerating reaction kinetics under US stimulation, ultimately improving ROS production. Moreover, Ru/TiO2-x SAE boosts sonodynamic efficacy by mitigating the hypoxic and reductive TME. This is attributed to its catalase- and glutathione peroxidase 4-like activities, which facilitate the generation of ROS and trigger lipid peroxidation-mediated ferroptosis. These findings highlight the innovative role of single-atom Ru in optimizing sonosensitizers for SDT-induced ferroptosis, demonstrating its potential for advancing cancer therapy.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Dengliang Wang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Chengzhong Du
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Tiantian Wu
- School of Pharmaceutical Sciences/NHC key laboratory of tropical disease control/School of Tropical Medicine, Hainan Medical University, Haikou, 571199, P. R. China
| | - Penghui Wei
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Hongjia Zheng
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Guanting Li
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - ShunZhe Zheng
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Lichao Su
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Lingjun Yan
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Yongrui Hu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Huimin Wang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Lisen Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Chenyu Ding
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350209, P. R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
2
|
Yu L, Gao L, Liang B, Zhang L, Wu M, Liu J. Polymer-based nanodrugs enhance sonodynamic therapy through epigenetic reprogramming of the immunosuppressive tumor microenvironment. J Control Release 2025; 380:125-137. [PMID: 39892649 DOI: 10.1016/j.jconrel.2025.01.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
While sonodynamic therapy (SDT) has shown promise in treating triple-negative breast cancer (TNBC) due to its non-invasive nature, deep tissue penetration, and induction of immunogenic cell death (ICD), its efficacy remains limited by the complex immunosuppressive tumor microenvironment (TME). In this study, we developed tumor microenvironment-responsive nanoparticles (GdNPs) to enhance SDT effectiveness through epigenetic reprogramming of the TME by encapsulating the sonosensitizer chlorin e6 (Ce6) and the histone deacetylase 6 (HDAC6) inhibitor Ricolinostat (Ric) (GdNPs/Ce6-Ric). GdNPs/Ce6-Ric effectively accumulate at tumor sites via the enhanced permeability and retention (EPR) effect and release Ce6 and Ric in response to the acidic TME. Upon ultrasound stimulation, GdNPs/Ce6-Ric induce cancer cell apoptosis and trigger ICD by generating reactive oxygen species (ROS), which activate cytotoxic T cells and promote tumor cell elimination. Notably, the epigenetic modulation by Ric within the immunosuppressive TME increased the proportion of natural killer (NK) cells and cytotoxic T cells while decreasing the population of immunosuppressive regulatory T (Treg) cells. This modulation synergistically enhanced the anti-tumor effects of SDT by downregulating the HDAC6/p-STAT3/PD-L1 pathway. Furthermore, GdNPs/Ce6-Ric minimized lung metastases by not only improving systemic immune responses but also inhibiting TGFβ-induced epithelial-mesenchymal transition (EMT) of tumor cells through the blockade of α-tubulin deacetylation. Thus, GdNPs/Ce6-Ric-based epigenetic modulation of the immunosuppressive TME offers a promising approach to enhance the efficacy of SDT in treating TNBC.
Collapse
Affiliation(s)
- Lin Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China
| | - Lulu Gao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China
| | - Bing Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China
| | - Lu Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China
| | - Min Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China
| | - Jingjing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China.
| |
Collapse
|
3
|
Wang Z, Wang X, Fang H, Song X, Ding L, Chang M, Yan H, Chen Y. 2D Indium-Vacancy-Rich ZnIn 2S 4 Nanocatalysts for Sonocatalytic Cancer Suppression by Boosting Cancer-Cell Pyroptosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414432. [PMID: 40207706 DOI: 10.1002/adma.202414432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/23/2025] [Indexed: 04/11/2025]
Abstract
Sonocatalytic therapy is gaining interest for its non-invasive nature, precise control, and excellent tissue penetration, making it a promising approach for treating malignant tumors. While defect engineering enhances electron and hole separation to boost reactive oxygen species (ROS) generation, challenges in constructing effective hole traps compared to electron traps severely limit ROS production. In this study, 2D ZnIn2S4-VIn nanosheets enriched are rationally designed with In vacancies for the efficient capture of electrons and holes, which has achieved substantial sonocatalytic performance in suppressing tumor growth. Compared to pristine ZnIn2S4 nanosheets, which possess a periodic electrostatic potential inherent in their structure, In vacancies effectively disrupt this potential field, promote the simultaneous separation and migration of charge carriers, and inhibit their recombination, thereby boosting ROS production and inducing tumor cell pyroptosis via the ROS-NLRP3-caspase-1-GSDMD pathway under ultrasound (US) irradiation. Furthermore, both pristine ZnIn2S4 and ZnIn2S4-VIn nanosheets exhibited remarkable biocompatibility. In vitro and in vivo antineoplastic experiments demonstrate that this sonocatalytic approach effectively promotes tumor elimination, underscoring the critical importance of defect-engineered optimization in sonocatalytic tumor therapy.
Collapse
Affiliation(s)
- Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Department of Ultrasound, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212002, P. R. China
| | - Xue Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Hongsheng Fang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Li Ding
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Hao Yan
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
4
|
Xie X, Zhang J, Sun L, Xu S, Ma SS, Wang H, Li X, Xiang Q, Cui L, Liang X. Ultrasound-triggered topical oxygen delivery enhances synergistic sonodynamic and antibody therapies against hypoxic gastric cancer. J Control Release 2025; 380:736-750. [PMID: 39947405 DOI: 10.1016/j.jconrel.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
Hypoxia is a common feature of malignant tumors, which can accelerate tumor growth and reduce the sensitivity of chemotherapy and sonodynamic therapy by activating the hypoxia-inducible factor (HIF) signaling pathway. In HER2-positive gastric cancer, HER2 overexpression enhances HIF-1α synthesis, exacerbating hypoxia and impairing sonodynamic therapy. It also reduces trastuzumab-mediated antibody-dependent cytotoxicity, significantly compromising therapeutic outcomes. Herein, pyropheophorbide-conjugated lipid (pyropheophorbide-lipid, PL) and trastuzumab were fabricated into targeted nanoparticles (TP NPs) for loading perfluorobromooctane (PFOB) carrying oxygen (TPPO NPs), thus enabling oxygen self-supplied sonodynamic and antibody therapies. In vitro experiments showed that antibody targeting significantly increased the cellular uptake of sonosensitizers, and the controlled release of oxygen was dependent on ultrasound parameters, greatly enhancing the killing effects of SDT and antibody therapy. In vivo animal experiments showed that TPPO NPs-mediated enhanced permeation and retention (EPR) effects, along with antibody targeting, improved the enrichment of sonosensitizers in tumors. Notably, ultrasound-triggered topical delivery of oxygen significantly alleviated tumor hypoxia and further improved the efficacy of SDT and antibody therapy. Given the good biosafety profile of TPPO NPs, this system holds great promise for future clinical applications in gastric cancer.
Collapse
Affiliation(s)
- Xinxin Xie
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Interdisciplinary Research in Gastrointestinal Oncology (BLGO), Peking University Third Hospital, Beijing 100191, China
| | - Jinxia Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Lihong Sun
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Shuyu Xu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Shiti Sha Ma
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Haonan Wang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoda Li
- Peking University Health Science Center, Beijing 100191, China
| | - Qiong Xiang
- Institute of Medicine, Medical Research Center, Jishou University, Jishou, Hunan, China
| | - Ligang Cui
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China.
| | - Xiaolong Liang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Interdisciplinary Research in Gastrointestinal Oncology (BLGO), Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
5
|
Yang A, Chen L, Tang S, Guo X, Su H, Jiang BP, Shen XC. Light/Ultrasound Dual Responsive Carbon Dots-Based Nanovaccines for Multimodal Activation Tumor Immunotherapy of Melanoma. Adv Healthc Mater 2025:e2405194. [PMID: 40200897 DOI: 10.1002/adhm.202405194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Melanoma is a highly aggressive and metastatic tumor, and immunotherapy has become the current solution. However, conventional nanovaccines do not strongly activate T cell immune responses. Therefore, development of effective therapeutic nanovaccines to activate systemic antitumor immunity is urgently required. Herein, light/ultrasound (US) dual-responsive carbon dot-based nanovaccines (Cu-N-CDs@OVA) are designed using copper-nitrogen-coordinated carbon dots composited with ovalbumin. Under 650-nm laser irradiation, Cu-N-CDs@OVA exhibited superior photothermal ablation of primary tumors, induced immunogenic cell death and released antigens by phototherapy, facilitating the maturation of dendritic cells (DCs). More importantly, Cu-N-CDs@OVA stably penetrated and diffused upon US treatment, eradicating metastatic tumors and generating low-dose reactive oxygen species to activate DCs. By integrating with the model antigen OVA, the combined multimodal treatment promotes DC maturation to activate systematic antitumor immunity. This is the first example of a light/US dual-responsive therapeutic nanovaccine that provides a paradigm for the production of personalized nanovaccines against malignant tumors.
Collapse
Affiliation(s)
- Aijia Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Li Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Shunxin Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xiaolu Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hongqin Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
6
|
Fang H, Zhu D, Chen Y, Zhang C, Li G, Fang Q, Chang M, Chen Y, Gao Y. Ultrasound-Responsive 4D Bioscaffold for Synergistic Sonopiezoelectric-Gaseous Osteosarcoma Therapy and Enhanced Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417208. [PMID: 40178027 DOI: 10.1002/advs.202417208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/02/2025] [Indexed: 04/05/2025]
Abstract
Various antitumor strategies have emerged to address the escalating need for effective tumor eradication. However, achieving precise and spatiotemporally controlled dynamic therapies remains promising yet challenging. Sonopiezoelectric nanotherapy eliminates tumor cells by generating reactive oxygen species (ROS) through ultrasound stimulation, enabling spatiotemporal control and ensuring safety during deep tissue penetration. In this study, a hybrid bioscaffold incorporating few-layer black phosphorus (BP) and nitric oxide (NO) donors are rationally designed and engineered for sonopiezoelectric-gaseous synergistic therapy. This ultrasound-responsive system provides a stepwise countermeasure against tumor invasion in bone tissues. Ultrasonic vibration induces mechanical strain in BP nanosheets, leading to piezoelectric polarization and subsequent ROS generation. Moreover, ultrasound-triggered NO burst release from the donors enables spatiotemporally controlled gas therapy. The synergistic effects of sonopiezoelectric therapy and ultrasound-excited gas therapy enhance tumor eradication, effectively inhibiting tumor proliferation and metastasis while minimizing off-target cytotoxicity. Additionally, the biomineralization capability of degradable BP and proangiogenic effects of low-concentration NO establish the hybrid bioscaffold as a bioactive platform that facilitates subsequent bone regeneration. The development of this 4D multifunctional therapeutic platform, characterized by superior sonopiezoelectric efficacy, controlled NO release, and stimulatory effects on tissue regeneration, offers new insights into the comprehensive treatment of invasive bone tumors.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gan Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qihang Fang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
7
|
Li W, Lin Z, Liu J, Zhang J, Li Y, Liu Y, Yuan X, Li H, Shen H. Pt(IV) prodrug as a potent nanosonosensitizer self-cyclically amplifies sonodynamic-chemotherapy with dually reversing cisplatin resistance. J Mater Chem B 2025; 13:3186-3197. [PMID: 39905853 DOI: 10.1039/d4tb02615b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Although sonodynamic therapy (SDT) has shown promising advancements in combination with chemotherapy, it frequently necessitates the requirement of conventional sonosensitizers and chemotherapeutic agents, engendering intricate systems and potential drug resistance. Herein, we fabricated a potent Pt(IV)-poly(amino acid) coordination nanosonosensitizer (PHPt) with dual reversal of cisplatin resistance, producing abundant 1O2 and ˙OH upon ultrasound irradiation without the use of any external sonosensitizers. The Pt(IV) prodrug in PHPt efficiently reduced to cisplatin through SDT-induced ˙H and glutathione (GSH), inducing ˙OH accumulation and CDDP release, which further amplified the oxidative stress on SDT. Moreover, the high GSH depletion performance of PHPt and administration of aspirin effectively inhibited cisplatin detoxification and activation of the nuclear factor-kappa B pathway, respectively. This cooperative action between the Pt(IV) prodrug and SDT in the tumor microenvironment promoted self-cyclic amplification of sonodynamic-chemotherapy, achieving a significant tumor inhibition rate of 99.4%. Thus, this study offers novel perspectives on the sonosensitizer development and cisplatin application in SDT.
Collapse
Affiliation(s)
- Wenxin Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ziyi Lin
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiahui Liu
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiarui Zhang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuxuan Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yian Liu
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinru Yuan
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Huimin Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Heyun Shen
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Wang Z, Han M, Wang Y, Wang N, Yang Y, Shao B, Miao Q, Shi Z, Yan F, Feng S. UiO-66 MOFs-Based "Epi-Nano-Sonosensitizer" for Ultrasound-Driven Cascade Immunotherapy against B-Cell Lymphoma. ACS NANO 2025; 19:6282-6298. [PMID: 39920081 DOI: 10.1021/acsnano.4c15761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
B-cell lymphoma (BCL) is a hematological malignancy with high heterogeneity and represents an aggressive proliferation of mature B-cells. Despite the initial success of traditional treatments for BCL in clinical trials, a majority of patients eventually develop resistance to therapy and have poor clinical outcomes. Epigenetic dysregulation is a major contributor to the pathogenesis of BCL, and therapies targeting epigenetic pathways is a promising alternative strategy for treating BCL. Herein, we developed a metal-organic framework (MOF)-based nano-sonosensitizer for ultrasound-driven cascade immunotherapy against BCL. The nano-sonosensitizer was synthesized by encapsulating copper complex of the m6A-mRNA demethylase inhibitor into UiO-66-NH2, which possesses a Z-scheme heterostructure and allows efficient electron-hole pair separation for generating reactive oxygen species (ROS) under ultrasound activation. These CuR@UiO66 sonosensitizers were functionalized with mPEG-PO3 and anti-CD19 antibody, and the resulting CRUPPA19 particles could specifically accumulate in the BCL tissue and also target lymphoma cells that infiltrated into the bone marrow. Once internalized, CRUPPA19 could induce intracellular ROS production and apoptosis under ultrasound irradiation. Subsequently, ultrasonic stimulation triggered autophagy-mediated release of Cu and Rhein from CRUPPA19, thereby increasing protein lipoylation and global mRNA methylation, which led to cuproptosis and the transcriptional repression PDL1, respectively. These cascades synergistically induced immunogenic cell death in the tumors and promoted activation of CD8+ T cells, eventually leading to an antilymphoma immune response. CRUPPA19-mediated sono-immunotherapy not only eliminated the primary and metastatic lymphomas but also cleared lymphoma cells from the bone marrow. This study provided an insight into a MOF-based nanoepigenetic therapy platform with ultrasound-triggered cascade amplification for enhanced antihematological tumor immunity.
Collapse
Affiliation(s)
- Zhihua Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Mingda Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yiqiao Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yilin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bingru Shao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qiannan Miao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
9
|
Gu L, Li X, Chen G, Yang H, Qian H, Pan J, Miao Y, Li Y. A glutathione-activated bismuth-gallic acid metal-organic framework nano-prodrug for enhanced sonodynamic therapy of breast tumor. J Colloid Interface Sci 2025; 679:214-223. [PMID: 39362146 DOI: 10.1016/j.jcis.2024.09.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Sonodynamic therapy is a promising, noninvasive, and precise tumor treatment that leverages sonosensitizers to generate cytotoxic reactive oxygen species during ultrasound stimulation. Gallic acid (GA), a natural polyphenol, possesses certain anti-tumor properties, but exhibits significant toxicity toward normal cells, limiting its application in cancer treatment. To overcome this issue, we synthesized a bismuth-gallic acid (BGA), coordinated metal-organic framework (MOF) nano-prodrug. Upon encountering glutathione (GSH), BGA gradually dissociated and depleted GSH, releasing GA, which had anti-tumor effects. As an MOF with semiconductor properties, BGA primarily produced superoxide anion radical upon ultrasound excitation. After the release of GA, GA generated superoxide anion radical and further produced high toxic singlet oxygen under ultrasound stimulation, while further oxidizing and consuming GSH, enhancing sonocatalytic performance. Additionally, the released GA induced cell cycle arrest, ultimately leading to apoptosis. Our results revealed that BGA, as a GSH-activated, metal-polyphenol MOF nano-prodrug, showed potential for use in breast tumor sonodynamic therapy, providing a novel strategy for precise tumor treatment.
Collapse
Affiliation(s)
- Liping Gu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueyu Li
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guobo Chen
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Han Yang
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huihui Qian
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junjie Pan
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
10
|
Wang L, Cao L, Shao K, Su J, Li G, Wang C, Li Q, Sun J, Zhang H, Liu K, Zhao W. Phytochlorin-Based Sonosensitizers Combined with Free-Field Ultrasound for Immune-Sonodynamic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410559. [PMID: 39801156 DOI: 10.1002/adma.202410559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/28/2024] [Indexed: 02/26/2025]
Abstract
Phytochlorins, a class of plant-derived tetrapyrroles, show great potential as sonosensitizers in sonodynamic therapy (SDT). The development of new phytochlorin-based sonosensitizers has significantly improved SDT, yet the absence of specialized sonodynamic systems limits their clinical translation. Herein, a dedicated ultrasound system along with a detailed step-by-step sonodynamic process from in vitro to in vivo is developed to activate phytochlorin-based sonosensitizers. Compared to standing-wave ultrasound, free-field ultrasound maintains stable acoustic pressure amplitudes and minimizes mechanical damage to cell membranes. In vitro experiments demonstrate that free-field ultrasound effectively activates naturally occurring phytochlorin, reducing the cavitation threshold for reactive oxygen species production and triggering immunogenic cell death. Furthermore, the intravenously injectable phytochlorin-based sonosensitizer (C34) enhances sonodynamic efficiency by reducing interfacial tension. Driven by in vivo free-field ultrasound, C34 effectively inhibits tumor growth in an orthotopic murine breast cancer model and elicits an immune response, preventing tumor metastasis. The reliable protocol provided by the free-field ultrasound system facilitates the activation of phytochlorin-based sonosensitizers while simultaneously stimulating the immune system, highlighting the potential of immune-sonodynamic therapy.
Collapse
Affiliation(s)
- Liu Wang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Cao
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jiangan Su
- EEC Biotech Co., Ltd., Guangzhou, 510070, China
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chao Wang
- EEC Biotech Co., Ltd., Guangzhou, 510070, China
| | - Qing Li
- EEC Biotech Co., Ltd., Guangzhou, 510070, China
| | - Jing Sun
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Weijie Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
11
|
Wang X, Guo X, Ren H, Song X, Chen L, Yu L, Ren J, Chen Y. An "Outer Piezoelectric and Inner Epigenetic" Logic-Gated PANoptosis for Osteosarcoma Sono-Immunotherapy and Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415814. [PMID: 39726343 DOI: 10.1002/adma.202415814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Indexed: 12/28/2024]
Abstract
The precise manipulation of PANoptosis, a newly defined cell death pathway encompassing pyroptosis, apoptosis, and necroptosis, is highly desired to achieve safer cancer immunotherapy with tumor-specific inflammatory responses and minimal side effects. Nonetheless, this objective remains a formidable challenge. Herein, an "AND" logic-gated strategy for accurately localized PANoptosis activation, utilizing composite 3D-printed bioactive glasses scaffolds integrated with epigenetic regulator-loaded porous piezoelectric SrTiO3 nanoparticles is proposed. The "logic-gated" strategy is co-programmed by an "outer" input signal of exogenous ultrasound irradiation to produce reactive oxygen species and an "inner" input signal of acid tumor microenvironment to ensure the epigenetic demethylation regulation, guaranteeing the tumor-specific PANoptosis. Specifically, immunogenic PANoptosis triggers dendritic cell maturation and cytotoxic T cell activation, amplifying antitumor immune responses and significantly suppressing osteosarcoma growth, with a suppression rate of ≈73.47 ± 5.2%. In addition, the well-known bioactivities of Sr-doped scaffolds expedite osteogenic differentiation and reinforce bone regeneration. Therefore, this work provides a paradigm of logic-gated sono-piezoelectric biomaterial platform with concurrently exogenous/endogenous activated PANoptosis for controlled sono-immunotherapy of osteosarcoma, and related bone defects repair.
Collapse
Affiliation(s)
- Xiaoting Wang
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, P. R. China
| | - Xun Guo
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Luodan Yu
- Department of Radiology, Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Jianli Ren
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, 400010, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
12
|
Li X, He G, Jin H, Xiang X, Li D, Peng R, Tao J, Li X, Wang K, Luo Y, Liu X. Ultrasound-Activated Precise Sono-Immunotherapy for Breast Cancer with Reduced Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407609. [PMID: 39680747 PMCID: PMC11791983 DOI: 10.1002/advs.202407609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/01/2024] [Indexed: 12/18/2024]
Abstract
Immune checkpoint inhibitors have demonstrated remarkable efficacy across various cancer types. However, immune-related adverse events (irAEs) pose a significant challenge in immunotherapy, particularly the associated pneumonia as the primary adverse reaction, which can lead to irreversible pulmonary fibrosis. Additionally, monotherapy with programmed death ligand (PD-L1) inhibitors has shown limited effectiveness. Therefore, to improve the response rate of immunotherapy and reduce pulmonary fibrosis, this study designed and prepared an intelligent nanodrug based on dendritic mesoporous silica nanoparticles (DMSNs) loaded with a sono-sensitive agent protoporphyrin IX (PpIX). Additionally, a reactive oxygen species (ROS) sensitive linker is used to attach the immunotherapeutic drug PD-L1 inhibitor (aPD-L1) to DMSNs via covalent bonds. The external ultrasound (US) activates PpIX to generate ROS, which breaks the linker to release aPD-L1 to induce sonodynamic therapy (SDT) and immunotherapy. This sono-immnotherapy approach demonstrated excellent outcomes in tumor inhibition, eliciting immune responses, and reducing pulmonary fibrosis. Overall, this study offers a new, efficient, and safe method for breast cancer treatment, and expands the application of immunotherapy.
Collapse
Affiliation(s)
- Xiang Li
- Department of Thyroid‐Breast SurgeryThe Fourth Affiliated Hospital of Nanjing Medical University298 Nanpu RoadNanjingJiangsu210032P. R. China
| | - Gao He
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical University300 Guangzhou RoadNanjingJiangsu210029P. R. China
- The Afffliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhou School of Clinical MedicineNanjing Medical University366 Taihu RoadTaizhouJiangsu225300P. R. China
| | - Hui Jin
- Department of Breast surgeryThe Affiliated Tumor Hospital of Nantong University30 Tongyang north roadNantongJiangsu226361P. R. China
| | - Xinyu Xiang
- Shanghai Engineering Research Center of Pharmaceutical Intelligent EquipmentShanghai Frontiers Science Research Center for Druggability of Cardiovascular Non‐coding RNAInstitute for Frontier Medical Technology School of Chemistry and Chemical Engineering Shanghai University of Engineering ScienceShanghai201620P. R. China
| | - Dong Li
- Shanghai Engineering Research Center of Pharmaceutical Intelligent EquipmentShanghai Frontiers Science Research Center for Druggability of Cardiovascular Non‐coding RNAInstitute for Frontier Medical Technology School of Chemistry and Chemical Engineering Shanghai University of Engineering ScienceShanghai201620P. R. China
| | - Renmiao Peng
- Shanghai Engineering Research Center of Pharmaceutical Intelligent EquipmentShanghai Frontiers Science Research Center for Druggability of Cardiovascular Non‐coding RNAInstitute for Frontier Medical Technology School of Chemistry and Chemical Engineering Shanghai University of Engineering ScienceShanghai201620P. R. China
| | - Jing Tao
- Department of Thyroid‐Breast SurgeryThe Fourth Affiliated Hospital of Nanjing Medical University298 Nanpu RoadNanjingJiangsu210032P. R. China
| | - Xinping Li
- Department of Thyroid‐Breast SurgeryThe Fourth Affiliated Hospital of Nanjing Medical University298 Nanpu RoadNanjingJiangsu210032P. R. China
| | - Kaiyang Wang
- Shanghai Engineering Research Center of Pharmaceutical Intelligent EquipmentShanghai Frontiers Science Research Center for Druggability of Cardiovascular Non‐coding RNAInstitute for Frontier Medical Technology School of Chemistry and Chemical Engineering Shanghai University of Engineering ScienceShanghai201620P. R. China
| | - Yu Luo
- Shanghai Engineering Research Center of Pharmaceutical Intelligent EquipmentShanghai Frontiers Science Research Center for Druggability of Cardiovascular Non‐coding RNAInstitute for Frontier Medical Technology School of Chemistry and Chemical Engineering Shanghai University of Engineering ScienceShanghai201620P. R. China
| | - Xiaoan Liu
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical University300 Guangzhou RoadNanjingJiangsu210029P. R. China
| |
Collapse
|
13
|
Jia W, Wu Y, Xie Y, Yu M, Chen Y. Advanced Polymeric Nanoparticles for Cancer Immunotherapy: Materials Engineering, Immunotherapeutic Mechanism and Clinical Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413603. [PMID: 39797474 DOI: 10.1002/adma.202413603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Indexed: 01/13/2025]
Abstract
Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies. PNPs provide an optimal platform to amplify the potency and minimize systematic toxicity in a broad spectrum of immunotherapeutic modalities. In this comprehensive review, the basics of polymer chemistry, and state-of-the-art designs of PNPs from a physicochemical standpoint for cancer immunotherapy, encompassing therapeutic cancer vaccines, in situ vaccination, adoptive T-cell therapies, tumor-infiltrating immune cell-targeted therapies, therapeutic antibodies, and cytokine therapies are delineated. Each immunotherapy necessitates distinctively tailored design strategies in polymeric nanoplatforms. The extensive applications of PNPs, and investigation of their mechanisms of action for enhanced efficacy are particularly focused on. The safety profiles of PNPs and clinical research progress are discussed. Additionally, forthcoming developments and emergent trends of polymeric nano-immunotherapeutics poised to transform cancer treatment paradigms into clinics are explored.
Collapse
Affiliation(s)
- Wencong Jia
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Ye Wu
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Shanghai Institute of Materdicine, Shanghai, 200051, China
| |
Collapse
|
14
|
Das B. Transition Metal Complex-Loaded Nanosystems: Advances in Stimuli-Responsive Cancer Therapies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410338. [PMID: 39663716 DOI: 10.1002/smll.202410338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Transition metal complex-loaded nanosystems (TMCNs) represent a cutting-edge platform for stimuli (light, ultrasound)-responsive cancer therapies. These nanosystems, incorporating metals such as manganese(II), zinc(II), ruthenium(II), rhenium(I), iridium(III), and platinum(IV), significantly enhance the efficacy of light-activated therapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), as well as ultrasound-activated treatments like sonodynamic therapy (SDT). TMCNs based on ruthenium(II), rhenium(I), and iridium(III) improve PDT, while manganese(II) and iridium(III) demonstrate exceptional sonosensitizing properties. In PTT, ruthenium(II) and iridium(III)-based TMCNs efficiently absorb light and generate heat. Emerging synergistic approaches that combine SDT, PTT, PDT, chemotherapy, and immunotherapy are demonstrated to be powerful strategies for precision cancer treatment. Zinc(II), ruthenium(II), iridium(III), and platinum(IV)-based TMCNs play a critical role in optimizing these therapies, enhancing tumor targeting, and reducing side effects. Furthermore, TMCNs can amplify immunotherapy by inducing immunogenic cell death, thus strengthening the immune response. These advances address key challenges such as tumor hypoxia and therapeutic resistance, opening new possibilities for innovative photosensitizer-based cancer treatments. This review highlights the latest progress in TMCNs design and applications, demonstrating their potential to revolutionize stimuli-responsive cancer therapies.
Collapse
Affiliation(s)
- Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, 741246, India
| |
Collapse
|
15
|
Yang EL, Wang WY, Liu YQ, Yi H, Lei A, Sun ZJ. Tumor-Targeted Catalytic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413210. [PMID: 39676382 DOI: 10.1002/adma.202413210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Cancer immunotherapy holds significant promise for improving cancer treatment efficacy; however, the low response rate remains a considerable challenge. To overcome this limitation, advanced catalytic materials offer potential in augmenting catalytic immunotherapy by modulating the immunosuppressive tumor microenvironment (TME) through precise biochemical reactions. Achieving optimal targeting precision and therapeutic efficacy necessitates a thorough understanding of the properties and underlying mechanisms of tumor-targeted catalytic materials. This review provides a comprehensive and systematic overview of recent advancements in tumor-targeted catalytic materials and their critical role in enhancing catalytic immunotherapy. It highlights the types of catalytic reactions, the construction strategies of catalytic materials, and their fundamental mechanisms for tumor targeting, including passive, bioactive, stimuli-responsive, and biomimetic targeting approaches. Furthermore, this review outlines various tumor-specific targeting strategies, encompassing tumor tissue, tumor cell, exogenous stimuli-responsive, TME-responsive, and cellular TME targeting strategies. Finally, the discussion addresses the challenges and future perspectives for transitioning catalytic materials into clinical applications, offering insights that pave the way for next-generation cancer therapies and provide substantial benefits to patients in clinical settings.
Collapse
Affiliation(s)
- En-Li Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Wu-Yin Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Ying-Qi Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
16
|
Lyu Y, Li Q, Xie S, Zhao Z, Ma L, Wu Z, Bao W, Cai Y, Liu H, He H, Xie K, Gao F, Yang Y, Wu P, He P, Wang K, Dai X, Wu H, Lan T, Cheng C. Synergistic Ultrasound-Activable Artificial Enzyme and Precision Gene Therapy to Suppress Redox Homeostasis and Malignant Phenotypes for Controllably Combating Hepatocellular Carcinoma. J Am Chem Soc 2025; 147:2350-2368. [PMID: 39723916 DOI: 10.1021/jacs.4c10997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most lethal malignant tumors. Multimodal therapeutics with synergistic effects for treating HCC have attracted increasing attention, for instance, designing biocompatible porphyrin-based nanomedicines for enzyme-mimetic and ultrasound (US)-activable reactive oxygen species (ROS) generation. Despite the promise, the landscape of such advancements remains sparse. Here, we propose the de novo design of a π-conjugated, osmium (Os)-coordinated polyporphyrin (P-Por-Os) nanovesicle to serve as an ultrasound-activable artificial enzyme for synergistic therapies to suppress redox homeostasis and malignant phenotypes for controllably combating HCC. Our findings reveal that the P-Por-Os with US showed superior, multifaceted, and controllable ROS-generating activities. This system not only subverts the redox balance within HCC cells but also achieves precise and controlled tumor ablation at remarkably low concentrations, as evidenced across cellular assays and animal models. In the liver orthotopic model, US not only activates the artificial enzyme to catalyze ROS but also facilitates remote-controlled ablation of HCC through precise US positioning. Moreover, the P-Por-Os + US can assist the precision gene therapy by knocking down the ROS resistance factor, MT2A, and down-regulating its downstream oncogene IGFBP2 to attenuate ROS resistance, proliferation, and migration of HCC efficiently. We suggest that the design of this ultrasound-activable artificial enzyme presents a promising avenue for the engineering of innovative tumoricidal materials, offering a synergistic therapeutic approach with high biosecurity for HCC treatment.
Collapse
Affiliation(s)
- Yinghao Lyu
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Sinan Xie
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lang Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhe Wu
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610093, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 641400, China
| | - Wen Bao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 641400, China
| | - Yunshi Cai
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Liu
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haorong He
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kunlin Xie
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengwei Gao
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Yang
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pu Wu
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Penghui He
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaipeng Wang
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinye Dai
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Wu
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tian Lan
- Department of General Surgery, Liver Transplant Center, Transplant Center, Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Yang H, Qu Y, Tian Y, Wang C, Sun Y, Dai Z, Yue X, Cheng W. Ultrasound-Targeted Microbubble Destruction Enhances the Inhibitory Effect of Sonodynamic Therapy against Hepatocellular Carcinoma. ACS OMEGA 2024; 9:51253-51263. [PMID: 39758613 PMCID: PMC11696411 DOI: 10.1021/acsomega.4c07746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025]
Abstract
Purpose: To assess the anticancer effect of microbubbles (MBs) in combination with sinoporphyrin sodium (DVDMS)-mediated sonodynamic therapy (SDT) for the in vitro and in vivo treatment of hepatocellular carcinoma (HCC). Methods: HepG2 cells were used for in vitro experiments. Reactive oxygen species (ROS) production was detected using 2',7'-dichlorodihydrofluorescein diacetate and singlet oxygen sensor green in vitro and in solution, respectively. Cytotoxicity was evaluated using a Cell Counting Kit 8 assay and the calcein AM/PI double-staining method. Annexin V-FITC/PI staining was employed to analyze the rate of cell apoptosis. Cell surface calreticulin exposure, high mobility group box 1 release, and adenosine triphosphate secretion were measured to detect immunogenic cell death (ICD). The anticancer effect of the combination therapy was further assessed in Hepa1-6 tumor-bearing mice. Results: Compared with SDT alone, ROS production in the MBs + SDT group was enhanced 1.2-fold (p < 0.0001). The cytotoxic effect of DVDMS-mediated SDT on HepG2 cells was concentration-dependent, and the additional application of MBs increased cytotoxicity. Additionally, MBs augmented the SDT-induced apoptosis rate from 33.26 ± 13.48 to 72.95 ± 7.95% (p < 0.01). Notably, our results demonstrated that MBs can enhance SDT-induced ICD. In in vivo experiments, SDT combined with MBs significantly reduced tumor volume, with negligible differences in mouse body weight. Furthermore, MBs effectively enhanced SDT-induced tumor tissue destruction. Conclusion: The present study indicates that MBs can markedly improve the anticancer effects of SDT in HCC.
Collapse
Affiliation(s)
- Huajing Yang
- Department
of Ultrasound, Harbin Medical University
Cancer Hospital, No.150 Haping Road, Harbin, Heilongjiang Province 150081, China
| | - Yunfeng Qu
- Department
of Biomedical Engineering, College of Future Technology, National
Biomedical Imaging Center, Peking University, No.5 Yiheyuan Road, Beijing 100871, China
| | - Yuhang Tian
- Department
of Ultrasound, Harbin Medical University
Cancer Hospital, No.150 Haping Road, Harbin, Heilongjiang Province 150081, China
| | - Chunyue Wang
- Department
of Ultrasound, Harbin Medical University
Cancer Hospital, No.150 Haping Road, Harbin, Heilongjiang Province 150081, China
| | - Yucao Sun
- Department
of Ultrasound, Harbin Medical University
Cancer Hospital, No.150 Haping Road, Harbin, Heilongjiang Province 150081, China
| | - Zhifei Dai
- Department
of Biomedical Engineering, College of Future Technology, National
Biomedical Imaging Center, Peking University, No.5 Yiheyuan Road, Beijing 100871, China
| | - Xiuli Yue
- School
of Environment, Harbin Institute of Technology, No.92 Xidazhi Street, Harbin, Heilongjiang Province 150001, China
| | - Wen Cheng
- Department
of Ultrasound, Harbin Medical University
Cancer Hospital, No.150 Haping Road, Harbin, Heilongjiang Province 150081, China
| |
Collapse
|
18
|
Hou DY, You Q, Zhang P, Li XP, Wu JC, Wang Y, You HH, Lv MY, Wu G, Liu X, Guo P, Cheng DB, Chen X, Xu W. Cascade-Activatable Nanoprodrug System Augments Sonochemotherapy of Bladder Cancer. ACS NANO 2024; 18:35507-35519. [PMID: 39686741 DOI: 10.1021/acsnano.4c12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Sonochemotherapy (SCT) has emerged as a powerful modality for cancer treatment by triggering excessive production of reactive oxygen species (ROS) and controlled release of chemotherapeutic agents under ultrasound. However, achieving spatiotemporally controlled release of chemotherapeutic agents during ROS generation is still an enormous challenge. In this work, we developed a cascade-activated nanoprodrug (CAN) system that utilizes a reversible covalent Schiff base mixed with a hypoxia-activatable camptothecin (CPT) prodrug. Briefly, the designed fluorinated CAN system is self-assembled into nanoparticles under aqueous conditions, which could penetrate deep tumors to offer sufficient oxygen for ultrasound-triggered ROS production. Consequently, the nanoparticles substantially exacerbated the hypoxia of the tumor microenvironment (TME) by elevating oxygen consumption. The aggravated hypoxia in turn served as a positive amplifier to boost the tumor-specific CPT release of Azo-CPT prodrug, which made up for the insufficient treatment efficacy of sonodynamic therapy (SDT). On this basis, we observed a substantial reduction, approximately 3.5-fold, in the half-maximal inhibitory concentration (IC50) of the CAN system compared to that of free CPT in bladder cancer cell lines (T24). Furthermore, the CAN system demonstrated potent antitumor efficacy with reduced side effects, resulting in regression and eradication of T24 tumors in various mouse models. In summary, the CAN system can be easily extended by incorporating different chemotherapeutic agents, showing great potential to revolutionize the clinical management paradigm of bladder cancer.
Collapse
Affiliation(s)
- Da-Yong Hou
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of PET-CT/MRI, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Peng Zhang
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Xiang-Peng Li
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Jiong-Cheng Wu
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Yueze Wang
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Hui-Hui You
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Mei-Yu Lv
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Gege Wu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xiao Liu
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Pengyu Guo
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, PR China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Wanhai Xu
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
19
|
Xu M, Hu Y, Wu J, Liu J, Pu K. Sonodynamic Nano-LYTACs Reverse Tumor Immunosuppressive Microenvironment for Cancer Immunotherapy. J Am Chem Soc 2024; 146:34669-34680. [PMID: 39644208 DOI: 10.1021/jacs.4c13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Extracellular and transmembrane proteins, which account for the products of approximately 40% of all protein-encoding genes in tumors, play a crucial role in shaping the tumor immunosuppressive microenvironment (TIME). While protein degradation therapy has been applied to membrane proteins of cancer cells, it has rarely been extended to immune cells. We herein report a polymeric nanolysosome targeting chimera (nano-LYTAC) that undergoes membrane protein degradation on M2 macrophages and generates a sonodynamic effect for combinational cancer immunotherapy. Nano-LYTAC is found to have higher degradation efficacy to the interleukin 4 receptor (IL-4R) compared to traditional inhibitors. More importantly, it is revealed that the effect of nano-LYTAC on the function of the M2 macrophage is concentration-dependent: downregulating CD206 expression and interleukin 10 (IL-10) secretion from M2 macrophages at low concentration, while triggering their apoptosis at high concentration. Moreover, nano-LYTAC is found to possess long tumor retention (>48 h), allowing for multiple sonodynamic treatments with a single dose. Such a synergistic sonodynamic immunotherapy mediated by nano-LYTAC effectively reprograms the TIME via inhibiting the functions of M2 macrophages and regulatory T cells (Tregs), as well as promoting the maturation of dendritic cells (DCs) and tumor infiltration of T effector cells (Teffs), completely suppressing tumor growth, inhibiting pulmonary metastasis, and preventing recurrence under preclinical animal models.
Collapse
Affiliation(s)
- Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Yuxuan Hu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
| |
Collapse
|
20
|
Fu X, Hu X. Ultrasound-Controlled Prodrug Activation: Emerging Strategies in Polymer Mechanochemistry and Sonodynamic Therapy. ACS APPLIED BIO MATERIALS 2024; 7:8040-8058. [PMID: 38698527 PMCID: PMC11653258 DOI: 10.1021/acsabm.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Ultrasound has gained prominence in biomedical applications due to its noninvasive nature and ability to penetrate deep tissue with spatial and temporal resolution. The burgeoning field of ultrasound-responsive prodrug systems exploits the mechanical and chemical effects of ultrasonication for the controlled activation of prodrugs. In polymer mechanochemistry, materials scientists exploit the sonomechanical effect of acoustic cavitation to mechanochemically activate force-sensitive prodrugs. On the other hand, researchers in the field of sonodynamic therapy adopt fundamentally distinct methodologies, utilizing the sonochemical effect (e.g., generation of reactive oxygen species) of ultrasound in the presence of sonosensitizers to induce chemical transformations that activate prodrugs. This cross-disciplinary review comprehensively examines these two divergent yet interrelated approaches, both of which originated from acoustic cavitation. It highlights molecular and materials design strategies and potential applications in diverse therapeutic contexts, from chemotherapy to immunotherapy and gene therapy methods, and discusses future directions in this rapidly advancing domain.
Collapse
Affiliation(s)
- Xuancheng Fu
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| | - Xiaoran Hu
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| |
Collapse
|
21
|
Li D, Huang S, Ge J, Zhuang Z, Zheng L, Jiang L, Chen Y, Chu C, Zhang Y, Pan J, Cheng B, Huang JD, Lin H, Han W, Liu G. Molecular Design of Phthalocyanine-Based Drug Coassembly with Tailored Function. J Am Chem Soc 2024; 146:33461-33474. [PMID: 39576203 DOI: 10.1021/jacs.4c10070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Coassemblies with tailored functions, such as drug loading, tissue targeting and releasing, therapeutic and/or imaging purposes, and so on, have been widely studied and applied in biomedicine. De novo design of these coassemblies hinges on an integrated approach involving synergy between various design strategies, ranging from structure screening of combinations of "phthalocyanine-chemotherapeutic drug" molecules for molecular scaffolds, exploration of related fabrication principles to verification of intended activity of specific designs. Here, we propose an integrated approach combining computation and experiments to design from scratch coassembled nanoparticles. This nanocoassembly, termed NanoPC here, consists of phthalocyanine-based scaffolds hosting chemotherapeutic drugs, aimed at hypersensitive chemotherapy guided by photoimaging for targeting tumors. Our design starts from the selection of phthalocyanine derivatives that are not aggregation-prone, followed by computational screening of coassembled molecules covering various categories of chemotherapy drugs. To facilitate an efficient and accurate assessment of coassembly capabilities, we utilize small systems as surrogates to enable free-energy calculations at all-atom levels facilitated with enhanced sampling and statistical mechanics for efficient and accurate evaluation of coassembly ability. The final top NanoPC candidate, comprised of phthalocyanine PcL and cytarabine (CYT), can greatly increase the fluorescence intensity ratio of tumor/liver by 21.5 times and achieve higher antitumor efficiency in a pH-dependent manner. Therefore, the designing approach proposed here has a potential pattern, which can provide ideas and references for the design and development of coassembled nanodrugs with tailored functions and applications in biomedicine.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Siyong Huang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Jianlin Ge
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ziqi Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Longyi Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lai Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yulun Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chengchao Chu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jie Pan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Bingwei Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jian-Dong Huang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huirong Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
22
|
Huang H, Chen Y, Li L, Zheng L. A DNAzyme-Based Nanohybrid for Ultrasound and Enzyme Dual-Controlled mRNA Regulation and Combined Tumor Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409035. [PMID: 39470099 DOI: 10.1002/adma.202409035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Despite the significant potential of RNA-cleaving DNAzymes for gene regulation, their application is limited by low therapeutic efficacy and lack of cell-specific control. Here, a DNAzyme-based nanohybrid designed for ultrasound (US)-controlled, enzyme-activatable mRNA regulation is presented, enabling tumor cell-selective combination therapy. The nanohybrid is constructed by coordination-directed self-assembly of an enzymatically-triggerable therapeutic DNAzyme (En-Dz) and natural sonosensitizer hemoglobin (Hb). Controlled US exposure induces reactive oxygen species generation from Hb units, which not only facilitates efficient endosomal escape of En-Dz, but also promotes the translocation of specific enzyme from the nucleus to the cytoplasm, thereby enhancing gene regulation efficacy. Notably, the enzyme-triggered, spatiotemporally-controlled activation of En-Dz's catalytic activity results in enhanced cancer-cell selectivity in the therapeutic treatment. Furthermore, the combination of enzyme-activated mRNA regulation and sonodynamic therapy significantly enhances anti-tumor efficacy both in vitro and in vivo. This work highlights the potential of integrating a sonodynamic strategy to overcome the current limitations of DNAzyme-based gene regulators, providing a spatiotemporally-controlled approach for precise tumor treatment.
Collapse
Affiliation(s)
- Hanji Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Yaoxuan Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
23
|
Cui M, Tang D, Zhang H, Liang G, Xu C, Xiao H. NIR-II Fluorescent Nanotheranostics with a Switchable Irradiation Mode for Immunogenic Sonodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411328. [PMID: 39420648 DOI: 10.1002/adma.202411328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Nanotheranostics, which integrate diagnostic and therapeutic functionalities, offer significant potential for tumor treatment. However, current nanotheranostic systems typically involve multiple molecules, each providing a singular diagnostic or therapeutic function, leading to challenges such as complex structural composition, poor targeting efficiency, lack of spatiotemporal control, and dependence on a single therapeutic modality. This study introduces NPRBOXA, a nanoparticle functionalized with surface-bound cRGD for targeted delivery to αvβ3/αvβ5 receptors on tumor cells, achieving theranostic integration by sequentially switching its irradiation modes. Under 808 nm laser irradiation, NPRBOXA emits NIR-II fluorescence, which aids in identifying the nanoparticle's location and fluorescence intensity, thereby determining the optimal treatment window. Following this, the irradiation mode switches to ultrasound irradiation at the optimal treatment window. Ultrasound irradiation induces NPRBOXA to generate reactive oxygen species, promoting the reduction of OXA-IV to OXA-II, which in turn triggers immunogenic cell death. This mechanism enables a combination of sonodynamic therapy, chemotherapy, and immunotherapy for tumor treatment. The versatile design of NPRBOXA holds promise for advancing precision oncology through enhanced therapeutic efficacy and real-time imaging guidance.
Collapse
Affiliation(s)
- Minhui Cui
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chun Xu
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
24
|
Jeong YG, Park JH, Khang D. Sonodynamic and Acoustically Responsive Nanodrug Delivery System: Cancer Application. Int J Nanomedicine 2024; 19:11767-11788. [PMID: 39553460 PMCID: PMC11566213 DOI: 10.2147/ijn.s496028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
The advent of acoustically responsive nanodrugs that are specifically optimized for sonodynamic therapy (SDT) is a novel approach for clinical applications. Examining the therapeutic applications of sono-responsive drug delivery systems, understanding their dynamic response to acoustic stimuli, and their crucial role in enhancing targeted drug delivery are intriguing issues for current cancer treatment. Specifically, the suggested review covers SDT, a modality that enhances the cytotoxic activity of specific compounds (sonosensitizers) using ultrasound (US). Notably, SDT offers significant advantages in cancer treatment by utilizing US energy to precisely target and activate sonosensitizers toward deep-seated malignant sites. The potential mechanisms underlying SDT involve the generation of radicals from sonosensitizers, physical disruption of cell membranes, and enhanced drug transport into cells via US-assisted sonoporation. In particular, SDT is emerging as a promising modality for noninvasive, site-directed elimination of solid tumors. Given the complexity and diversity of tumors, many studies have explored the integration of SDT with other treatments to enhance the overall efficacy. This trend has paved the way for SDT-based multimodal synergistic cancer therapies, including sonophototherapy, sonoimmunotherapy, and sonochemotherapy. Representative studies of these multimodal approaches are comprehensively presented, with a detailed discussion of their underlying mechanisms. Additionally, the application of audible sound waves in biological systems is explored, highlighting their potential to influence cellular processes and enhance therapeutic outcomes. Audible sound waves can modulate enzyme activities and affect cell behavior, providing novel avenues for the use of sound-based techniques in medical applications. This review highlights the current challenges and prospects in the development of SDT-based nanomedicines in this rapidly evolving research field. The anticipated growth of this SDT-based therapeutic approach promises to significantly improve the precision of cancer treatment.
Collapse
Affiliation(s)
- Yong-Gyu Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Joo-Hwan Park
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
25
|
Han B, Liu Y, Zhou Q, Yu Y, Liu X, Guo Y, Zheng X, Zhou M, Yu H, Wang W. The advance of ultrasound-enabled diagnostics and therapeutics. J Control Release 2024; 375:1-19. [PMID: 39208935 DOI: 10.1016/j.jconrel.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/27/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Point-of-care ultrasound demonstrates significant potential in biomedical research due to its noninvasive, real-time visualization, cost-effectiveness, and other biological benefits. Ultrasound irradiation can precisely control the mechanical and physicochemical effects on pathogenic lesions, enabling real-time visualization, tunable tissue penetration depth, and therapeutic applications. This review summarizes recent advancements in ultrasound-enabled diagnostics and therapeutics, focusing on mechanochemical effects that can be directly integrated into biomedical applications. Additionally, the structure-functionality relationships of sonotheranostic nanoplatforms are systematically discussed, providing insights into the underlying biological effects. Finally, the limitations of current ultrasonic medicine are discussed, along with potential expansions to facilitate patient-centered translations.
Collapse
Affiliation(s)
- Biying Han
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Qianqian Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xingxing Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu Guo
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Haijun Yu
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
26
|
Yang F, Lv J, Ma W, Yang Y, Hu X, Yang Z. Engineering Sonosensitizer-Derived Nanotheranostics for Augmented Sonodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402669. [PMID: 38970544 DOI: 10.1002/smll.202402669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Sonodynamic therapy (SDT), featuring noninvasive, deeper penetration, low cost, and repeatability, is a promising therapy approach for deep-seated tumors. However, the general or only utilization of SDT shows low efficiency and unsatisfactory treatment outcomes due to the complicated tumor microenvironment (TME) and SDT process. To circumvent the issues, three feasible approaches for enhancing SDT-based therapeutic effects, including sonosensitizer optimization, strategies for conquering hypoxia TME, and combinational therapy are summarized, with a particular focus on the combination therapy of SDT with other therapy modalities, including chemodynamic therapy, photodynamic therapy, photothermal therapy, chemotherapy, starvation therapy, gas therapy, and immunotherapy. In the end, the current challenges in SDT-based therapy on tumors are discussed and feasible approaches for enhanced therapeutic effects are provided. It is envisioned that this review will provide new insight into the strategic design of high-efficiency sonosensitizer-derived nanotheranostics, thereby augmenting SDT and accelerating the potential clinical transformation.
Collapse
Affiliation(s)
- Fuhong Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Jingqi Lv
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yanling Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xiaoming Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
27
|
Zhang M, Sun D, Huang H, Yang D, Song X, Feng W, Jing X, Chen Y. Nanosonosensitizer Optimization for Enhanced Sonodynamic Disease Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409663. [PMID: 39308222 DOI: 10.1002/adma.202409663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Indexed: 11/16/2024]
Abstract
Low-intensity ultrasound-mediated sonodynamic therapy (SDT), which, by design, integrates sonosensitizers and molecular oxygen to generate therapeutic substances (e.g., toxic hydroxyl radicals, superoxide anions, or singlet oxygen) at disease sites, has shown enormous potential for the effective treatment of a variety of diseases. Nanoscale sonosensitizers play a crucial role in the SDT process because their structural, compositional, physicochemical, and biological characteristics are key determinants of therapeutic efficacy. In particular, advances in materials science and nanotechnology have invigorated a series of optimization strategies for augmenting the therapeutic efficacy of nanosonosensitizers. This comprehensive review systematically summarizes, discusses, and highlights state-of-the-art studies on the current achievements of nanosonosensitizer optimization in enhanced sonodynamic disease treatment, with an emphasis on the general design principles of nanosonosensitizers and their optimization strategies, mainly including organic and inorganic nanosonosensitizers. Additionally, recent advancements in optimized nanosonosensitizers for therapeutic applications aimed at treating various diseases, such as cancer, bacterial infections, atherosclerosis, and autoimmune diseases, are clarified in detail. Furthermore, the biological effects of the improved nanosonosensitizers for versatile SDT applications are thoroughly discussed. The review concludes by highlighting the current challenges and future opportunities in this rapidly evolving research field to expedite its practical clinical translation and application.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Dandan Sun
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Hui Huang
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Dayan Yang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Xinran Song
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiangxiang Jing
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Yu Chen
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
28
|
Cheng Y, Zhong W, Chen Y, Tan BSN, Zhao Y, Guo J, Ma M, Zhao Y. Bimetal-Biligand Frameworks for Spatiotemporal Nitric Oxide-Enhanced Sono-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408242. [PMID: 39225414 DOI: 10.1002/adma.202408242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Sonodynamic therapy can trigger immunogenic cell death to augment immunotherapy, benefiting from its superior spatiotemporal selectivity and non-invasiveness. However, the practical applications of sonosensitizers are hindered by their low efficacy in killing cancer cells and activating immune responses. Here, two US Food and Drug Administration-approved drug ligands (ferricyanide and nitroprusside) and two types of metals (copper/iron) are selected to construct a bimetal-biligand framework (Cu[PBA-NO]). Through elaborate regulation of multiple metal/ligand coordination, the systemically administered Cu[PBA-NO] nanoagent shows sono-catalytic and NO release ability under ultrasound irradiation, which can be used for effective sono-immunotherapy. Moreover, Cu[PBA-NO] can downregulate intracellular glutathione levels that would destroy intracellular redox homeostasis and facilitate reactive oxygen species accumulation. The released tumor-associated antigens subsequently facilitate dendritic cell maturation within the tumor-draining lymph node, effectively initiating a T cell-mediated immune response and thereby bolstering the capacity to identify and combat cancer cells. This study paves a new avenue for the efficient cancer sono-immunotherapy.
Collapse
Affiliation(s)
- Yu Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Brynne Shu Ni Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yue Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Mengmeng Ma
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
29
|
Cheng X, He C, Huang J, Li J, Hu Z, Wang L, Wei T, Cui L, Lu M, Mi P, Xu J. A Tumor-Homing Nanoframework for Synergistic Microwave Tumor Ablation and Provoking Strong Anticancer Immunity Against Metastasis. ACS NANO 2024; 18:29121-29139. [PMID: 39387481 DOI: 10.1021/acsnano.4c10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Microwave thermotherapy (MT) is a clinical local tumor ablation modality, but its applications are limited by its therapeutic efficacy and safety. Therefore, developing sensitizers to optimize the outcomes of MT is in demand in clinical practice. Herein, we engineered a special nanoframework (i.e., FdMI) based on a fucoidan-decorated zirconium metal-organic framework incorporating manganese ions and liquid physisorption for microwave tumor ablation. The monodisperse nanoframework exhibited both microwave thermal effects and microwave dynamic effects, which could effectively kill cancer cells by efficient intracellular drug delivery. Through fucoidan-mediated targeting of P-selectin in the tumor microenvironment (TME), the FdMI effectively accumulated in tumor regions, leading to significant eradication of orthotropic triple-negative breast cancer (TNBC) and aggressive Hepa1-6 liver tumors by the synergistic effects of microwave thermotherapy/dynamic therapy (MT/MDT). The eradication of primary tumors could activate systemic immune responses, which effectively inhibited distant TNBC tumors and lung metastasis of Hepa1-6 liver tumors, respectively. This work not only engineered nanoparticle sensitizers for tumor-targeted synergistic MT/MDT but also demonstrated that nanocarrier-based microwave tumor ablation could stimulate antitumor immunity to effectively inhibit distant and metastatic tumors, demonstrating the high potential for effectively managing advanced malignant tumors.
Collapse
Affiliation(s)
- Xueqing Cheng
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Chuanshi He
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Jiangbo Huang
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Juan Li
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Ziyue Hu
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Lu Wang
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Ting Wei
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Likun Cui
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Man Lu
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Jinshun Xu
- Department of Ultrasound & Laboratory of Translational Research in Ultrasound Theranostics, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| |
Collapse
|
30
|
Wang X, Wang H, Li Y, Sun Z, Liu J, Sun C, Cao X. Engineering macrophage membrane-camouflaged nanoplatforms with enhanced macrophage function for mediating sonodynamic therapy of ovarian cancer. NANOSCALE 2024; 16:19048-19061. [PMID: 39310965 DOI: 10.1039/d4nr01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Cancer immunotherapy has demonstrated remarkable efficacy in the treatment of cancer, and it has been successfully applied in the treatment of various solid tumors. However, the response rates to immunotherapy in patients with ovarian cancer remain modest because of the immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages (TAMs) represent the predominant myeloid cell population within the TME, which adopt the protumorigenic M2 phenotype and are blinded by the "don't eat me" signals from tumor cells. These characteristics of TAMs result in insufficient phagocytic activation. In this study, we constructed a SIM@TR-NP-mediated combination therapy of sonodynamic and immunotherapy. SIM@TR-NPs were modified by engineered macrophage membranes with overexpressed sialic acid-binding Ig-like lectin 10 (Siglec-10), and were internally loaded with sonosensitizer 4,4',4'',4'''-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) and immune adjuvant resiquimod. SIM@TR-NPs can block "don't eat me" signals to enhance macrophage phagocytosis and trigger the polarization of TAMs toward the M1 phenotype, thereby improving the immunosuppressive TME. Simultaneously, upon ultrasound irradiation, SIM@TR-NP-mediated sonodynamic therapy (SDT) triggered immunogenic cell death in tumor cells, in combination with TAM-based immunotherapy, transforming the "immune cold tumor" into an "immune hot tumor". SIM@TR-NP-mediated sonodynamic immunotherapy exhibited potent antitumor efficacy in ovarian cancer and exhibited substantial potential for improving the immunosuppressive TME. This study presents an emerging therapeutic regimen for ovarian cancer that synergizes TAM-based antitumor immunotherapy and SDT.
Collapse
Affiliation(s)
- Xiaofei Wang
- Yantai Yuhuangding hospital, Shandong University, Yantai, 264000, P.R. China.
| | - Hongling Wang
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P.R. China.
| | - Yansheng Li
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P.R. China.
| | - Zhihong Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P.R. China.
| | - Jie Liu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P.R. China.
| | - Chengming Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P.R. China.
| | - Xiaoli Cao
- Yantai Yuhuangding hospital, Shandong University, Yantai, 264000, P.R. China.
| |
Collapse
|
31
|
Deng C, Zhang J, Hu F, Han S, Zheng M, An F, Wang F. A GSH-Responsive Prodrug with Simultaneous Triple-Activation Capacity for Photodynamic/Sonodynamic Combination Therapy with Inhibited Skin Phototoxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400667. [PMID: 38837658 DOI: 10.1002/smll.202400667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/17/2024] [Indexed: 06/07/2024]
Abstract
Herein, a dual-sensitizer prodrug, named pro-THPC, has been designed to function as both a photosensitizer and a sonosensitizer prodrug for precise antitumor combination therapy with minimized skin phototoxicity. Pro-THPC could be activated by glutathione (GSH) to release the dual-sensitizer, THPC, which simultaneously switches on fluorescence emission and combined capabilities of photodynamic therapy (PDT) and sonodynamic therapy (SDT). Pro-THPC is further formulated into nanoparticles (NPs) for water dispersity to enable in vivo applications. In vivo fluorescence imaging shows that the pro-THPC NPs group exhibits a significantly higher tumor-to-normal tissue ratio (T/N) (T/N = 5.2 ± 0.55) compared to the "always on" THPC NPs group (T/N = 2.9 ± 0.47) and the pro-THPC NPs group co-administrated with GSH synthesis inhibitor (buthionine sulfoximine, BSO) (T/N = 3.2 ± 0.63). In addition, the generation of the designed dual-sensitizer's reactive oxygen species (ROS) is effectively confined within the tumor tissues due to the relatively strong correlation between ROS generation and fluorescence emission. In vivo studies further demonstrate the remarkable efficacy of the designed pro-THPC NPs to eradicate tumors through the combination of PDT and SDT while significantly reducing skin phototoxicity.
Collapse
Affiliation(s)
- Caiting Deng
- Institute of Medical Engineering, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Jingjing Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Fanchun Hu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Shupeng Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Meichen Zheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Feifei An
- Institute of Medical Engineering, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Fu Wang
- Institute of Medical Engineering, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi University of International Trade & Commerce, Xianyang, Shaanxi, 712046, China
| |
Collapse
|
32
|
Tang D, Cui M, Wang B, Xu C, Cao Z, Guo J, Xiao H, Shang K. Near Infrared-Fluorescent Dinuclear Iridium(III) Nanoparticles for Immunogenic Sonodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406815. [PMID: 39081102 DOI: 10.1002/adma.202406815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/13/2024] [Indexed: 10/04/2024]
Abstract
Dinuclear iridium(III) complexes activated by light-inducible spatiotemporal control are emerging as promising candidates for cancer therapy. However, broader applications of current light-activated dinuclear iridium(III) complexes are limited by the ineffective tissue penetration and undesirable feedback on guidance activation. Here, an ultrasound (US) triggered near infrared-fluorescent dinuclear iridium(III) nanoparticle, NanoIr, is first reported to precisely and spatiotemporally inhibit tumor growth. It is demonstrated that reactive oxygen species can be generated by NanoIr upon exposure to US irradiation (NanoIr + US), thereby inducing immunogenic cell death. When combined with cisplatin, NanoIr + US elicits synergistic effects in patient-derived tumor xenograft mice models of ovarian cancer. This work first provides a design of dinuclear iridium(III) nanoparticles for immunogenic sonodynamic therapy.
Collapse
Affiliation(s)
- Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Minhui Cui
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, 4006, Australia
| | - Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90066, USA
| | - Jin Guo
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kun Shang
- Department of Nuclear Medicine, Peking University People's Hospital, Beijing, 100044, P. R. China
| |
Collapse
|
33
|
Wang Y, Meng L, Zhao F, Zhao L, Gao W, Yu Q, Chen P, Sun Y. Harnessing External Irradiation for Precise Activation of Metal-Based Agents in Cancer Therapy. Chembiochem 2024; 25:e202400305. [PMID: 38825577 DOI: 10.1002/cbic.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/04/2024]
Abstract
Cancer is a significant global health issue. Platinum-based chemotherapy drugs, including cisplatin, are crucial in clinical anti-cancer treatment. However, these drugs have limitations such as drug resistance, non-specific distribution, and irreversible toxic and side effects. In recent years, the development of metal-based agents has led to the discovery of other anti-cancer effects beyond chemotherapy. Precise spatiotemporal controlled external irradiation can activate metal-based agents at specific sites and play a different role from traditional chemotherapy. These strategies can not only enhance the anti-cancer efficiency, but also show fewer side effects and non-cross-drug resistance, which are ideal approaches to solve the problems caused by traditional platinum-based chemotherapy drugs. In this review, we focus on various metal-based agent-mediated cancer therapies that are activated by three types of external irradiation: near-infrared (NIR) light, ultrasound (US), and X-ray, and give some prospects. We hope that this review will promote the generation of new kinds of metal-based anti-cancer agents.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Liling Meng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Fang Zhao
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, China
| | - Limei Zhao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Wei Gao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Qi Yu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Peiyao Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
34
|
Gao P, Duan Z, Xu G, Gong Q, Wang J, Luo K, Chen J. Harnessing and Mimicking Bacterial Features to Combat Cancer: From Living Entities to Artificial Mimicking Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405075. [PMID: 39136067 DOI: 10.1002/adma.202405075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Bacterial-derived micro-/nanomedicine has garnered considerable attention in anticancer therapy, owing to the unique natural features of bacteria, including specific targeting ability, immunogenic benefits, physicochemical modifiability, and biotechnological editability. Besides, bacterial components have also been explored as promising drug delivery vehicles. Harnessing these bacterial features, cutting-edge physicochemical and biotechnologies have been applied to attenuated tumor-targeting bacteria with unique properties or functions for potent and effective cancer treatment, including strategies of gene-editing and genetic circuits. Further, the advent of bacteria-inspired micro-/nanorobots and mimicking artificial systems has furnished fresh perspectives for formulating strategies for developing highly efficient drug delivery systems. Focusing on the unique natural features and advantages of bacteria, this review delves into advances in bacteria-derived drug delivery systems for anticancer treatment in recent years, which has experienced a process from living entities to artificial mimicking systems. Meanwhile, a summary of relative clinical trials is provided and primary challenges impeding their clinical application are discussed. Furthermore, future directions are suggested for bacteria-derived systems to combat cancer.
Collapse
Affiliation(s)
- Peng Gao
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Gang Xu
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kui Luo
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Jie Chen
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
35
|
Ya J, Zhang H, Qin G, Huang C, Zhao C, Ren J, Qu X. A Biocompatible Hydrogen-Bonded Organic Framework (HOF) as Sonosensitizer and Artificial Enzyme for In-Depth Treatment of Alzheimer's Disease. Adv Healthc Mater 2024:e2402342. [PMID: 39031538 DOI: 10.1002/adhm.202402342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Current phototherapeutic approaches for Alzheimer's disease (AD) exhibit restricted clinical outcomes due to the limited physical penetration and comprised brain microenvironment of noninvasive nanomedicine. Herein, a hydrogen-bonded organic framework (HOF) based sonosensitizer is designed and synthesized. Mn-TCPP, a planar molecule where Mn2+ ion is chelated in the core with a large p-conjugated system and 4 carboxylate acid groups, has been successfully used as building blocks to construct an ultrasound-sensitive HOF (USI-MHOF), which can go deep in the brain of AD animal models. The both in vitro and in vivo studies indicate that USI-MHOF can generate singlet oxygen (1O2) and oxidize β-amyloid (Aβ) to inhibit aggregation, consequently attenuating Aβ neurotoxicity. More intriguingly, USI-MHOF exhibits catalase (CAT)- and superoxide dismutase (SOD)-like activities, mitigating neuron oxidative stress and reprograming the brain microenvironment. For better crossing the blood-brain barrier (BBB), the peptide KLVFFAED (KD8) has been covalently grafted to USI-MHOF for improving BBB permeability and Aβ selectivity. Further, in vivo experiments demonstrate a significant reduction of the craniocerebral Aβ plaques and improvement of the cognition deficits in triple-transgenic AD (3×Tg-AD) mice models following deep-penetration ultrasound treatment. The work provides the first example of an ultrasound-responsive biocompatible HOF as non-invasive nanomedicine for in-depth treatment of AD.
Collapse
Affiliation(s)
- Junlin Ya
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Haochen Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Congcong Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
36
|
Ma J, Peng C, Peng X, Liang S, Zhou Z, Wu K, Chen R, Liu S, Shen Y, Ma H, Zhang Y. H 2O 2 Photosynthesis from H 2O and O 2 under Weak Light by Carbon Nitrides with the Piezoelectric Effect. J Am Chem Soc 2024. [PMID: 39013150 DOI: 10.1021/jacs.4c07170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Driven by the essential need of a green, safe, and low-cost approach to producing H2O2, a highly valuable multifunctional chemical, artificial photosynthesis emerges as a promising avenue. However, current catalyst systems remain challenging, due to the need of high-density sunlight, poor selectivity and activity, or/and unfavorable thermodynamics. Here, we reported that an indirect 2e- water oxidation reaction (WOR) in photocatalytic H2O2 production was unusually activated by C5N2 with piezoelectric effects. Interestingly, under ultrasonication, C5N2 exhibited an overall H2O2 photosynthesis rate of 918.4 μM/h and an exceptionally high solar-to-chemical conversion efficiency of 2.6% after calibration under weak light (0.1 sun). Mechanism studies showed that the piezoelectric effect of carbon nitride overcame the high uphill thermodynamics of *OH intermediate generation, which enabled a new pathway for 2e- WOR, the kinetic limiting step in the overall H2O2 production from H2O and O2. Benefiting from the outstanding sonication-assisted photocatalytic H2O2 generation under weak light, the concept was further successfully adapted to biomedical applications in efficient sono-photochemodynamic therapy for cancer treatment and water purification.
Collapse
Affiliation(s)
- Jin Ma
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Cheng Peng
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoxiao Peng
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Sicheng Liang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Zhixin Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Kaiqing Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Ran Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| |
Collapse
|
37
|
Zhang R, Liu X, Wu FG. Russell Mechanism-Mediated Cancer Therapy: A Minireview. ChemMedChem 2024; 19:e202400186. [PMID: 38627921 DOI: 10.1002/cmdc.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/16/2024] [Indexed: 06/04/2024]
Abstract
The Russell mechanism, proposed by Russell, is a cyclic mechanism for the formation of linear tetroxide intermediates, which can spontaneously produce cytotoxic singlet oxygen (1O2) independent of oxygen, suggesting its anticancer potential. Compared with other mainstream anticancer strategies, the Russell mechanism employed for killing cancer cells does not require external energy input, harsh pH condition, and sufficient oxygen. However, up till now, the applications of Russell mechanism in antitumor therapy have been relatively rare, and there is almost no summary of the Russell mechanism in the cancer therapy field. This minireview introduces the different metal elements-based Russell mechanisms and the relevant research progress in Russell mechanism-based cancer therapy in recent years. At the same time, we briefly discussed the current challenges and future development regarding the applications of Russell mechanism. It is hoped that this review can further expand the research of Russell Mechanism in the biomedical field, and inspire researchers to extend its application fields to antibacterial, antiinflammatory, and wound healing uses.
Collapse
Affiliation(s)
- Rufeng Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| |
Collapse
|
38
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
39
|
Yu C, Dong Y, Zhu X, Feng L, Zang P, Liu B, Dong S, Zhao R, Xu R, Yang P. Oxygen Vacancy Piezoelectric Nanosheets Constructed by a Photoetching Strategy for Ultrasound "Unlocked" Tumor Synergistic Therapy. NANO LETTERS 2024; 24:8008-8016. [PMID: 38912749 DOI: 10.1021/acs.nanolett.4c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Piezoelectric dynamic therapy (PzDT) is an effective method of tumor treatment by using piezoelectric polarization to generate reactive oxygen species. In this paper, two-dimensional Cu-doped BiOCl nanosheets with surface vacancies are produced by the photoetching strategy. Under ultrasound, a built-in electric field is generated to promote the electron and hole separation. The separated carriers achieve O2 reduction and GSH oxidation, inducing oxidative stress. The bandgap of BiOCl is narrowed by introducing surface oxygen vacancies, which act as charge traps and facilitate the electron and hole separation. Meanwhile, Cu doping induces chemodynamic therapy and depletes GSH via the transformation from Cu(II) to Cu(I). Both in vivo and in vitro results confirmed that oxidative stress can be enhanced by exogenous ultrasound stimulation, which can cause severe damage to tumor cells. This work emphasizes the efficient strategy of doping engineering and defect engineering for US-activated PzDT under exogenous stimulation.
Collapse
Affiliation(s)
- Chenghao Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xingyu Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Pengyu Zang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Rongchen Xu
- Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
40
|
Zhu D, Lu Y, Yang S, Hu T, Tan C, Liang R, Wang Y. PAD4 Inhibitor-Functionalized Layered Double Hydroxide Nanosheets for Synergistic Sonodynamic Therapy/Immunotherapy Of Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401064. [PMID: 38708711 PMCID: PMC11234469 DOI: 10.1002/advs.202401064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Sonodynamic therapy (SDT) is demonstrated to trigger the systemic immune response of the organism and facilitate the treatment of metastatic tumors. However, SDT-mediated neutrophil extracellular traps (NETs) formation can promote tumor cell spread, thus weakening the therapeutic effectiveness of metastatic tumors. Herein, the amorphous CoW-layered double hydroxide (a-CoW-LDH) nanosheets are functionalized with a peptidyl arginine deiminase 4 (PAD4) inhibitor, i.e., YW3-56, to construct a multifunctional nanoagent (a-LDH@356) for synergistic SDT/immunotherapy. Specifically, a-CoW-LDH nanosheets can act as a sonosensitizer to generate abundant reactive oxygen species (ROS) under US irradiation. After loading with YW3-56, a-LDH@356 plus US irradiation not only effectively induces ROS generation and immunogenic cell death, but also inhibits the elevation of citrullinated histone H3 (H3cit) and the release of NETs, enabling a synergistic enhancement of anti-tumor metastasis effect. Using 4T1 tumor model, it is demonstrated that combining a-CoW-LDH with YW3-56 stimulates an anti-tumor response by upregulating the proportion of immune-activated cells and inducing polarization of M1 macrophages, and inhibits immune escape by downregulating the expression of PD-1 on immune cells under US irradiation, which not only arrests primary tumor progression with a tumor inhibition rate of 69.5% but also prevents tumor metastasis with the least number of lung metastatic nodules.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing Laboratory of Oral Health, Beijing, 100069, P. R. China
| |
Collapse
|
41
|
Chu B, Chen Z, Wu X, Shi H, Jin X, Song B, Cui M, Zhao Y, Zhao Y, He Y, Wang H, Dong F. Photoactivated Gas-Generating Nanocontrast Agents for Long-Term Ultrasonic Imaging-Guided Combined Therapy of Tumors. ACS NANO 2024; 18:15590-15606. [PMID: 38847586 DOI: 10.1021/acsnano.4c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
To date, long-term and continuous ultrasonic imaging for guiding the puncture biopsy remains a challenge. In order to address this issue, a multimodality imaging and therapeutic method was developed in the present study to facilitate long-term ultrasonic and fluorescence imaging-guided precision diagnosis and combined therapy of tumors. In this regard, certain types of photoactivated gas-generating nanocontrast agents (PGNAs), capable of exhibiting both ultrasonic and fluorescence imaging ability along with photothermal and sonodynamic function, were designed and fabricated. The advantages of these fabricated PGNAs were then utilized against tumors in vivo, and high therapeutic efficacy was achieved through long-term ultrasonic imaging-guided treatment. In particular, the as-prepared multifunctional PGNAs were applied successfully for the fluorescence-based determination of patient tumor samples collected through puncture biopsy in clinics, and superior performance was observed compared to the clinically used SonoVue contrast agents that are incapable of specifically distinguishing the tumor in ex vivo tissues.
Collapse
Affiliation(s)
- Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Zhiming Chen
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaofeng Wu
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Haoliang Shi
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Xiangbowen Jin
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Mingyue Cui
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Yadan Zhao
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Yingying Zhao
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa, 999078 Macau SAR, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078 Macau SAR, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Fenglin Dong
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
42
|
Zhu Y, Niu X, Ding C, Lin Y, Fang W, Yan L, Cheng J, Zou J, Tian Y, Huang W, Huang W, Pan Y, Wu T, Chen X, Kang D. Carrier-Free Self-Assembly Nano-Sonosensitizers for Sonodynamic-Amplified Cuproptosis-Ferroptosis in Glioblastoma Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402516. [PMID: 38582500 PMCID: PMC11187904 DOI: 10.1002/advs.202402516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Cuproptosis is a newly discovered form of programmed cell death significantly depending on the transport efficacy of copper (Cu) ionophores. However, existing Cu ionophores, primarily small molecules with a short blood half-life, face challenges in transporting enough amounts of Cu ions into tumor cells. This work describes the construction of carrier-free nanoparticles (Ce6@Cu NPs), which self-assembled by the coordination of Cu2+ with the sonosensitizer chlorin e6 (Ce6), facilitating sonodynamic-triggered combination of cuproptosis and ferroptosis. Ce6@Cu NPs internalized by U87MG cells induce a sonodynamic effect and glutathione (GSH) depletion capability, promoting lipid peroxidation and eventually inducing ferroptosis. Furthermore, Cu+ concentration in tumor cells significantly increases as Cu2+ reacts with reductive GSH, resulting in the downregulation of ferredoxin-1 and lipoyl synthase. This induces the oligomerization of lipoylated dihydrolipoamide S-acetyltransferase, causing proteotoxic stress and irreversible cuproptosis. Ce6@Cu NPs possess a satisfactory ability to penetrate the blood-brain barrier, resulting in significant accumulation in orthotopic U87MG-Luc glioblastoma. The sonodynamic-triggered combination of ferroptosis and cuproptosis in the tumor by Ce6@Cu NPs is evidenced both in vitro and in vivo with minimal side effects. This work represents a promising tumor therapeutic strategy combining ferroptosis and cuproptosis, potentially inspiring further research in developing logical and effective cancer therapies based on cuproptosis.
Collapse
|
43
|
Wu J, Huang J, Yu J, Xu M, Liu J, Pu K. Exosome-Inhibiting Polymeric Sonosensitizer for Tumor-Specific Sonodynamic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400762. [PMID: 38445783 DOI: 10.1002/adma.202400762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Combination cancer immunotherapy based on electromagnetic energy and immunotherapy shows potent anti-cancer efficacy. However, as a factor that mediates tumor metastasis and immune suppression, the impact of tumor exosomes on therapy under electromagnetic energy stimulation remains unclear. Herein, findings indicate that sonodynamic therapy (SDT) increases serum exosome levels by inducing apoptotic exosomes and loosening the tumor extracellular matrix, promoting lung metastasis. To address this problem, an exosome-inhibiting polymeric sonosensitizer (EIPS) selectively inhibiting tumor exosome generation in response to the tumor biomarker is synthesized. EIPS consists of a semiconducting polymer backbone capable of inducing SDT and a poly(ethylene glycol) layer conjugated with a tumor-specific enzyme-responsive exosome inhibitor prodrug. After being cleaved by tumor Cathepsin B, EIPS releases active exosome inhibitors, preventing tumor exosome-mediated immune suppression and lung metastasis. As a result, EIPS elicits robust antitumor effects through the synergistic effect of SDT and tumor exosome inhibition, completely preventing lung metastasis and establishing a long-term immune memory effect. This is the first example showing that combining SDT with tumor-specific exosome inhibition can elicit a potent immune response without the help of typical immune agonists.
Collapse
Affiliation(s)
- Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jie Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| |
Collapse
|
44
|
Xu X, Zheng J, Liang N, Zhang X, Shabiti S, Wang Z, Yu S, Pan ZY, Li W, Cai L. Bioorthogonal/Ultrasound Activated Oncolytic Pyroptosis Amplifies In Situ Tumor Vaccination for Boosting Antitumor Immunity. ACS NANO 2024; 18:9413-9430. [PMID: 38522084 DOI: 10.1021/acsnano.3c11023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Personalized in situ tumor vaccination is a promising immunotherapeutic modality. Currently, seeking immunogenic cell death (ICD) to generate in situ tumor vaccines is still mired by insufficient immunogenicity and an entrenched immunosuppressive tumor microenvironment (TME). Herein, a series of tetrazine-functionalized ruthenium(II) sonosensitizers have been designed and screened for establishing a bioorthogonal-activated in situ tumor vaccine via oncolytic pyroptosis induction. Based on nanodelivery-augmented bioorthogonal metabolic glycoengineering, the original tumor is selectively remolded to introduce artificial target bicycle [6.1.0] nonyne (BCN) into cell membrane. Through specific bioorthogonal ligation with intratumoral BCN receptors, sonosensitizers can realize precise membrane-anchoring and synchronous click-activation in desired tumor sites. Upon ultrasound (US) irradiation, the activated sonosensitizers can intensively disrupt the cell membrane with dual type I/II reactive oxygen species (ROS) generation for a high-efficiency sonodynamic therapy (SDT). More importantly, the severe membrane damage can eminently evoke oncolytic pyroptosis to maximize tumor immunogenicity and reverse immunosuppressive TME, ultimately eliciting powerful and durable systemic antitumor immunity. The US-triggered pyroptosis is certified to effectively inhibit the growths of primary and distant tumors, and suppress tumor metastasis and recurrence in "cold" tumor models. This bioorthogonal-driven tumor-specific pyroptosis induction strategy has great potential for the development of robust in situ tumor vaccines.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinling Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Na Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xu Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shayibai Shabiti
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zixi Wang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shiwen Yu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zheng-Yin Pan
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Wenjun Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- Sino-Euro Center of Biomedicine and Health, Shenzhen 518024, China
| |
Collapse
|
45
|
Zhang R, Yang D, Zang P, He F, Gai S, Kuang Y, Yang G, Yang P. Structure Engineered High Piezo-Photoelectronic Performance for Boosted Sono-Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308355. [PMID: 37934805 DOI: 10.1002/adma.202308355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Indexed: 11/09/2023]
Abstract
Sono-photodynamic therapy is hindered by the limited tissue penetration depth of the external light source and the quick recombination of electron-hole owing to the random movement of charge carriers. In this study, orthorhombic ZnSnO3 quantum dots (QDs) with piezo-photoelectronic effects are successfully encapsulated in hexagonal upconversion nanoparticles (UCNPs) using a one-pot thermal decomposition method to form an all-in-one watermelon-like structured sono-photosensitizer (ZnSnO3 @UCNPs). The excited near-infrared light has high penetration depth, and the watermelon-like structure allows for full contact between the UCNPs and ZnSnO3 QDs, achieving ultrahigh Förster resonance energy transfer efficiency of up to 80.30%. Upon ultrasonic and near-infrared laser co-activation, the high temperature and pressure generated lead to the deformation of the UCNPs, thereby driving the deformation of all ZnSnO3 QDs inside the UCNPs, forming many small internal electric fields similar to isotropic electric domains. This piezoelectric effect not only increases the internal electric field intensity of the entire material but also prevents random movement and rapid recombination of charge carriers, thereby achieving satisfactory piezocatalytic performance. By combining the photodynamic effect arising from the energy transfer from UCNPs to ZnSnO3 , synergistic efficacy is realized. This study proposes a novel strategy for designing highly efficient sono-photosensitizers through structural design.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Pengyu Zang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ye Kuang
- College of Materials Science and Engineering, Shenyang Ligong University, Shenyang, 110159, P. R. China
| | - Guixin Yang
- College of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
46
|
Wu J, Pu K. Leveraging Semiconducting Polymer Nanoparticles for Combination Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308924. [PMID: 37864513 DOI: 10.1002/adma.202308924] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Indexed: 10/23/2023]
Abstract
Cancer immunotherapy has become a promising method for cancer treatment, bringing hope to advanced cancer patients. However, immune-related adverse events caused by immunotherapy also bring heavy burden to patients. Semiconducting polymer nanoparticles (SPNs) as an emerging nanomaterial with high biocompatibility, can eliminate tumors and induce tumor immunogenic cell death through different therapeutic modalities, including photothermal therapy, photodynamic therapy, and sonodynamic therapy. In addition, SPNs can work as a functional nanocarrier to synergize with a variety of immunomodulators to amplify anti-tumor immune responses. In this review, SPNs-based combination cancer immunotherapy is comprehensively summarized according to the SPNs' therapeutic modalities and the type of loaded immunomodulators. The in-depth understanding of existing SPNs-based therapeutic modalities will hopefully inspire the design of more novel nanomaterials with potent anti-tumor immune effects, and ultimately promote their clinical translation.
Collapse
Affiliation(s)
- Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
47
|
Dai X, Xie Y, Feng W, Chen Y. Nanomedicine-Enabled Chemical Regulation of Reactive X Species for Versatile Disease Treatments. Angew Chem Int Ed Engl 2023; 62:e202309160. [PMID: 37653555 DOI: 10.1002/anie.202309160] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
Reactive X species (RXS), encompassing elements such as O, N, C, S, Se, Cl, Br, I, and H, play vital roles in cell biology and physiological function, impacting cellular signal transduction, metabolic regulation, and disease processes. The redox unbalance of RXS is firmly implicated in an assortment of physiological and pathological disorders, including cancer, diabetes, cardiovascular disease, and neurodegenerative diseases. However, the intricate nature and multifactorial dependence of RXS pose challenges in comprehending and precisely modulating their biological behavior. Nanomaterials with distinct characteristics and biofunctions offer promising avenues for generating or scavenging RXS to maintain redox homeostasis and advance disease therapy. This minireview provides a tutorial summary of the relevant chemistry and specific mechanisms governing different RXS, focusing on cellular metabolic regulation, stress responses, and the role of nanomedicine in RXS generation and elimination. The challenges associated with chemically regulating RXS for diverse disease treatments are further discussed along with the future prospects, aiming to facilitate the clinical translation of RXS-based nanomedicine and open new avenues for improved therapeutic interventions.
Collapse
Affiliation(s)
- Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
48
|
Wang X, Xu X, Yang Z, Xu X, Han S, Zhang H. Improvement of the effectiveness of sonodynamic therapy: by optimizing components and combination with other treatments. Biomater Sci 2023; 11:7489-7511. [PMID: 37873617 DOI: 10.1039/d3bm00738c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sonodynamic therapy (SDT) is an emerging treatment method. In comparison with photodynamic therapy (PDT), SDT exhibits deep penetration, high cell membrane permeability, and free exposure to light capacity. Unfortunately, owing to inappropriate ultrasound parameter selection, poor targeting of sonosensitizers, and the complex tumor environment, SDT is frequently ineffective. In this review, we describe the approaches for selecting ultrasound parameters and how to develop sonosensitizers to increase targeting and improve adverse tumor microenvironments. Furthermore, the potential of combining SDT with other treatment methods, such as chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy, is discussed to further increase the treatment efficiency of SDT.
Collapse
Affiliation(s)
- Xiangting Wang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Xiaohong Xu
- Department of Ultrasound, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhe Yang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Xuanshou Xu
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Shisong Han
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Heng Zhang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| |
Collapse
|
49
|
Liu Y, Qin L, Tan G, Guo Y, Fan Y, Song N, Zhou P, Yan CH, Tang Y. Titanium-Based Superlattice with Fe(III)-Regulable Bandgap and Performance for Optimal and Synergistic Sonodynamic-Chemotherapy Guided by Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2023; 62:e202313165. [PMID: 37828621 DOI: 10.1002/anie.202313165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
Superlattices have considerable potential as sonosensitizers for cancer therapy because of their flexible and tunable band gaps, although they have not yet been reported. In this study, a Ti-based organic-inorganic superlattice with good electron-hole separation was synthesized, which consisted of orderly layered superlattices of 2,2'-bipyridine-5,5'-dicarboxylic acid (BPDC) and Ti-O layers. In addition, the superlattice was coordinated with Fe(III) and encapsulated doxorubicin (DOX) to prepare Ti-BPDC@Fe@DOX@PEG (TFDP) after biocompatibility modification. TFDP can realize the simultaneous generation of reactive oxygen species and release of DOX under ultrasound irradiation. Moreover, adjusting the Fe(III) content can effectively modulate the band gap of the superlattice and increase the efficiency of sonodynamic therapy (SDT). The mechanisms underlying this modulation were explored. TFDP with Fe(III) can also be used as a contrast agent for magnetic resonance imaging (MRI). Both in vitro and in vivo experiments demonstrated the ability of TFDP to precisely treat cancer using MRI-guided SDT/chemotherapy. This study expands the applications of superlattices as sonosensitizers with flexible and tailored modifications and indicates that superlattices are promising for precise and customized treatments.
Collapse
Affiliation(s)
- Yanjun Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Liying Qin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guoying Tan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yanan Guo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yifan Fan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Nan Song
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Ping Zhou
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, P. R. China
| |
Collapse
|
50
|
Luo X, Zhang Z, Wang J, Wang X, Zhang Y, Chen J, Ge G, Yang W, Qian X, Tian Y, Yang Y. Acyl-caged rhodamines: photo-controlled and self-calibrated generation of acetyl radicals for neural function recovery in early AD mice. Chem Sci 2023; 14:11689-11698. [PMID: 37920344 PMCID: PMC10619617 DOI: 10.1039/d3sc03035k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023] Open
Abstract
The biological function of radicals is a broad continuum from signaling to killing. Yet, biomedical exploitation of radicals is largely restricted to the theme of healing-by-killing. To explore their potential in healing-by-signaling, robust radical generation methods are warranted. Acyl radicals are endogenous, exhibit facile chemistry and elicit matrix-dependent biological outcomes. Their implications in health and disease remain untapped, primarily due to the lack of a robust generation method with spatiotemporal specificity. Fusing the Norrish chemistry into the xanthene scaffold, we developed a novel general and modular molecular design strategy for photo-triggered generation of acyl radicals, i.e., acyl-caged rhodamine (ACR). A notable feature of ACR is the simultaneous release of a fluorescent probe for cell redox homeostasis allowing real-time monitoring of the biological outcome of acyl radicals. With a donor of the endogenous acetyl radical (ACR575a), we showcased its capability in precise and continuous modulation of the cell redox homeostasis from signaling to stress, and induction of a local oxidative burst to promote differentiation of neural stem cells (NSCs). Upon intracerebral-injection of ACR575a and subsequent fiber-optical activation, early AD mice exhibited enhanced differentiation of NSCs toward neurons, reduced formation of Aβ plaques, and significantly improved cognitive abilities, including learning and memory.
Collapse
Affiliation(s)
- Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Zhonghui Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Jie Wang
- Department of Molecular and Cellular Biochemistry, School of Medicine, Shanghai Jiaotong University Chongqing South Road 280 Shanghai 200025 China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yani Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine Cailun Road 1200 Shanghai 201203 China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine Cailun Road 1200 Shanghai 201203 China
| | - Wen Yang
- Department of Molecular and Cellular Biochemistry, School of Medicine, Shanghai Jiaotong University Chongqing South Road 280 Shanghai 200025 China
| | - Xuhong Qian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Dongchuan Road 500 Shanghai 200241 China
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| | - Yang Tian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| |
Collapse
|