1
|
Roemling LJ, De Angelis G, Mauch A, Amstad E, Vogel N. Control of Buckling of Colloidal Supraparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411772. [PMID: 40317860 DOI: 10.1002/smll.202411772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/02/2025] [Indexed: 05/07/2025]
Abstract
The properties of clusters of colloidal particles, often termed supraparticles, are determined by the arrangement of the primary particles. Therefore, controlling the structure formation process is of key importance. While buckled morphologies can result from fast drying kinetics as found in spray drying, controlling the morphology under slow drying conditions remains a challenge. The final morphology of a supraparticle formed from an emulsion droplet can be controlled by manipulating particle-surfactant interactions. Water/oil emulsions are used to template supraparticle formation. The interactions of negatively charged colloidal particles with the surfactants stabilizing the water/oil-interface are tailored via the local pH within the aqueous droplet. At low pH, protonation of the anionic headgroup of the surfactant decreases electrostatic repulsion of the particles, facilitates interfacial adsorption, and subsequently causes buckling. The local pH of the aqueous droplet phase continuously changes during the assembly process. The supraparticle formation pathway can therefore be controlled by determining the point in time at which interfacial adsorption is enabled by adjusting the initial pH. Consequently, the final supraparticle morphology can be tailored at will, from fully buckled structures, via undulated surface morphologies to spherically rough and spherically smooth supraparticles and crystalline colloidal clusters.
Collapse
Affiliation(s)
- Lukas J Roemling
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Interfaces and Particle Technology, 91058, Erlangen, Germany
| | - Gaia De Angelis
- Soft Materials Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Annika Mauch
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Interfaces and Particle Technology, 91058, Erlangen, Germany
| | - Esther Amstad
- Soft Materials Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Nicolas Vogel
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Interfaces and Particle Technology, 91058, Erlangen, Germany
| |
Collapse
|
2
|
He P, Li Y, Yu K, Yan P, Liu W, Zhang M, Ma L. Hierarchical Porous Composite Carbon Microsphere Superstructures Based on D-p Orbital Hybridization for Efficient Capture of Low-Concentration Cs . SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409054. [PMID: 40296320 DOI: 10.1002/smll.202409054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/15/2025] [Indexed: 04/30/2025]
Abstract
The limitation of diffusion kinetics affects the adsorption performance of porous materials. Hierarchical porous structure is one of the effective strategies to solve this problem. However, it is a challenge to construct macro-microporous orderly hierarchical structures to maximize material performance. In this work, three orderly hierarchical porous composite carbon microsphere superstructures are prepared self-assembled from nanoscale primary particles by microfluidic technology, which overcame the kinetic limitation and enhanced the adsorption performance. The surface microenvironment of these superstructures is regulated by different transition metals with varying numbers of d-orbital electrons. These hierarchical pore structures and effective d-p orbital hybridization enabled the composite carbon microsphere superstructures to efficiently capture low-concentration cesium ions, of which the highest adsorption capacity is 5 times that of non-metal carbon microsphere superstructures. This strategy provides a potential approach for precisely controlling the surface microenvironment of materials.
Collapse
Affiliation(s)
- Pan He
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yang Li
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Kaifu Yu
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Pengyu Yan
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Weijian Liu
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Meicheng Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Lijian Ma
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
3
|
Madubuko N, Sultan U, Carl S, Lehmann D, Zhou X, Soegaard A, Taccardi N, Apeleo Zubiri B, Wintzheimer S, Spiecker E, Haumann M, Vogel N, Wasserscheid P. Controlled Nanopore Sizes in Supraparticle Supports for Enhanced Propane Dehydrogenation with GaPt SCALMS Catalysts. ACS APPLIED NANO MATERIALS 2024; 7:24356-24367. [PMID: 39539809 PMCID: PMC11555637 DOI: 10.1021/acsanm.4c03577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
The efficient immobilization of GaPt liquid metal alloy droplets onto tailored supports improves catalytic performance by preventing coalescence and subsequent loss of active surface area. Herein, we use tailored supraparticle (SP) supports with controlled nanopores to systematically study the influence of pore sizes on the catalytic stability of GaPt supported catalytically active liquid metal solution (SCALMS) in propane dehydrogenation (PDH). Initially, GaPt droplets were prepared via an atom-efficient and scalable ultrasonication method with recycling loops to yield droplets <300 nm. Subsequently, these droplets were immobilized onto SiO2-based SPs with controlled pore sizes ranging from 45 to 320 nm. Catalytic evaluations in PDH revealed that GaPt immobilized on SPs with larger pores demonstrated superior stability over 15 h time-on-stream evidenced by reduced deactivation rates from 0.046 to 0.026 h-1. Nanocomputed tomography and identical location SEM confirmed the successful immobilization of GaPt droplets within the interstitial sites formed by the primary particles constituting the SPs. These remained unchanged before and after the catalytic reaction, demonstrating efficient coalescence prevention. Our findings underscore the importance of support pore size engineering for improving the stability of GaPt SCALMS catalysts and highlight, particularly, the high potential of using SPs in this context.
Collapse
Affiliation(s)
- Nnamdi Madubuko
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
| | - Umair Sultan
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Institute
of Particle Technology, 91058 Erlangen, Germany
| | - Simon Carl
- Institute
of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis
and Electron Microscopy (CENEM), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), IZNF, 91058 Erlangen, Germany
| | - Daniel Lehmann
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
| | - Xin Zhou
- Institute
of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis
and Electron Microscopy (CENEM), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), IZNF, 91058 Erlangen, Germany
| | - Alexander Soegaard
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
| | - Nicola Taccardi
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
| | - Benjamin Apeleo Zubiri
- Institute
of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis
and Electron Microscopy (CENEM), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), IZNF, 91058 Erlangen, Germany
| | - Susanne Wintzheimer
- Department
of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
- Fraunhofer-Institute
for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Erdmann Spiecker
- Institute
of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis
and Electron Microscopy (CENEM), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), IZNF, 91058 Erlangen, Germany
| | - Marco Haumann
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
- Department
of Chemistry, Research Centre for Synthesis and Catalysis, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, 2092, South Africa
| | - Nicolas Vogel
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Institute
of Particle Technology, 91058 Erlangen, Germany
| | - Peter Wasserscheid
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
- Forschungszentrum
Jülich GmbH, Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), 91058 Erlangen, Germany
- Forschungszentrum
Jülich GmbH, Institute for a Sustainable
Hydrogen Economy (INW), 52428 Jülich, Germany
| |
Collapse
|
4
|
Naveenkumar PM, Roemling LJ, Sultan U, Vogel N. Fabrication of Spherical Colloidal Supraparticles via Membrane Emulsification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22245-22255. [PMID: 39383325 DOI: 10.1021/acs.langmuir.4c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Colloidal supraparticles are micrometer-scale assemblies of primary particles. These supraparticles have potential application in photonic materials, catalysis, gas adsorption, and drug delivery. Thus, the synthesis of colloidal supraparticles with a narrow size distribution and high yield has become essential. Here, we demonstrate membrane emulsification as a high-throughput approach for fabricating spherical supraparticles with a narrow size distribution and control over particle size and crystallinity. Spherical supraparticles with well-ordered surface structures are synthesized by generating emulsion droplets of an aqueous colloidal dispersion in fluorocarbon oil using a Shirasu porous glass membrane followed by the consolidation of particles through water removal within the emulsion. We systematically investigate process parameters, including the flow rate of the particle dispersion, the particle concentration, and the average pore diameter of the membrane, on the mean size and size distribution of the supraparticles, revealing key factors governing supraparticle properties and production throughput. A comparative evaluation with commonly employed methods highlights the advantage of membrane emulsification, which combines well-defined internal structure and controlled supraparticle sizes with comparably high yields on the order of tens of grams per day. Importantly, in contrast to widely used droplet-based microfluidics, membrane emulsification allows fabrication of supraparticles in nonfluorinated oil. Overall, membrane emulsification offers a simple yet versatile method for fabricating colloidal supraparticles with high quality and yield and may serve as a bridge between existing high-precision techniques, such as droplet-based microfluidics, and high-throughput processes with less control, such as spray-drying.
Collapse
Affiliation(s)
- Parinamipura M Naveenkumar
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Lukas J Roemling
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Umair Sultan
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
5
|
Ma W, Zhang N, Long C, Shu Z, Liu Y, Lin Y, Lu D, Liu Q, Jiang G. Self-Assembly of Super-Uniform Covalent Organic Framework Colloidal Particles into Multi-Dimensional Ordered Superstructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403331. [PMID: 38898749 DOI: 10.1002/smll.202403331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Precise self-assembly of colloidal particles is crucial for understanding their aggregation properties and preparing macroscopic functional devices. It is currently very challenging to synthesize and self-assemble super-uniform covalent organic framework (COF) colloidal particles into well-organized multidimensional superstructures. Here, simple and versatile strategies are proposed for synthesis of super-uniform COF colloidal particles and self-assembly of them into 1D supraparticles, 2D ordered mono/multilayers, and 3D COF films. For this purpose, several self-assembly techniques are developed, including emulsion solvent evaporation, air-liquid interfacial self-assembly, and drop-casting. These strategies enable the superstructural self-assembly of particles of varying sizes and species without any additional surfactants or chemical modifications. The assembled superstructures maintain the porosity and high specific surface area of their building blocks. The feasibility of the strategies is examined with different types of COFs. This research provides a new approach for the controllable synthesis of super-uniform COF colloidal particles capable of self-assembling into multidimensional superstructures with long-range order. These discoveries hold great promise for the design of emerging multifunctional COF superstructures.
Collapse
Affiliation(s)
- Wende Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ning Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Caicheng Long
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhao Shu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yacong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yue Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
6
|
Sun QJ, Guo WT, Liu SZ, Tang XG, Roy VA, Zhao XH. Rise of Metal-Organic Frameworks: From Synthesis to E-Skin and Artificial Intelligence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45830-45860. [PMID: 39178336 DOI: 10.1021/acsami.4c07732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Metal-organic frameworks (MOFs) have attained broad research attention in the areas of sensors, resistive memories, and optoelectronic synapses on the merits of their intriguing physical and chemical properties. In this review, recent progress on the synthesis of MOFs and their electronic applications is introduced and discussed. Initially, the crystal structures and properties of MOFs encompassing optical, electrical, and chemical properties are discussed in brief. Subsequently, advanced synthesis methods for MOFs are introduced, categorized into hydrothermal approach, microwave synthesis, mechanochemical synthesis, and electrochemical deposition. After that, the various roles of MOFs in widespread applications, including sensing, information storage, optoelectronic synapses, machine learning, and artificial intelligence, are discussed, highlighting their versatility and the innovative solutions they provide to long-standing challenges. Finally, an outlook on remaining challenges and a future perspective for MOFs are proposed.
Collapse
Affiliation(s)
- Qi-Jun Sun
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wen-Tao Guo
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shu-Zheng Liu
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xin-Gui Tang
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Vellaisamy Al Roy
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong 999077, P. R. China
| | - Xin-Hua Zhao
- School of Intelligent Manufacturing and Electrical Engineering, Guangzhou Institute of Science and Technology, Guangzhou 510540, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
7
|
Chen T, Xu H, Li S, Zhang J, Tan Z, Chen L, Chen Y, Huang Z, Pang H. Tailoring the Electrochemical Responses of MOF-74 Via Dual-Defect Engineering for Superior Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402234. [PMID: 38781597 DOI: 10.1002/adma.202402234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Rationally designed defects in a crystal can confer unique properties. This study showcases a novel dual-defects engineering strategy to tailor the electrochemical response of metal-organic framework (MOF) materials used for electrochemical energy storage. Salicylic acid (SA) is identified as an effective modulator to control MOF-74 growth and induce structural defects, and cobalt cation doping is adopted for introducing a second type of defect. The resulting dual-defects engineered bimetallic MOF exhibits a discharging capacity of 218.6 mAh g-1, 4.4 times that of the pristine MOF-74, and significantly improved cycling stability. Moreover, the engineered MOF-74(Ni0.675Co0.325)-8//Zn aqueous battery shows top energy/power density performances for Ni-Zn batteries (266.5 Wh kg-1, 17.22 kW kg-1). Comprehensive investigations reveal that engineered defects modify the local coordination environment and promote the in situ electrochemical reconfiguration during operation to significantly boost the electrochemical activity. This work suggests that rational tailoring of the defects within the MOF crystal is an effective strategy to manipulate the coordination environment of the metal centers and the corresponding electrochemical reconfiguration for electrochemical applications.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hengyue Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiaqi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhicheng Tan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Long Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Zhongjie Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225000, China
| |
Collapse
|
8
|
Marino E, LaCour RA, Kodger TE. Emergent Properties from Three-Dimensional Assemblies of (Nano)particles in Confined Spaces. CRYSTAL GROWTH & DESIGN 2024; 24:6060-6080. [PMID: 39044735 PMCID: PMC11261636 DOI: 10.1021/acs.cgd.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 07/25/2024]
Abstract
The assembly of (nano)particles into compact hierarchical structures yields emergent properties not found in the individual constituents. The formation of these structures relies on a profound knowledge of the nanoscale interactions between (nano)particles, which are often designed by researchers aided by computational studies. These interactions have an effect when the (nano)particles are brought into close proximity, yet relying only on diffusion to reach these closer distances may be inefficient. Recently, physical confinement has emerged as an efficient methodology to increase the volume fraction of (nano)particles, rapidly accelerating the time scale of assembly. Specifically, the high surface area of droplets of one immiscible fluid into another facilitates the controlled removal of the dispersed phase, resulting in spherical, often ordered, (nano)particle assemblies. In this review, we discuss the design strategies, computational approaches, and assembly methods for (nano)particles in confined spaces and the emergent properties therein, such as trigger-directed assembly, lasing behavior, and structural photonic color. Finally, we provide a brief outlook on the current challenges, both experimental and computational, and farther afield application possibilities.
Collapse
Affiliation(s)
- Emanuele Marino
- Department
of Physics and Chemistry, Università
degli Studi di Palermo, Via Archirafi 36, Palermo 90123, Italy
| | - R. Allen LaCour
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Thomas E. Kodger
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
9
|
Zhang J, Liu L, Zhao Z, Hung CT, Wang B, Duan L, Lv K, Cao XM, Tang Y, Zhao D. Hydrogen-Bonded Mesoporous Frameworks with Tunable Pore Sizes and Architectures from Nanocluster Assembly Units. J Am Chem Soc 2024; 146:17866-17877. [PMID: 38916547 DOI: 10.1021/jacs.4c03538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Construction of mesoporous frameworks by noncovalent bonding still remains a great challenge. Here, we report a micelle-directed nanocluster modular self-assembly approach to synthesize a novel type of two-dimensional (2-D) hydrogen-bonded mesoporous frameworks (HMFs) for the first time based on nanoscale cluster units (1.0-3.0 nm in size). In this 2-D structure, a mesoporous cluster plate with ∼100 nm in thickness and several micrometers in size can be stably formed into uniform hexagonal arrays. Meanwhile, such a porous plate consists of several (3-4) dozens of layers of ultrathin mesoporous cluster nanosheets. The size of the mesopores can be precisely controlled from 11.6 to 18.5 nm by utilizing the amphiphilic diblock copolymer micelles with tunable block lengths. Additionally, the pore configuration of the HMFs can be changed from spherical to cylindrical by manipulating the concentration of the micelles. As a general approach, various new HMFs have been achieved successfully via a modular self-assembly of nanoclusters with switchable configurations (nanoring, Keggin-type, and cubane-like) and components (titanium-oxo, polyoxometalate, and organometallic clusters). As a demonstration, the titanium-oxo cluster-based HMFs show efficient photocatalytic activity for hydrogen evolution (3.6 mmol g-1h-1), with a conversion rate about 2 times higher than that of the unassembled titanium-oxo clusters (1.5 mmol g-1h-1). This demonstrates that HMFs exhibited enhanced photocatalytic activity compared with unassembled titanium-oxo clusters units.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - LiangLiang Liu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Chin-Te Hung
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Binhang Wang
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Linlin Duan
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Kexin Lv
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Xiao-Ming Cao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yun Tang
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
- ARC Hub for Computational Particle Technology, Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
10
|
Li HY, Kong XJ, Han SD, Pang J, He T, Wang GM, Bu XH. Metalation of metal-organic frameworks: fundamentals and applications. Chem Soc Rev 2024; 53:5626-5676. [PMID: 38655667 DOI: 10.1039/d3cs00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.
Collapse
Affiliation(s)
- Hai-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang-Jing Kong
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
11
|
Ariga K. 2D Materials Nanoarchitectonics for 3D Structures/Functions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:936. [PMID: 38399187 PMCID: PMC10890396 DOI: 10.3390/ma17040936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
It has become clear that superior material functions are derived from precisely controlled nanostructures. This has been greatly accelerated by the development of nanotechnology. The next step is to assemble materials with knowledge of their nano-level structures. This task is assigned to the post-nanotechnology concept of nanoarchitectonics. However, nanoarchitectonics, which creates intricate three-dimensional functional structures, is not always easy. Two-dimensional nanoarchitectonics based on reactions and arrangements at the surface may be an easier target to tackle. A better methodology would be to define a two-dimensional structure and then develop it into a three-dimensional structure and function. According to these backgrounds, this review paper is organized as follows. The introduction is followed by a summary of the three issues; (i) 2D to 3D dynamic structure control: liquid crystal commanded by the surface, (ii) 2D to 3D rational construction: a metal-organic framework (MOF) and a covalent organic framework (COF); (iii) 2D to 3D functional amplification: cells regulated by the surface. In addition, this review summarizes the important aspects of the ultimate three-dimensional nanoarchitectonics as a perspective. The goal of this paper is to establish an integrated concept of functional material creation by reconsidering various reported cases from the viewpoint of nanoarchitectonics, where nanoarchitectonics can be regarded as a method for everything in materials science.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
12
|
Yetkin M, Wani YM, Kritika K, Howard MP, Kappl M, Butt HJ, Nikoubashman A. Structure Formation in Supraparticles Composed of Spherical and Elongated Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1096-1108. [PMID: 38153401 DOI: 10.1021/acs.langmuir.3c03410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
We studied the evaporation-induced formation of supraparticles from dispersions of elongated colloidal particles using experiments and computer simulations. Aqueous droplets containing a dispersion of ellipsoidal and spherical polystyrene particles were dried on superamphiphobic surfaces at different humidity values that led to varying evaporation rates. Supraparticles made from only ellipsoidal particles showed short-range lateral ordering at the supraparticle surface and random orientations in the interior regardless of the evaporation rate. Particle-based simulations corroborated the experimental observations in the evaporation-limited regime and showed an increase in the local nematic ordering as the diffusion-limited regime was reached. A thin shell of ellipsoids was observed at the surface when supraparticles were made from binary mixtures of ellipsoids and spheres. Image analysis revealed that the supraparticle porosity increased with an increasing aspect ratio of the ellipsoids.
Collapse
Affiliation(s)
- Melis Yetkin
- Department of Physics at Interfaces, Max-Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yashraj M Wani
- Institute of Physics, Johannes Gutenberg University of Mainz, Staudingerweg 7, Mainz 55128, Germany
| | - Kritika Kritika
- Institute of Physics, Johannes Gutenberg University of Mainz, Staudingerweg 7, Mainz 55128, Germany
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, Dresden 01069, Germany
| | - Michael P Howard
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Michael Kappl
- Department of Physics at Interfaces, Max-Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Hans-Jürgen Butt
- Department of Physics at Interfaces, Max-Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University of Mainz, Staudingerweg 7, Mainz 55128, Germany
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, Dresden 01069, Germany
| |
Collapse
|
13
|
Ariga K. Materials Nanoarchitectonics at Dynamic Interfaces: Structure Formation and Functional Manipulation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:271. [PMID: 38204123 PMCID: PMC10780059 DOI: 10.3390/ma17010271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The next step in nanotechnology is to establish a methodology to assemble new functional materials based on the knowledge of nanotechnology. This task is undertaken by nanoarchitectonics. In nanoarchitectonics, we architect functional material systems from nanounits such as atoms, molecules, and nanomaterials. In terms of the hierarchy of the structure and the harmonization of the function, the material created by nanoarchitectonics has similar characteristics to the organization of the functional structure in biosystems. Looking at actual biofunctional systems, dynamic properties and interfacial environments are key. In other words, nanoarchitectonics at dynamic interfaces is important for the production of bio-like highly functional materials systems. In this review paper, nanoarchitectonics at dynamic interfaces will be discussed, looking at recent typical examples. In particular, the basic topics of "molecular manipulation, arrangement, and assembly" and "material production" will be discussed in the first two sections. Then, in the following section, "fullerene assembly: from zero-dimensional unit to advanced materials", we will discuss how various functional structures can be created from the very basic nanounit, the fullerene. The above examples demonstrate the versatile possibilities of architectonics at dynamic interfaces. In the last section, these tendencies will be summarized, and future directions will be discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|