1
|
Pian T, Wang N, Ren X, Yang S, Sun M, Gan Z, Lv J, Jia C. Integrated Network Cathodes by In Situ Phase Transition Break Diffusion Limitation for Zinc Ion Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411860. [PMID: 40167493 DOI: 10.1002/smll.202411860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/24/2025] [Indexed: 04/02/2025]
Abstract
The cathode materials set the limitation of aqueous zinc ion batteries (AZIBs) in capacity and restrict their development. Vanadium-based materials show unsatisfactory conductivity and strong interactions with Zn2+ as well as a narrow voltage window. Herein, an integrated network structure is obtained by modulating the voltage window to phase transition from VO2 to HXV2O5. This has multiple advantages: low crystallinity and abundant active sites; good electrolyte wetting; and two-electron transfer for high specific capacity. The AZIBs exhibit impressive rate performance (545 mAh g-1 at 0.1 A g-1 and 185 mAh g-1 at 20 A g-1) and cycling performance (179 mAh g-1 after 15 000 cycles at 20 A g-1), stable operation even at -20 °C (391 mAh g-1 at 1 A g-1, 97 mAh g-1 at 10 A g-1). AZIBs have high power density and high energy density based on the mass of cathode material (405 Wh kg-1 at 74 W kg-1 and 102 Wh kg-1 at 11 127 W kg-1). The pouch-type cell can run for over 500 h, has a maximum energy density of 45.5 Wh kg-1. The phase transition mechanism and energy storage mechanism are identified, which is conducive to promoting the development of cathodes for AZIBs.
Collapse
Affiliation(s)
- Tianning Pian
- National Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrate Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Nengze Wang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| | - Xiaohe Ren
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Shengbo Yang
- National Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrate Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Mengxuan Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Ziwei Gan
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jianing Lv
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| | - Chunyang Jia
- National Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrate Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
2
|
Niu Z, Qiao Z, Sun P, Chen J, Wang S, Huo F, Cao D. Single-Atom Sb-Doped RuSbO x Bifunctional Catalysts for Ultra-Stable PEM Water Electrolyzers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502088. [PMID: 40244887 DOI: 10.1002/smll.202502088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Developing highly efficient and stable Pt/Ir-free bifunctional catalysts is very urgent for lowering the catalyst cost of proton exchange membrane water electrolyzer (PEMWE). Herein, a single-atom Sb-doped RuSbOx bifunctional catalyst is developed for ultra-stable PEMWE. RuSbOx exhibits excellent stability with a long-term operation of 150 h for oxygen evolution reaction (OER) and 300 h for hydrogen evolution reaction (HER) at 100 mA cm-2 in acidic media, respectively. Impressively, the PEMWE with RuSbOx as bifunctional catalysts only needs 1.72 to reach 1.0 A cm-2, and can maintain stable operation for 200 h at 200 mA cm-2. The in situ Raman and molecular probe methods reveal that the single-atom Sb doping can reconstruct the interfacial water structure on the surface of RuSbOx, resulting in an enriched supply of free water, accelerating the deprotonation process and reducing the local acidity of the catalyst surface, thereby improving the acidic OER activity and stability. Density functional theory calculations further confirm the above experimental results. In short, this work reveals that Sb is an outstanding structural stabilizer, and single-atom Sb-doping can maximize the OER stability of Ru-based catalysts in acid, which provides a useful strategy for designing ultra-stable electrocatalysts for PEMWE.
Collapse
Affiliation(s)
- Ziqiang Niu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Panpan Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingzhao Chen
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Huo
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Naseem M, Tahir M, Dai J, Qu L, Nisa FU, Ahmad W, Shahbaz I, Ma Z, Khan AU, He L. Tuning the Catalytic Activity of MoS2-x-NbSx Heterostructure Nanosheets for Bifunctional Acidic Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501464. [PMID: 40166825 DOI: 10.1002/smll.202501464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Developing durable electrocatalysts with high activity for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in acidic media is critically important for clean power production. In this study, MoS2-x-NbSx heterostructure nanosheets are synthesized from a solid-state reaction method followed by liquid phase exfoliation, and their catalytic performance is optimized. The MoS2-x-NbSx heterostructure nanosheets with optimal precursors ratio exhibit promising attributes for applications in the HER and OER compared to pristine MoS2 and Nb under the same conditions. The MoS2-x-NbSx heterostructure nanosheets catalyst on glassy carbon electrodes shows the minimum overpotential of 159 mV for HER and 295 mV for OER at a current density of 10 mA cm-2 in 0.5 m H2SO4. This research offers valuable insights into the fabrication of heterostructure nanosheets and evaluates their potential as effective electrocatalysts for water splitting compared with pristine 2D materials in an acid environment.
Collapse
Affiliation(s)
- Mizna Naseem
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Muhammad Tahir
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jun Dai
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Longbing Qu
- Department of Chemical Engineering, The University of Melbourne, Victoria, 3010, Australia
| | - Fazal Ul Nisa
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Waheed Ahmad
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Iqra Shahbaz
- Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
| | - Zeyu Ma
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Arif Ullah Khan
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Liang He
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin R&D Park of Sichuan University, Yibin, 644005, P. R. China
| |
Collapse
|
4
|
Feng W, Chang B, Ren Y, Kong D, Tao HB, Zhi L, Khan MA, Aleisa R, Rueping M, Zhang H. Proton Exchange Membrane Water Splitting: Advances in Electrode Structure and Mass-Charge Transport Optimization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416012. [PMID: 40035170 PMCID: PMC12004895 DOI: 10.1002/adma.202416012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Proton exchange membrane water electrolysis (PEMWE) represents a promising technology for renewable hydrogen production. However, the large-scale commercialization of PEMWE faces challenges due to the need for acid oxygen evolution reaction (OER) catalysts with long-term stability and corrosion-resistant membrane electrode assemblies (MEA). This review thoroughly examines the deactivation mechanisms of acidic OER and crucial factors affecting assembly instability in complex reaction environments, including catalyst degradation, dynamic behavior at the MEA triple-phase boundary, and equipment failures. Targeted solutions are proposed, including catalyst improvements, optimized MEA designs, and operational strategies. Finally, the review highlights perspectives on strict activity/stability evaluation standards, in situ/operando characteristics, and practical electrolyzer optimization. These insights emphasize the interrelationship between catalysts, MEAs, activity, and stability, offering new guidance for accelerating the commercialization of PEMWE catalysts and systems.
Collapse
Affiliation(s)
- Wenting Feng
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
- School of Materials Science and EngineeringAdvanced Chemical Engineering and Energy Materials Research CenterChina University of Petroleum (East China)Qingdao266580P. R. China
| | - Bin Chang
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Yuanfu Ren
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Debin Kong
- School of Materials Science and EngineeringAdvanced Chemical Engineering and Energy Materials Research CenterChina University of Petroleum (East China)Qingdao266580P. R. China
| | - Hua Bing Tao
- State Key Laboratory for Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Linjie Zhi
- School of Materials Science and EngineeringAdvanced Chemical Engineering and Energy Materials Research CenterChina University of Petroleum (East China)Qingdao266580P. R. China
| | - Mohd Adnan Khan
- Fuels & Chemicals DivisionResearch & Development Center, Saudi AramcoDhahran31311Saudi Arabia
| | - Rashed Aleisa
- Fuels & Chemicals DivisionResearch & Development Center, Saudi AramcoDhahran31311Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Wang F, Xiao L, Jiang Y, Liu X, Zhao X, Kong Q, Abdukayum A, Hu G. Recent achievements in noble metal-based oxide electrocatalysts for water splitting. MATERIALS HORIZONS 2025; 12:1757-1795. [PMID: 39764744 DOI: 10.1039/d4mh01315h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
The search for sustainable energy sources has accelerated the exploration of water decomposition as a clean H2 production method. Among the methods proposed, H2 production via water electrolysis has garnered considerable attention. However, the process of H2 production from water electrolysis is severely limited by the slow kinetics of the anodic oxygen evolution reaction and large intrinsic overpotentials at the anode; therefore, suitable catalysts need to be found to accelerate the reaction rate. Noble metal-based oxide electrocatalysts retain the advantages of abundant active sites, high electrical conductivity of noble metals, and low cost, which make them promising electrocatalysts; however, they suffer from the challenge of an imbalance between catalytic activity and stability. This review presents recent research progress in noble metals and their oxides as electrocatalysts. In this review, two half-reactions (the hydrogen evolution reaction and the oxygen evolution reaction) of water electrolysis are described. Recently reported methods for the synthesis of noble metal-based oxide electrocatalysts, improvement strategies, and sources of enhanced activity and stability for these types of catalysts are presented. Finally, the challenges and future perspectives in the field are summarised. This review is expected to help improve the understanding of noble metal-based oxide electrocatalysts.
Collapse
Affiliation(s)
- Feng Wang
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China.
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Linfeng Xiao
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Yuwei Jiang
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China.
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Xue Zhao
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Abdukader Abdukayum
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China.
| | - Guangzhi Hu
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
6
|
Han Z, Zhang Y, Lv T, Tan X, Wang Q, Wang Y, Meng C. Core-shell cobalt-iron silicide electrocatalysts with enhanced bifunctional performance in hydrogen and oxygen evolution reactions. J Colloid Interface Sci 2025; 682:1-10. [PMID: 39612758 DOI: 10.1016/j.jcis.2024.11.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
To satisfy the growing demand for green energy, hydrogen production through water electrolysis has emerged as a promising approach, making the design and synthesis of efficient and durable bifunctional electrocatalysts both critical and challenging for the advancement of hydrogen energy. In this study, we synthesized core-shell structured bifunctional transition metal silicide electrocatalysts using a magnesium thermal reduction method. During the exothermic reduction, a silicon oxide (SiOx) shell was formed, coating the active centers of the silicide and providing a protective core-shell structure. The overpotentials of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) of bimetallic cobalt iron silicide (CFS-2, Co: Fe = 1:1) catalyst in 1 M KOH at 10 mA cm-2 were 291 mV and 242 mV, respectively, with Tafel slopes of 65 and 164 mV dec-1, which were superior to single metal electrocatalysts of cobalt silicide (CS) and iron silicide (FS). The core-shell structure, with a metal silicide core and a passivating silica shell, enhances electron transfer while preventing silicon leaching and improving catalyst stability. Remarkably, after continuous operation for 24 h at a fixed current density of 10 mA cm-2, it remained stable at 1.66 V. This work represents the first successful synthesis of cobalt-iron bimetallic silicide catalysts for overall water splitting, demonstrating their significant potential for electrocatalytic applications and promoting the broader use of silicides in hydrogen production.
Collapse
Affiliation(s)
- Zhixuan Han
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Yifu Zhang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Tianming Lv
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Xianfang Tan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Qiushi Wang
- School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, PR China.
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Changgong Meng
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, PR China; College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China.
| |
Collapse
|
7
|
Wang W, Liu X, Feng H, Wan L, Xia C, Cao L, Hu Y, Dong B. Controllable Detachment of Organic Ligands on Ultrathin Amorphous Nanosheets Tailors the Electron-Aggregation for Accelerated pH-Universal Hydrogen Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411061. [PMID: 39895217 DOI: 10.1002/smll.202411061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Tailoring the local environment of catalyst surface has emerged as an effective strategy to enhance the reaction kinetics involving multiple intermediates. For hydrogen evolution reactions (HER), the driving factors for hydrogen aggregation and migration which are poorly understood in depth affects the reaction kinetics especially over a wide pH range. Inspired by the selectivity of the catalyst surface microenvironment for intermediates, an interfacial electrocatalyst composed of Ru ultrafine nanocatalysts anchored onto monolayer amorphous (a-WCoNiO) nanosheets with electron-rich microenvironment induced by an organic oleylamine ligand is designed to realize high-performance pH-universal HER. This Ru/a-WCoNiO possesses impressively low overpotentials of -13, -14, and -14 mV at 10 mA cm-2 in 0.5 m H2SO4, 1 m KOH and 1 m PBS, respectively, ranking among the best HER catalysts reported to date. Benefiting from the electron-rich microenvironment, the Ru/a-WCoNiO exhibits record-high turnover frequency (TOF) and mass activity (MA), which is more than 47.9 times higher than that of commercial 20% Pt/C. Importantly, other precious metals are loaded on a-WCoNiO and enhancing their mass current density for pH-universal HER. It is believed that this developed approach of organic modifiers tailored local microenvironment has practical significance and advantages for designing other high-performance catalysts.
Collapse
Affiliation(s)
- Wenwen Wang
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Xinzheng Liu
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Hui Feng
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Li Wan
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Chenghui Xia
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Lixin Cao
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Yubin Hu
- Institute of Marine Science and Technology, Shandong University, 72 Coastal Highway, Qingdao, 266237, P. R. China
| | - Bohua Dong
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| |
Collapse
|
8
|
Yang Z, Ding Y, Chen W, Luo S, Cao D, Long X, Xie L, Zhou X, Cai X, Liu K, Fu XZ, Luo JL. Phase-Engineered Bi-RuO 2 Single-Atom Alloy Oxide Boosting Oxygen Evolution Electrocatalysis in Proton Exchange Membrane Water Electrolyzer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417777. [PMID: 39822016 DOI: 10.1002/adma.202417777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/04/2025] [Indexed: 01/19/2025]
Abstract
Engineering nanomaterials at single-atomic sites can enable unprecedented catalytic properties for broad applications, yet it remains challenging to do so on RuO2-based electrocatalysts for proton exchange membrane water electrolyzer (PEMWE). Herein, the rational design and construction of Bi-RuO2 single-atom alloy oxide (SAAO) are presented to boost acidic oxygen evolution reaction (OER), via phase engineering a novel hexagonal close packed (hcp) RuBi single-atom alloy. This Bi-RuO2 SAAO electrocatalyst exhibits a low overpotential of 192 mV and superb stability over 650 h at 10 mA cm-2, enabling a practical PEMWE that needs only 1.59 V to reach 1.0 A cm-2 under industrial conditions. Operando differential electrochemical mass spectroscopy analysis, coupled with density functional theory studies, confirmed the adsorbate-evolving mechanism on Bi-RuO2 SAAO and that the incorporation of Bi1 improves the activity by electronic density optimization and the stability by hindering surface Ru demetallation. This work not only introduces a new strategy to fabricate high-performance electrocatalysts at atomic-level, but also demonstrates their potential use in industrial electrolyzers.
Collapse
Affiliation(s)
- Zhichao Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R China
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Yutian Ding
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Wen Chen
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Shuiping Luo
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Daofan Cao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Xin Long
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Lei Xie
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Xincheng Zhou
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Xinyi Cai
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Ke Liu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
9
|
Liao L, Gou W, Zhang M, Tan X, Qi Z, Xie M, Ma Y, Qu Y. Spillover of active oxygen intermediates of binary RuO 2/Nb 2O 5 nanowires for highly active and robust acidic oxygen evolution. NANOSCALE HORIZONS 2025; 10:586-595. [PMID: 39803975 DOI: 10.1039/d4nh00437j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Over-oxidation of surface ruthenium active sites of RuOx-based electrocatalysts leads to the formation of soluble high-valent Ru species and subsequent structural collapse of electrocatalysts, which results in their low stability for the acidic oxygen evolution reaction (OER). Herein, a binary RuO2/Nb2O5 electrocatalyst with abundant and intimate interfaces has been rationally designed and synthesized to enhance its OER activity in acidic electrolyte, delivering a low overpotential of 179 mV at 10 mA cm-2, a small Tafel slope of 73 mV dec-1, and a stabilized catalytic durability over a period of 750 h. Extensive experiments have demonstrated that the spillover of active oxygen intermediates from RuO2 to Nb2O5 and the subsequent participation of lattice oxygen of Nb2O5 instead of RuO2 for the acidic OER suppressed the over-oxidation of surface ruthenium species and thereby improved the catalytic stability of the binary electrocatalysts.
Collapse
Affiliation(s)
- Linqing Liao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China.
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wangyan Gou
- School of Materials Engineering, Xi'an Aeronautical University, Xi'an, 710077, China
| | - Mingkai Zhang
- School of Science, Xi'an University of Technology, Xi'an, 710048, China
| | - Xiaohe Tan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China.
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zening Qi
- Xi'an Yiwei Putai Environmental Protection Co., Ltd, Xi'an, 710065, China
| | - Min Xie
- Xi'an Yiwei Putai Environmental Protection Co., Ltd, Xi'an, 710065, China
| | - Yuanyuan Ma
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China.
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yongquan Qu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China.
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
10
|
Han H, Zhang Y, Zhou C, Yun H, Kang Y, Du K, Wang J, Chao S, Wang J. S- and N-Co-Doped Carbon-Nanoplate-Encased Ni Nanoparticles Derived from Dual-Ligand-Assembled Ni-MOFs as Efficient Electrocatalysts for the Oxygen Evolution Reaction. Molecules 2025; 30:820. [PMID: 40005132 PMCID: PMC11858542 DOI: 10.3390/molecules30040820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
To achieve the "double carbon" goal, it is urgent to reform the energy system. The oxygen evolution reaction (OER) is a vital semi-reaction for many new energy-storage and conversion devices. Metal nanoparticles embedded in heteroatom-doped carbon materials prepared by the pyrolyzing of metal-organic frameworks (MOFs) have been a key route to obtain high-performance electrochemical catalysts. Herein, a nanocatalyst embedding Ni nanoparticles into S- and N-co-doped carbon nanoplate (Ni NPs@SN-CNP) has been synthesized by pyrolysis of a Ni-MOF precursor. The prepared Ni NPs@SN-CNP exhibits superior oxygen evolution performance with an overpotential of 256 mV to attain 10 mA cm-2 and a low Tafel slope value of 95 mV dec-1. Moreover, a self-assembled overall-water-splitting cell with Ni NPs@SN-CNP/NF||Pt-C/NF achieves a low potential of 1.56 V at 10 mA cm-2 and a high cycling stability for at least 10 h. The improvement in this performance is benefit from its large surface area, unique morphology, and the nanostructure of the electrocatalyst. This study presents a novel and simple approach to designing high-performance OER catalysts.
Collapse
Affiliation(s)
- Huijuan Han
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.Z.); (C.Z.); (H.Y.); (K.D.)
| | - Yalei Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.Z.); (C.Z.); (H.Y.); (K.D.)
| | - Chunrui Zhou
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.Z.); (C.Z.); (H.Y.); (K.D.)
| | - Haixin Yun
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.Z.); (C.Z.); (H.Y.); (K.D.)
| | - Yiwen Kang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.Z.); (C.Z.); (H.Y.); (K.D.)
| | - Kexin Du
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.Z.); (C.Z.); (H.Y.); (K.D.)
| | - Jianying Wang
- Henan Provincial Ecological Environment Monitoring and Safety Center, Department of Ecology and Environment of Henan Province, Zhengzhou 450046, China
| | - Shujun Chao
- Xinxiang Engineering Technology Research Center of Functional Medical Nanomaterials, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Jichao Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.Z.); (C.Z.); (H.Y.); (K.D.)
| |
Collapse
|
11
|
Wang W, Li Y, Liu X, Cao L, Dong B. Loading Pt Nanoparticles on Ultrathin Amorphous Nanobelts for Enhanced Hydrogen Production. Chem Asian J 2025:e202401697. [PMID: 39894776 DOI: 10.1002/asia.202401697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/24/2025] [Accepted: 02/01/2025] [Indexed: 02/04/2025]
Abstract
Due to unique metal-support interactions, loaded structures have been widely used in the structural design of hydrogen-extraction reaction (HER) electrocatalysts. However, the development of catalysts that are both active and stable remains a great challenge. Herein, we successfully anchored Pt nanoparticles on ultrathin nanobelts to construct a crystalline/amorphous Pt NPs/CNWOx NBs heterostructure, which possesses the dual advantages of fast electron transfer in crystalline materials and effective exposure of active sites in amorphous materials. The obtained catalyst exhibits great HER catalytic performance in both 0.5 M H2SO4 and 1 M KOH. Compared with CNWOx nanobelts, Pt-loaded Pt NPs/CNWOx NBs exhibits lower overpotentials and faster HER kinetics. For acidic and alkaline HER, the catalyst required only low overpotentials of 35 mV and 60 mV to achieve a current density of 10 mA cm-2, respectively, which is even better than that of commercial Pt/C. And Pt NPs/CNWOx NBs shows almost no degradation after long time stability tests. It is found that the composite structure of crystalline/amorphous, the heterogeneous interface and the introduction of Pt synergize with each other to achieve increased number of active sites and enhanced intrinsic activity, resulting in excellent electrocatalytic HER activity and stability.
Collapse
Affiliation(s)
- Wenwen Wang
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Yan Li
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Xinzheng Liu
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Lixin Cao
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Bohua Dong
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| |
Collapse
|
12
|
Ran Y, Gan R, Zhao Q, Ma Q, Liao Y, Li Y, Wang Y, Wang Y, Zhang Y. Tuning the local S coordination environment on Ru single atoms to boost the oxygen evolution reaction. NANOSCALE 2025; 17:2820-2829. [PMID: 39831828 DOI: 10.1039/d4nr04706k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Engineering the local electronic structure of single atom catalysts (SACs) still remains challenging. In this study, a Ru-NiS2 single atom catalyst with a controlled S coordination environment, where Ru single atoms are implanted on a NiS2 nanoflower consisting of plenty of cross-linked nanosheets, has been developed via a facile atom capture strategy. Using Density Functional Theory (DFT) calculations, it has been revealed that the fine-tuned local S coordination environment can optimize the electronic structure of Ru active sites, and reduce the energy barrier of the rate-determining step for the oxygen evolution reaction (OER), thus boosting the electrocatalytic activity, such as a low overpotential of 269 mV at 10 mA cm-2. This work provides new insights into the rational regulation of the local coordination environment for SACs.
Collapse
Affiliation(s)
- Yiling Ran
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- State Key Laboratory of NBC Protection for Civilian, 102205 Beijing, China.
| | - Rong Gan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qin Zhao
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Quanlei Ma
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Yijing Liao
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Yinwei Li
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, 102205 Beijing, China.
| | - Yanwei Wang
- School of Chemical Engineering, Xuzhou College of Industrial Technology, Xuzhou 221140, Jiangsu, China.
| | - Yan Zhang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| |
Collapse
|
13
|
Yang L, Liu H, Li Y, Zhong L, Jin Z, Xu X, Cao D, Chen Z. Customizing Bonding Affinity with Multi-Intermediates via Interfacial Electron Capture to Boost Hydrogen Evolution in Alkaline Water Electrolysis. Angew Chem Int Ed Engl 2025; 64:e202414518. [PMID: 39444346 DOI: 10.1002/anie.202414518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Developing efficient and earth-abundant alkaline HER electrocatalysts is pivotal for sustainable energy, but co-regulating its intricate multi-step process, encompassing water dissociation, OH- desorption, and hydrogen generation, is still a great challenge. Herein, we tackle these obstacles by fabricating a vertically integrated electrode featuring a nanosheet array with prominent dual-nitride metallic heterostructures characterized by impeccable lattice matching and excellent conductivity, functioning as a multi-purpose catalyst to fine-tune the bonding affinity with alkaline HER intermediates. Detailed structural characterization and theoretical calculation elucidate that charge redistribution at the heterointerface reduces the O p-W d and H s-W d interactions vs. single nitride, thereby enhancing OH- transfer and H2 release. As anticipated, the resulting WN-NiN/CFP catalyst demonstrates a gratifying low overpotential of 36.8 mV at 10 mA/cm2 for alkaline HER, while concurrently maintaining operational stability for 1300 h at 100 mA/cm2 for overall water splitting. This work presents an effective approach to meticulously optimize multiple site-intermediate interactions in alkaline HER, laying the foundation for efficient energy conversion.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Catalysis, Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
| | - Huibing Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ying Li
- State Key Laboratory of Catalysis, Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
| | - Lisong Zhong
- State Key Laboratory of Catalysis, Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Zhaohui Jin
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Xiaopei Xu
- Department of Physics, Henan University of Technology, Henan, 450001, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongwei Chen
- State Key Laboratory of Catalysis, Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
| |
Collapse
|
14
|
Hu W, Huang B, Sun M, Du J, Hai Y, Yin W, Wang X, Gao W, Zhao C, Yue Y, Li Z, Li C. Doping Ti into RuO 2 to Accelerate Bridged-Oxygen-Assisted Deprotonation for Acidic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411709. [PMID: 39614718 DOI: 10.1002/adma.202411709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/12/2024] [Indexed: 12/01/2024]
Abstract
The development of efficient and durable electrocatalysts for the acidic oxygen evolution reaction (OER) is essential for advancing renewable hydrogen energy technology. However, the slow deprotonation kinetics of oxo-intermediates, involving the four proton-coupled electron steps, hinder the acidic OER progress. Herein, a RuTiOx solid solution electrocatalyst is investigated, which features bridged oxygen (Obri) sites that act as proton acceptors, accelerating the deprotonation of oxo-intermediates. Electrochemical tests, infrared spectroscopy, and density functional theory results reveal that the moderate proton adsorption energy on Obri sites facilitates fast deprotonation kinetics through the adsorbate evolution mechanism. This process effectively prevents the over-oxidation and deactivation of Ru sites caused by the lattice oxygen mechanism. Consequently, RuTiOx shows a low overpotential of 198 mV at 10 mA cm-2 geo and performance exceeding 1400 h at 50 mA cm-2 geo with negligible deactivation. These insights into the OER mechanism and the structure-function relationship are crucial for the advancement of catalytic systems.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 100872, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 100872, China
| | - Jing Du
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yang Hai
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523000, China
| | - Wen Yin
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaomei Wang
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wensheng Gao
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Chunyang Zhao
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ya Yue
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zelong Li
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Can Li
- Key Laboratory of Advanced Catalysis, Gansu province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| |
Collapse
|
15
|
Chen S, Liu H, Yuan B, Xu W, Cao A, Sendeku MG, Li Y, Sun X, Wang F. Bi-doped ruthenium oxide nanocrystal for water oxidation in acidic media. NANOSCALE 2024; 16:20940-20947. [PMID: 39449263 DOI: 10.1039/d4nr02745k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
There is an urgent need to develop a cost-effective and highly efficient acidic OER catalyst to support the progress of proton exchange membrane water electrolysis technology. Ruthenium-based catalysts, which possess high activity and significantly lower cost compared to iridium-based catalysts, emerge as competitive candidates. However, their suboptimal stability constrains the wide application of RuO2. Herein, we develop ultra-small Bi0.05Ru0.95O2 nanocrystal with diameter of approximately 6.5 ± 0.1 nm for acidic OER. The Bi0.05Ru0.95O2 nanocrystal electrocatalyst exhibits a low overpotential of 203.5 mV at 10 mA cm-2 and 300+ hour stability at a high water-splitting current density of 100 mA cm-2 in 0.5 M H2SO4 with a low decay rate of 0.44 mV h-1. Density functional theory (DFT) calculation results confirmed the adsorbate evolving mechanism (AEM) occurring on Bi0.05Ru0.95O2, which prevents lattice oxygen from participating in the reaction, thus avoiding the collapse of the structure. We proved that the Bi dopants could play a crucial role in not only reducing the energy barrier of the potential-determining step, but also delivering electrons to Ru sites, thereby alleviating the over-oxidation of Ru active sites and enhancing operation durability.
Collapse
Affiliation(s)
- Shiyao Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Hai Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Bichen Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Wenhai Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Aiqing Cao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Marshet Getaye Sendeku
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, P. R. China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Fengmei Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
16
|
Xing M, Wang S, Yun J, Cao D. Nb Doping Induced the Formation of Protective Layer to Improve the Stability of Fe-Ni 3S 2 for Seawater Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402852. [PMID: 39118552 DOI: 10.1002/smll.202402852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The seawater electrolysis to produce hydrogen is a significant topic on alleviating the energy crisis. Here, the Fe, Nb-Ni3S2 catalyst is prepared by metal-doping strategy, and it shows high oxygen evolution reaction (OER) activity in alkaline medium, and only needs 1.491 V to deliver a current density of 100 mA cm-2 in simulated seawater. Using Fe, Nb-Ni3S2 as a bifunctional catalyst, the two-electrode electrolyzer only requires a voltage of 1.751 V (without impedance compensation) to drive the current density of 50 mA cm-2, and can run over 150 h stably in the simulated seawater. Importantly, In situ Raman test demonstrates that the outstanding performance of Fe, Nb-Ni3S2 in simulated seawater is ascribed to the in situ formed sulfate protective layer induced by Nb doping, which can effectively inhibit the corrosion of chloride ion, while the protective layer is absent for Fe-Ni3S2. The stable operation of simulated seawater electrolysis under industrial current density further confirms the stability improvement mechanism of forming protective layer. In short, this study provides a new strategy of using Nb dopants inducing the formation of protective layer to enhance the stability of seawater electrolysis.
Collapse
Affiliation(s)
- Minghui Xing
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jimmy Yun
- Qingdao International Academician Park Research Institute, Qingdao, 266000, China
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
17
|
Wu X, Wu J, Hu Y, Zhu L, Cao B, Reddy KM, Wang Z, Qiu HJ. Multi-Component and Nanoporous Design toward RuO 2-Based Electrocatalyst with Enhanced Performance for Acidic Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404019. [PMID: 39045905 DOI: 10.1002/smll.202404019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Developing electrocatalysts with excellent activity and stability for water splitting in acidic media remains a formidable challenge due to the sluggish kinetics and severe dissolution. As a solution, a multi-component doped RuO2 prepared through a process of dealloying-annealing is presented. The resulting multi-doped RuO2 possesses a nanoporous structure, ensuring a high utilization efficiency of Ru. Furthermore, the dopants can regulate the electronic structure, causing electron aggregation around unsaturated Ru sites, which mitigates Ru dissolution and significantly enhances the catalytic stability/activity. The representative catalyst (FeCoNiCrTi-RuO2) shows an overpotential of 167 mV at 10 mA cm-2 for oxygen evolution reaction (OER) in 0.5 m H2SO4 solution with a Tafel slope of 53.1 mV dec-1, which is among the highest performance reported. Moreover, it remains stable for over 200 h at a current density of 10 mA cm-2. This work presents a promising approach for improving RuO2-based electrocatalysts, offering a crucial advancement for electrochemical water splitting.
Collapse
Affiliation(s)
- Xin Wu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jiashun Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yixuan Hu
- Frontier Research Center for Materials Structure, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linshan Zhu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Boxuan Cao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kolan Madhav Reddy
- Frontier Research Center for Materials Structure, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenbin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Hua-Jun Qiu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
18
|
Qiao Z, Jiang R, Xu H, Cao D, Zeng XC. A General Descriptor for Single-Atom Catalysts with Axial Ligands. Angew Chem Int Ed Engl 2024; 63:e202407812. [PMID: 38771728 DOI: 10.1002/anie.202407812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Decoration of an axial coordination ligand (ACL) on the active metal site is a highly effective and versatile strategy to tune activity of single-atom catalysts (SACs). However, the regulation mechanism of ACLs on SACs is still incompletely known. Herein, we investigate diversified combinations of ACL-SACs, including all 3d-5d transition metals and ten prototype ACLs. We identify that ACLs can weaken the adsorption capability of the metal atom (M) by raising the bonding energy levels of the M-O bond while enhancing dispersity of the d orbital of M. Through examination of various local configurations and intrinsic parameters of ACL-SACs, a general structure descriptor σ is constructed to quantify the structure-activity relationship of ACL-SACs which solely based on a few key intrinsic features. Importantly, we also identified the axial ligand descriptor σACL, as a part of σ, which can serve as a potential descriptor to determine the rate-limiting steps (RLS) of ACL-SACs in experiment. And we predicted several ACL-SACs, namely, CrN4-, FeN4-, CoN4-, RuN4-, RhN4-, OsN4-, IrN4- and PtN4-ACLs, that entail markedly higher activities than the benchmark catalysts of Pt and IrO2 for oxygen reduction reaction and oxygen evolution reaction, respectively, thereby supporting that the general descriptor σ can provide a simple and cost-effective method to assess efficient electrocatalysts.
Collapse
Affiliation(s)
- Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Run Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haoxiang Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiao Cheng Zeng
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, 99977, Hong Kong
| |
Collapse
|
19
|
Huang S, Lin F, Wang S, Zeng X, Ling H, Hu X, Shen Z, Cao D. Asymmetric Microenvironment Tailoring Strategies of Atomically Dispersed Dual-Site Catalysts for Oxygen Reduction and CO 2 Reduction Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407974. [PMID: 39152929 DOI: 10.1002/adma.202407974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Dual-atom catalysts (DACs) with atomically dispersed dual-sites, as an extension of single-atom catalysts (SACs), have recently become a new hot topic in heterogeneous catalysis due to their maximized atom efficiency and dual-site diverse synergy, because the synergistic diversity of dual-sites achieved by asymmetric microenvironment tailoring can efficiently boost the catalytic activity by optimizing the electronic structure of DACs. Here, this work first summarizes the frequently-used experimental synthesis and characterization methods of DACs. Then, four synergistic catalytic mechanisms (cascade mechanism, assistance mechanism, co-adsorption mechanism and bifunction mechanism) and four key modulating methods (active site asymmetric strategy, transverse/axial-modification engineering, distance engineering and strain engineering) are elaborated comprehensively. The emphasis is placed on the effects of asymmetric microenvironment of DACs on oxygen/carbon dioxide reduction reaction. Finally, some perspectives and outlooks are also addressed. In short, the review summarizes a useful asymmetric microenvironment tailoring strategy to speed up synthesis of high-performance electrocatalysts for different reactions.
Collapse
Affiliation(s)
- Shiqing Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanmiao Lin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaofei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hao Ling
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Xiayi Hu
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Zhigang Shen
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| |
Collapse
|
20
|
Zhang H, Liu W, Li Z, Qiao L, Chi K, Guo X, Cao D, Cheng D. Constructing CoP/Ni 2P Heterostructure Confined Ru Sub-Nanoclusters for Enhanced Water Splitting in Wide pH Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401398. [PMID: 38992974 PMCID: PMC11425266 DOI: 10.1002/advs.202401398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/30/2024] [Indexed: 07/13/2024]
Abstract
Developing efficient electrocatalysts for water splitting is of great significance for realizing sustainable energy conversion. In this work, Ru sub-nanoclusters anchored on cobalt-nickel bimetallic phosphides (Ru-CoP/Ni2P) are constructed by an interfacial confinement strategy. Remarkably, Ru-CoP/Ni2P with low noble metal loading (33.1 µg cm-2) shows superior activity for hydrogen evolution reaction (HER) in all pH values, whose turnover frequency (TOF) is 8.7, 15.3, and 124.7 times higher than that of Pt/C in acidic, alkaline, and neutral conditions, respectively. Meanwhile, it only requires the overpotential of 171 mV@10 mA cm-2 for oxygen evolution reaction (OER) and corresponding TOF is 20.3 times higher than that of RuO2. More importantly, the Ru-CoP/Ni2P||Ru-CoP/Ni2P displays superior mass activity of 4017 mA mgnoble metal -1 at 2.0 V in flowing alkaline water electrolyzer, which is 105.1 times higher than that of Pt/C||IrO2. In situ Raman spectroscopy demonstrates that the Ru sites in Ru-CoP/Ni2P play a key role for water splitting and follow the adsorption evolution mechanism toward OER. Further mechanism studies disclose the confined Ru atom contributes to the desorption of H2 during HER and the formation of O-O bond during OER, leading to fast reaction kinetics. This study emphasizes the importance of interface confinement for enhancing electrocatalytic activity.
Collapse
Affiliation(s)
- Huimin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wenhao Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhenhao Li
- PetroChina Petrochemical Research Institute, Beijing, 102206, P. R. China
| | - Liang Qiao
- PetroChina Petrochemical Research Institute, Beijing, 102206, P. R. China
| | - Kebin Chi
- PetroChina Petrochemical Research Institute, Beijing, 102206, P. R. China
| | - Xiaoyan Guo
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dong Cao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
21
|
Guo B, Lin J, Mo F, Ding Y, Zeng T, Liang H, Wang L, Chen X, Mo J, Li DS, Yang HY, Bai J. Robust and Corrosion-Resistant Overall Water Splitting Electrode Enabled by Additive Manufacturing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312216. [PMID: 38412417 DOI: 10.1002/smll.202312216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Electrolysis of water has emerged as a prominent area of research in recent years. As a promising catalyst support, copper foam is widely investigated for electrolytic water, yet the insufficient mechanical strength and corrosion resistance render it less suitable for harsh working conditions. To exploit high-performance catalyst supports, various metal supports are comprehensively evaluated, and Ti6Al4V (Ti64) support exhibited outstanding compression and corrosion resistance. With this in mind, a 3D porous Ti64 catalyst support is fabricated using the selective laser sintering (SLM) 3D printing technology, and a conductive layer of nickel (Ni) is coated to increase the electrical conductivity and facilitate the deposition of catalysts. Subsequently, Co0.8Ni0.2(CO3)0.5(OH)·0.11H2O (CoNiCH) nanoneedles are deposited. The resulting porous Ti64/Ni/CoNiCH electrode displayed an impressive performance in the oxygen evolution reaction (OER) and reached 30 mA cm-2 at an overpotential of only 200 mV. Remarkably, even after being compressed at 15.04 MPa, no obvious structural deformation is observed, and the attenuation of its catalytic efficiency is negligible. Based on the computational analysis, the CoNiCH catalyst demonstrated superior catalytic activity at the Ni site in comparison to the Co site. Furthermore, the electrode reached 30 mA cm-2 at 1.75 V in full water splitting conditions and showed no significant performance degradation even after 60 h of continuous operation. This study presents an innovative approach to robust and corrosion-resistant catalyst design.
Collapse
Affiliation(s)
- Binbin Guo
- Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Jie Lin
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Funian Mo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Yihong Ding
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Tianbiao Zeng
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Haowen Liang
- Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Liping Wang
- Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xiaoteng Chen
- Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jiewen Mo
- Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Jiaming Bai
- Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
22
|
Sun P, Qiao Z, Dong X, Jiang R, Hu ZT, Yun J, Cao D. Designing 3d Transition Metal Cation-Doped MRuO x As Durable Acidic Oxygen Evolution Electrocatalysts for PEM Water Electrolyzers. J Am Chem Soc 2024; 146:15515-15524. [PMID: 38785086 DOI: 10.1021/jacs.4c04096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The continuous dissolution and oxidation of active sites in Ru-based electrocatalysts have greatly hindered their practical application in proton exchange membrane water electrolyzers (PEMWE). In this work, we first used density functional theory (DFT) to calculate the dissolution energy of Ru in the 3d transition metal-doped MRuOx (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) to evaluate their stability for acidic oxygen evolution reaction (OER) and screen out ZnRuOx as the best candidate. To confirm the theoretical predictions, we experimentally synthesized these MRuOx materials and found that ZnRuOx indeed displays robust acidic OER stability with a negligible decay of η10 after 15 000 CV cycles. Of importance, using ZnRuOx as the anode, the PEMWE can run stably for 120 h at 200 mA cm-2. We also further uncover the stability mechanism of ZnRuOx, i.e., Zn atoms doped in the outside of ZnRuOx nanocrystal would form a "Zn-rich" shell, which effectively shortened average Ru-O bond lengths in ZnRuOx to strengthen the Ru-O interaction and therefore boosted intrinsic stability of ZnRuOx in acidic OER. In short, this work not only provides a new study paradigm of using DFT calculations to guide the experimental synthesis but also offers a proof-of-concept with 3d metal dopants as RuO2 stabilizer as a universal principle to develop high-durability Ru-based catalysts for PEMWE.
Collapse
Affiliation(s)
- Panpan Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaobin Dong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Run Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhong-Ting Hu
- Institute of Environmental-Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jimmy Yun
- Qingdao International Academician Park Research Institute, Qingdao 266000, PR China
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
23
|
Zhou L, Guo D, Wu L, Guan Z, Zou C, Jin H, Fang G, Chen X, Wang S. A restricted dynamic surface self-reconstruction toward high-performance of direct seawater oxidation. Nat Commun 2024; 15:2481. [PMID: 38509067 PMCID: PMC10954752 DOI: 10.1038/s41467-024-46708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
The development of highly efficient electrocatalysts for direct seawater splitting with bifunctionality for inhibiting anodic oxidation reconstruction and selective oxygen evolution reactions is a major challenge. Herein, we report a direct seawater oxidation electrocatalyst that achieves long-term stability for more than 1000 h at 600 mA/cm2@η600 and high selectivity (Faraday efficiency of 100%). This catalyst revolves an amorphous molybdenum oxide layer constructed on the beaded-like cobalt oxide interface by atomic layer deposition technology. As demonstrated, a new restricted dynamic surface self-reconstruction mechanism is induced by the formation a stable reconstructed Co-Mo double hydroxide phase interface layer. The device assembled into a two-electrode flow cell for direct overall seawater electrolysis maintained at 1 A/cm2@1.93 V for 500 h with Faraday efficiency higher than 95%. Hydrogen generation rate reaches 419.4 mL/cm2/h, and the power consumption (4.62 KWh/m3 H2) is lower than that of pure water (5.0 KWh/m3 H2) at industrial current density.
Collapse
Affiliation(s)
- Ling Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Daying Guo
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
| | - Lianhui Wu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zhixi Guan
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Chao Zou
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Huile Jin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Guoyong Fang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Xi'an Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|