1
|
Ansari S, Shariati S. Recent Advances in Catalytic Systems for the Reduction of Aromatic and Aliphatic Nitrile Compounds to Amines. Comb Chem High Throughput Screen 2025; 28:392-416. [PMID: 38584566 DOI: 10.2174/0113862073284975240324091848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
Amines are important and valuable compounds widely used in the chemical industry to produce various products such as dyes, detergents, solvents, additives, pharmaceutical products, and anti-foam agents. A property that distinguishes primary amines from other compounds is their straightforward functionalization. Therefore, the synthesis of different amine compounds has been considered by many researchers in recent years. Usually,.primary amines are produced via amination of alcohols, reductive amination, and reduction of nitro and amide compounds. Furthermore, a useful and atom-economical method for producing primary amines is reducing nitrile compounds using catalytic systems. Traditionally, nitriles are reduced using metal hydrides such as LiAlH4 or NaBH4. These methods have important restrictions in terms of selectivity and waste generation. Hence, the heterogeneous and homogeneous catalysts were investigated for the hydrogenation of nitriles to diverse amines. This review describes the performance of different catalytic systems for reducing nitrile compounds to their corresponding amines.
Collapse
Affiliation(s)
- Sara Ansari
- Department of Chemistry, Faculty of Sciences, University of Guilan, P. O. Box: 41335-1914, Iran
| | - Shahab Shariati
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
2
|
General Construction of Amine via Reduction of N= X ( X = C, O, H) Bonds Mediated by Supported Nickel Boride Nanoclusters. Int J Mol Sci 2022; 23:ijms23169337. [PMID: 36012608 PMCID: PMC9408822 DOI: 10.3390/ijms23169337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
Amines play an important role in synthesizing drugs, pesticides, dyes, etc. Herein, we report on an efficient catalyst for the general construction of amine mediated by nickel boride nanoclusters supported by a TS-1 molecular sieve. Efficient production of amines was achieved via catalytic hydrogenation of N=X (X = C, O, H) bonds. In addition, the catalyst maintains excellent performance upon recycling. Compared with the previous reports, the high activity, simple preparation and reusability of the Ni-B catalyst in this work make it promising for industrial application in the production of amines.
Collapse
|
3
|
Zhang M, Zou Y, Zhang S, Qu Y. Modulated electronic structure of Pd nanoparticles on Mg(OH) 2 for selective benzonitrile hydrogenation into benzylamine at a low temperature. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01218a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd nanoparticles with enriched electronic density anchored on Mg(OH)2 realize selective benzonitrile hydrogenation to benzylamine at low temperature in the absence of additives, in an atom-economical and green approach for synthesis of highly value-added primary amines.
Collapse
Affiliation(s)
- Mingkai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yong Zou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Sai Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Yongquan Qu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
4
|
Lu Q, Liu J, Ma L. Recent advances in selective catalytic hydrogenation of nitriles to primary amines. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Mitsudome T, Sheng M, Nakata A, Yamasaki J, Mizugaki T, Jitsukawa K. A cobalt phosphide catalyst for the hydrogenation of nitriles. Chem Sci 2020; 11:6682-6689. [PMID: 32953029 PMCID: PMC7472826 DOI: 10.1039/d0sc00247j] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
A well-defined nano-cobalt phosphide serves as an air-stable, highly active and reusable heterogeneous catalyst for the selective hydrogenation of nitriles to primary amines under mild reaction conditions.
The study of metal phosphide catalysts for organic synthesis is rare. We present, for the first time, a well-defined nano-cobalt phosphide (nano-Co2P) that can serve as a new class of catalysts for the hydrogenation of nitriles to primary amines. While earth-abundant metal catalysts for nitrile hydrogenation generally suffer from air-instability (pyrophoricity), low activity and the need for harsh reaction conditions, nano-Co2P shows both air-stability and remarkably high activity for the hydrogenation of valeronitrile with an excellent turnover number exceeding 58000, which is over 20- to 500-fold greater than that of those previously reported. Moreover, nano-Co2P efficiently promotes the hydrogenation of a wide range of nitriles, which include di- and tetra-nitriles, to the corresponding primary amines even under just 1 bar of H2 pressure, far milder than the conventional reaction conditions. Detailed spectroscopic studies reveal that the high performance of nano-Co2P is attributed to its air-stable metallic nature and the increase of the d-electron density of Co near the Fermi level by the phosphidation of Co, which thus leads to the accelerated activation of both nitrile and H2. Such a phosphidation provides a promising method for the design of an advanced catalyst with high activity and stability in highly efficient and environmentally benign hydrogenations.
Collapse
Affiliation(s)
- Takato Mitsudome
- Department of Materials Engineering Science , Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama , Toyonaka , Osaka 560-8531 , Japan .
| | - Min Sheng
- Department of Materials Engineering Science , Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama , Toyonaka , Osaka 560-8531 , Japan .
| | - Ayako Nakata
- First-principles Simulation Group , Nano-Theory Field , International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Jun Yamasaki
- Research Center for Ultra-High Voltage Electron Microscopy , Osaka University , 7-1 Mihogaoka , Ibaraki , Osaka 567-0047 , Japan
| | - Tomoo Mizugaki
- Department of Materials Engineering Science , Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama , Toyonaka , Osaka 560-8531 , Japan .
| | - Koichiro Jitsukawa
- Department of Materials Engineering Science , Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama , Toyonaka , Osaka 560-8531 , Japan .
| |
Collapse
|
6
|
Lévay K, Hegedűs L. Recent Achievements in the Hydrogenation of Nitriles Catalyzed by Transitional Metals. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666191007160341] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Amines are important and valuable intermediates in the pharmaceutical, plastic
and agrochemical industry. Hence, there is an increasing interest in developing improved
process for the synthesis of amines. The heterogeneous catalytic hydrogenation of nitriles
is one of the most frequently applied methods for the synthesis of diverse amines, but the
homogeneous catalysis has also received a growing attention from the catalysis
community. This mini-review provides an overview of the recent achievements in the selective
reduction of nitriles using both homogeneous and heterogeneous transition metal
catalysts.
Collapse
Affiliation(s)
- Krisztina Lévay
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - László Hegedűs
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| |
Collapse
|
7
|
Saha S, Eisen MS. Catalytic Recycling of a Th–H Bond via Single or Double Hydroboration of Inactivated Imines or Nitriles. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01399] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sayantani Saha
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa City 32000, Israel
| | - Moris S. Eisen
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa City 32000, Israel
| |
Collapse
|
8
|
Takao T, Horikoshi S, Kawashima T, Asano S, Takahashi Y, Sawano A, Suzuki H. Catalytic Hydrogenation of Benzonitrile by Triruthenium Clusters: Consecutive Transformations of Benzonitrile on the Face of a Ru3 Plane. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toshiro Takao
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
- JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Sachie Horikoshi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takashi Kawashima
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Sachio Asano
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuta Takahashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Akira Sawano
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hiroharu Suzuki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
9
|
Tabatabaei Rezaei SJ, Mashhadi Malekzadeh A, Poulaei S, Ramazani A, Khorramabadi H. Chemo-selective reduction of nitro and nitrile compounds using Ni nanoparticles immobilized on hyperbranched polymer-functionalized magnetic nanoparticles. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3975] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Sima Poulaei
- Department of Chemistry, Faculty of Science; University of Zanjan; PO Box 45195-313 Zanjan Iran
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science; University of Zanjan; PO Box 45195-313 Zanjan Iran
| | - Hossein Khorramabadi
- Department of Chemistry, Faculty of Science; University of Zanjan; PO Box 45195-313 Zanjan Iran
| |
Collapse
|
10
|
Hydrogenation of heteroaromatic nitriles and aromatic dinitriles by heterogeneous or homogeneous ruthenium catalysts derived from [Ru 3 (CO) 12 ]. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.04.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Novel layered double hydroxide/oxide-coated nickel-based core–shell nanocomposites for benzonitrile selective hydrogenation: An interesting water switch. J Catal 2016. [DOI: 10.1016/j.jcat.2016.03.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Affiliation(s)
- Jaan Pesti
- Gelest, Inc., Morrisville, Pennsylvania 19067, United States
| | | |
Collapse
|
13
|
Selective hydrogenation of nitriles to secondary amines catalyzed by a pyridyl-functionalized and alkenyl-tethered NHC–Ru(II) complex. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2015.12.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Muratsugu S, Kityakarn S, Wang F, Ishiguro N, Kamachi T, Yoshizawa K, Sekizawa O, Uruga T, Tada M. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface. Phys Chem Chem Phys 2015; 17:24791-802. [DOI: 10.1039/c5cp03456f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Decarbonylation-promoted Ru nanoparticle formation from Ru3(CO)12 on a basic K-doped Al2O3 surface was investigated by in situ FT-IR and in situ XAFS. The prepared Ru nanoparticle acted as an efficient catalyst for nitrile hydrogenation to primary amine.
Collapse
Affiliation(s)
- Satoshi Muratsugu
- Institute for Molecular Science
- Okazaki
- Japan
- The Graduate University for Advanced Studies (SOKENDAI)
- Okazaki
| | - Sutasinee Kityakarn
- Institute for Molecular Science
- Okazaki
- Japan
- Research Center for Materials Science
- Nagoya University
| | - Fei Wang
- The Graduate University for Advanced Studies (SOKENDAI)
- Okazaki
- Japan
- Department of Chemistry
- Graduate School of Science
| | - Nozomu Ishiguro
- Institute for Molecular Science
- Okazaki
- Japan
- Research Center for Materials Science
- Nagoya University
| | - Takashi Kamachi
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Oki Sekizawa
- Innovation Research Center for Fuel Cells
- University of Electro-Communications
- Tokyo 182-8585
- Japan
| | - Tomoya Uruga
- Innovation Research Center for Fuel Cells
- University of Electro-Communications
- Tokyo 182-8585
- Japan
- Japan Synchrotron Radiation Research Institute
| | - Mizuki Tada
- Institute for Molecular Science
- Okazaki
- Japan
- The Graduate University for Advanced Studies (SOKENDAI)
- Okazaki
| |
Collapse
|
15
|
Mild and selective hydrogenation of aromatic and aliphatic (di)nitriles with a well-defined iron pincer complex. Nat Commun 2014; 5:4111. [PMID: 24969371 DOI: 10.1038/ncomms5111] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/13/2014] [Indexed: 01/24/2023] Open
Abstract
The catalytic hydrogenation of carboxylic acid derivatives represents an atom-efficient and clean reduction methodology in organic chemistry. More specifically, the selective hydrogenation of nitriles offers the possibility for a green synthesis of valuable primary amines. So far, this transformation lacks of useful, broadly applicable non-noble metal-based catalyst systems. In the present study, we describe a molecular-defined iron complex, which allows for the hydrogenation of aryl, alkyl, heterocyclic nitriles and dinitriles. By using an iron PNP pincer complex, we achieve very good functional group tolerance. Ester, ether, acetamido as well as amino substituents are not reduced in the presence of nitriles. Moreover, nitriles including an α,β-unsaturated double bond and halogenated derivatives are well tolerated in this reaction. Notably, our complex constitutes the first example of an homogeneous catalyst, which permits the selective hydrogenation of industrially important adipodinitrile to 1,6-hexamethylenediamine.
Collapse
|
16
|
|