1
|
Zhao H. Recent advances in enzymatic carbon-carbon bond formation. RSC Adv 2024; 14:25932-25974. [PMID: 39161440 PMCID: PMC11331486 DOI: 10.1039/d4ra03885a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Enzymatic carbon-carbon (C-C) bond formation reactions have become an effective and invaluable tool for designing new biological and medicinal molecules, often with asymmetric features. This review provides a systematic overview of key C-C bond formation reactions and enzymes, with the focus of reaction mechanisms and recent advances. These reactions include the aldol reaction, Henry reaction, Knoevenagel condensation, Michael addition, Friedel-Crafts alkylation and acylation, Mannich reaction, Morita-Baylis-Hillman (MBH) reaction, Diels-Alder reaction, acyloin condensations via Thiamine Diphosphate (ThDP)-dependent enzymes, oxidative and reductive C-C bond formation, C-C bond formation through C1 resource utilization, radical enzymes for C-C bond formation, and other C-C bond formation reactions.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Bioproducts and Biosystems Engineering, University of Minnesota St. Paul MN 55108 USA
| |
Collapse
|
2
|
Hilgers R, Yong Teng S, Briš A, Pereverzev AY, White P, Jansen JJ, Roithová J. Monitoring Reaction Intermediates to Predict Enantioselectivity Using Mass Spectrometry**. Angew Chem Int Ed Engl 2022; 61:e202205720. [PMID: 35561144 PMCID: PMC9544535 DOI: 10.1002/anie.202205720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/18/2022]
Abstract
Enantioselective reactions are at the core of chemical synthesis. Their development mostly relies on prior knowledge, laborious product analysis and post‐rationalization by theoretical methods. Here, we introduce a simple and fast method to determine enantioselectivities based on mass spectrometry. The method is based on ion mobility separation of diastereomeric intermediates, formed from a chiral catalyst and prochiral reactants, and delayed reactant labeling experiments to link the mass spectra with the reaction kinetics in solution. The data provide rate constants along the reaction paths for the individual diastereomeric intermediates, revealing the origins of enantioselectivity. Using the derived kinetics, the enantioselectivity of the overall reaction can be predicted. Hence, this method can offer a rapid discovery and optimization of enantioselective reactions in the future. We illustrate the method for the addition of cyclopentadiene (CP) to an α,β‐unsaturated aldehyde catalyzed by a diarylprolinol silyl ether.
Collapse
Affiliation(s)
- Roelant Hilgers
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
- Laboratory of Food Chemistry Wageningen University & Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Sin Yong Teng
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Anamarija Briš
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Aleksandr Y. Pereverzev
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Paul White
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Jeroen J. Jansen
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Jana Roithová
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
3
|
Eggbauer B, Schrittwieser JH, Kerschbaumer B, Macheroux P, Kroutil W. Regioselective Biocatalytic C4-Prenylation of Unprotected Tryptophan Derivatives. Chembiochem 2022; 23:e202200311. [PMID: 35770709 PMCID: PMC9540666 DOI: 10.1002/cbic.202200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Regioselective carbon-carbon bond formation belongs to the challenging tasks in organic synthesis. In this context, C-C bond formation catalyzed by 4-dimethylallyltryptophan synthases (4-DMATSs) represents a possible tool to regioselectively synthesize C4-prenylated indole derivatives without site-specific preactivation and circumventing the need of protection groups as used in chemical synthetic approaches. In this study, a toolbox of 4-DMATSs to produce a set of 4-dimethylallyl tryptophan and indole derivatives was identified. Using three wild-type enzymes as well as variants, various C5-substituted tryptophan derivatives as well as N-methyl tryptophan were successfully prenylated with conversions up to 90 %. Even truncated tryptophan derivatives like tryptamine and 3-indole propanoic acid were regioselectively prenylated in position C4. The acceptance of C5-substituted tryptophan derivatives was improved up to 5-fold by generating variants (e. g. T108S). The feasibility of semi-preparative prenylation of selected tryptophan derivatives was successfully demonstrated on 100 mg scale at 15 mM substrate concentration, allowing to reduce the previously published multistep chemical synthetic sequence to just a single step.
Collapse
Affiliation(s)
- Bettina Eggbauer
- Institute of ChemistryUniversity of Graz NAWI GrazHeinrichstraße 288010GrazAustria
| | | | - Bianca Kerschbaumer
- Institute of BiochemistryGraz University of TechnologyPetersgasse 10–128010GrazAustria
| | - Peter Macheroux
- Institute of BiochemistryGraz University of TechnologyPetersgasse 10–128010GrazAustria
| | - Wolfgang Kroutil
- Institute of ChemistryUniversity of Graz NAWI GrazHeinrichstraße 288010GrazAustria
- BioTechMed Graz8010GrazAustria
- Field of Excellence BioHealth University of Graz8010GrazAustria
| |
Collapse
|
4
|
Hilgers R, Teng SY, Bris A, White P, Jansen J, Roithová J. Monitoring Reaction Intermediates to Predict Enantioselectivity Using Mass Spectrometry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Roelant Hilgers
- Radboud University Institute for Molecules and Materials: Radboud Universiteit Institute for Molecules and Materials Department of Spectroscopy and Catalysis NETHERLANDS
| | - Sin Yong Teng
- Radboud University Institute for Molecules and Materials: Radboud Universiteit Institute for Molecules and Materials Department of Chemometrics NETHERLANDS
| | - Anamarija Bris
- Radboud University Institute for Molecules and Materials: Radboud Universiteit Institute for Molecules and Materials Department of Spectroscopy and Catalysis NETHERLANDS
| | - Paul White
- Radboud University Institute for Molecules and Materials: Radboud Universiteit Institute for Molecules and Materials Department of Spectroscopy and Catalysis NETHERLANDS
| | - Jeroen Jansen
- Radboud University Institute for Molecules and Materials: Radboud Universiteit Institute for Molecules and Materials Department of Chemometrics NETHERLANDS
| | - Jana Roithová
- Radboud University Department of Spectroscopy and Catalysis Heyendaalseweg 135 6525 AJ Nijmegen NETHERLANDS
| |
Collapse
|
5
|
Desmons S, Grayson-Steel K, Nuñez-Dallos N, Vendier L, Hurtado J, Clapés P, Fauré R, Dumon C, Bontemps S. Enantioselective Reductive Oligomerization of Carbon Dioxide into l-Erythrulose via a Chemoenzymatic Catalysis. J Am Chem Soc 2021; 143:16274-16283. [PMID: 34546049 DOI: 10.1021/jacs.1c07872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A cell-free enantioselective transformation of the carbon atom of CO2 has never been reported. In the urgent context of transforming CO2 into products of high value, the enantiocontrolled synthesis of chiral compounds from CO2 would be highly desirable. Using an original hybrid chemoenzymatic catalytic process, we report herein the reductive oligomerization of CO2 into C3 (dihydroxyacetone, DHA) and C4 (l-erythrulose) carbohydrates, with perfect enantioselectivity of the latter chiral product. This was achieved with the key intermediacy of formaldehyde. CO2 is first reduced selectively by 4e- by an iron-catalyzed hydroboration reaction, leading to the isolation and complete characterization of a new bis(boryl)acetal compound derived from dimesitylborane. In an aqueous buffer solution at 30 °C, this compound readily releases formaldehyde, which is then involved in selective enzymatic transformations, giving rise either (i) to DHA using a formolase (FLS) catalysis or (ii) to l-erythrulose with a cascade reaction combining FLS and d-fructose-6-phosphate aldolase (FSA) A129S variant. Finally, the nature of the synthesized products is noteworthy, since carbohydrates are of high interest for the chemical and pharmaceutical industries. The present results prove that the cell-free de novo synthesis of carbohydrates from CO2 as a sustainable carbon source is a possible alternative pathway in addition to the intensely studied biomass extraction and de novo syntheses from fossil resources.
Collapse
Affiliation(s)
- Sarah Desmons
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France.,TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | | | - Nelson Nuñez-Dallos
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France.,Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France
| | - John Hurtado
- Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Pere Clapés
- Biological Chemistry Department, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Claire Dumon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
6
|
Marín-Valls R, Hernández K, Bolte M, Parella T, Joglar J, Bujons J, Clapés P. Biocatalytic Construction of Quaternary Centers by Aldol Addition of 3,3-Disubstituted 2-Oxoacid Derivatives to Aldehydes. J Am Chem Soc 2020; 142:19754-19762. [PMID: 33147013 DOI: 10.1021/jacs.0c09994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The congested nature of quaternary carbons hinders their preparation, most notably when stereocontrol is required. Here we report a biocatalytic method for the creation of quaternary carbon centers with broad substrate scope, leading to different compound classes bearing this structural feature. The key step comprises the aldol addition of 3,3-disubstituted 2-oxoacids to aldehydes catalyzed by metal dependent 3-methyl-2-oxobutanoate hydroxymethyltransferase from E. coli (KPHMT) and variants thereof. The 3,3,3-trisubstituted 2-oxoacids thus produced were converted into 2-oxolactones and 3-hydroxy acids and directly to ulosonic acid derivatives, all bearing gem-dialkyl, gem-cycloalkyl, and spirocyclic quaternary centers. In addition, some of these reactions use a single enantiomer from racemic nucleophiles to afford stereopure quaternary carbons. The notable substrate tolerance and stereocontrol of these enzymes are indicative of their potential for the synthesis of structurally intricate molecules.
Collapse
Affiliation(s)
- Roser Marín-Valls
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Karel Hernández
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Michael Bolte
- Institut für Anorganische Chemie, J.-W.-Goethe-Universität, Frankfurt/Main, Germany
| | - Teodor Parella
- Servei de Ressonancia Magnetica Nuclear, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jesús Joglar
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jordi Bujons
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Pere Clapés
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
7
|
Rigual AJ, Cantero J, Risso M, Rodríguez P, Rodríguez S, Paulino M, Gamenara D, Veiga N. New mechanistic insights into the reversible aldol reaction catalysed by Rhamnulose-1-phosphate aldolase from Escherichia coli. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Wang Y, Zhang C, Zhao YL, Zhao R, Houk KN. Understand the Specific Regio- and Enantioselectivity of Fluostatin Conjugation in the Post-Biosynthesis. Biomolecules 2020; 10:E815. [PMID: 32466453 PMCID: PMC7355926 DOI: 10.3390/biom10060815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/22/2022] Open
Abstract
Fluostatins, benzofluorene-containing aromatic polyketides in the atypical angucycline family, conjugate into dimeric and even trimeric compounds in the post-biosynthesis. The formation of the C-C bond involves a non-enzymatic stereospecific coupling reaction. In this work, the unusual regio- and enantioselectivities were rationalized by density functional theory calculations with the M06-2X (SMD, water)/6-311 + G(d,p)//6-31G(d) method. These DFT calculations reproduce the lowest energy C1-(R)-C10'-(S) coupling pathway observed in a nonenzymatic reaction. Bonding of the reactive carbon atoms (C1 and C10') of the two reactant molecules maximizes the HOMO-LUMO interactions and Fukui function involving the highest occupied molecular orbital (HOMO) of nucleophile p-QM and lowest unoccupied molecular orbital (LUMO) of electrophile FST2- anion. In particular, the significant π-π stacking interactions of the low-energy pre-reaction state are retained in the lowest energy pathway for C-C coupling. The distortion/interaction-activation strain analysis indicates that the transition state (TScp-I) of the lowest energy pathway involves the highest stabilizing interactions and small distortion among all possible C-C coupling reactions. One of the two chiral centers generated in this step is lost upon aromatization of the phenol ring in the final difluostatin products. Thus, the π-π stacking interactions between the fluostatin 6-5-6 aromatic ring system play a critical role in the stereoselectivity of the nonenzymatic fluostatin conjugation.
Collapse
Affiliation(s)
- Yuanqi Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resource and Ecology, Guangdong Key Laboratory of Marine Materia, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China;
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; (R.Z.); (K.N.H.)
| | - Rosalinda Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; (R.Z.); (K.N.H.)
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; (R.Z.); (K.N.H.)
| |
Collapse
|
9
|
Żądło-Dobrowolska A, Hammerer L, Pavkov-Keller T, Gruber K, Kroutil W. Rational Engineered C-Acyltransferase Transforms Sterically Demanding Acyl Donors. ACS Catal 2020; 10:1094-1101. [PMID: 32030315 PMCID: PMC6996649 DOI: 10.1021/acscatal.9b04617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/12/2019] [Indexed: 02/08/2023]
Abstract
The biocatalytic Friedel-Crafts acylation has been identified recently for the acetylation of resorcinol using activated acetic acid esters for the synthesis of acetophenone derivatives catalyzed by an acyltransferase. Because the wild-type enzyme is limited to acetic and propionic derivatives as the substrate, variants were designed to extend the substrate scope of this enzyme. By rational protein engineering, the key residue in the active site was identified which can be replaced to allow binding of bulkier acyl moieties. The single-point variant F148V enabled the transformation of previously inaccessible medium chain length alkyl and alkoxyalkyl carboxylic esters as donor substrates with up to 99% conversion and up to >99% isolated yield.
Collapse
Affiliation(s)
- Anna Żądło-Dobrowolska
- Institute
of Chemistry, University of Graz, NAWI Graz,
BioTechMed Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Lucas Hammerer
- Institute
of Chemistry, University of Graz, NAWI Graz,
BioTechMed Graz, Heinrichstrasse
28, 8010 Graz, Austria
- ACIB
GmbH, Petersgasse 14, 8010 Graz, Austria
| | - Tea Pavkov-Keller
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstrasse
50, 8010 Graz, Austria
| | - Karl Gruber
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstrasse
50, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz,
BioTechMed Graz, Heinrichstrasse
28, 8010 Graz, Austria
- ACIB
GmbH, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
10
|
Sheng X, Kazemi M, Żądło-Dobrowolska A, Kroutil W, Himo F. Mechanism of Biocatalytic Friedel-Crafts Acylation by Acyltransferase from Pseudomonas protegens. ACS Catal 2020; 10:570-577. [PMID: 31929947 PMCID: PMC6945686 DOI: 10.1021/acscatal.9b04208] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/18/2019] [Indexed: 12/22/2022]
Abstract
Acyltransferases isolated from Pseudomonas protegens (PpATase) and Pseudomonas fluorescens (PfATase) have recently been reported to catalyze the Friedel-Crafts acylation, providing a biological version of this classical organic reaction. These enzymes catalyze the cofactor-independent acylation of monoacetylphloroglucinol (MAPG) to diacetylphloroglucinol (DAPG) and phloroglucinol (PG) and have been demonstrated to have a wide substrate scope, making them valuable for potential applications in biocatalysis. Herein, we present a detailed reaction mechanism of PpATase on the basis of quantum chemical calculations, employing a large model of the active site. The proposed mechanism is consistent with available kinetics, mutagenesis, and structural data. The roles of various active site residues are analyzed. Very importantly, the Asp137 residue, located more than 10 Å from the substrate, is predicted to be the proton source for the protonation of the substrate in the rate-determining step. This key prediction is corroborated by site-directed mutagenesis experiments. Based on the current calculations, the regioselectivity of PpATase and its specificity toward non-natural substrates can be rationalized.
Collapse
Affiliation(s)
- Xiang Sheng
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Masoud Kazemi
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Anna Żądło-Dobrowolska
- Institute
of Chemistry, NAWI Graz, BioTechMed Graz, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Wolfgang Kroutil
- Institute
of Chemistry, NAWI Graz, BioTechMed Graz, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Fahmi Himo
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
11
|
Building Up Quaternary Stereocenters Through Biocatalyzed Direct Insertion of Carbon Nucleophiles on Ketones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Ohmatsu K, Ooi T. Cationic Organic Catalysts or Ligands in Concert with Metal Catalysts. Top Curr Chem (Cham) 2019; 377:31. [DOI: 10.1007/s41061-019-0256-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/09/2019] [Indexed: 11/25/2022]
|
13
|
Romney DK, Sarai NS, Arnold FH. Nitroalkanes as Versatile Nucleophiles for Enzymatic Synthesis of Noncanonical Amino Acids. ACS Catal 2019; 9:8726-8730. [PMID: 33274115 DOI: 10.1021/acscatal.9b02089] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-C bond-forming reactions often require nucleophilic carbon species rarely compatible with aqueous reaction media, thus restricting their appearance in biocatalysis. Here we report the use of nitroalkanes as a structurally versatile class of nucleophilic substrates for C-C bond formation catalyzed by variants of the β-subunit of tryptophan synthase (TrpB). The enzymes accept a wide range of nitroalkanes to form noncanonical amino acids, here the nitro group can serve as a handle for further modification. Using nitroalkane nucleophiles greatly expands the scope of compounds made by TrpB variants and establishes nitroalkanes as a valuable substrate class for biocatalytic C-C bond formation.
Collapse
Affiliation(s)
- David K. Romney
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Nicholas S. Sarai
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
14
|
Al-Smadi D, Enugala TR, Kessler V, Mhashal AR, Lynn Kamerlin SC, Kihlberg J, Norberg T, Widersten M. Chemical and Biochemical Approaches for the Synthesis of Substituted Dihydroxybutanones and Di- and Tri-Hydroxypentanones. J Org Chem 2019; 84:6982-6991. [PMID: 31066559 DOI: 10.1021/acs.joc.9b00742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyhydroxylated compounds are building blocks for the synthesis of carbohydrates and other natural products. Their synthesis is mainly achieved by different synthetic versions of aldol-coupling reactions, catalyzed either by organocatalysts, enzymes, or metal-organic catalysts. We have investigated the formation of 1,4-substituted 2,3-dihydroxybutan-1-one derivatives from para- and meta-substituted phenylacetaldehydes by three distinctly different strategies. The first involved a direct aldol reaction with hydroxyacetone, dihydroxyacetone, or 2-hydroxyacetophenone, catalyzed by the cinchona derivative cinchonine. The second was reductive cross-coupling with methyl- or phenylglyoxal promoted by SmI2, resulting in either 5-substituted 3,4-dihydroxypentan-2-ones or 1,4 bis-phenyl-substituted butanones, respectively. Finally, in the third case, aldolase catalysis was employed for synthesis of the corresponding 1,3,4-trihydroxylated pentan-2-one derivatives. The organocatalytic route with cinchonine generated distereomerically enriched syn-products (de = 60-99%), with moderate enantiomeric excesses (ee = 43-56%) but did not produce aldols with either hydroxyacetone or dihydroxyacetone as donor ketones. The SmI2-promoted reductive cross-coupling generated product mixtures with diastereomeric and enantiomeric ratios close to unity. This route allowed for the production of both 1-methyl- and 1-phenyl-substituted 2,3-dihydroxybutanones at yields between 40-60%. Finally, the biocatalytic approach resulted in enantiopure syn-(3 R,4 S) 1,3,4-trihydroxypentan-2-ones.
Collapse
Affiliation(s)
- Derar Al-Smadi
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | - Thilak Reddy Enugala
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | - Vadim Kessler
- Department of Molecular Sciences , Swedish University of Agricultural Sciences , Box 7015, SE-750 07 Uppsala , Sweden
| | - Anil Ranu Mhashal
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | | | - Jan Kihlberg
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | - Thomas Norberg
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | - Mikael Widersten
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| |
Collapse
|
15
|
Żądło‐Dobrowolska A, Schmidt NG, Kroutil W. Thioesters as Acyl Donors in Biocatalytic Friedel-Crafts-type Acylation Catalyzed by Acyltransferase from Pseudomonas Protegens. ChemCatChem 2019; 11:1064-1068. [PMID: 31423289 PMCID: PMC6686624 DOI: 10.1002/cctc.201801856] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Indexed: 11/06/2022]
Abstract
Functionalization of aromatic compounds by acylation has considerable significance in synthetic organic chemistry. As an alternative to chemical Friedel-Crafts acylation, the C-acyltransferase from Pseudomonas protegens has been found to catalyze C-C bond formation with non-natural resorcinol substrates. Extending the scope of acyl donors, it is now shown that the enzyme is also able to catalyze C-S bond cleavage prior to C-C bond formation, thus aliphatic and aromatic thioesters can be used as acyl donors. It is worth to mention that this reaction can be performed in aqueous buffer. Identifying ethyl thioacetate as the most suitable acetyl donor, the products were obtained with up to >99 % conversion and up to 88 % isolated yield without using additional base additives; this represents a significant advancement to prior protocols.
Collapse
Affiliation(s)
| | - Nina G. Schmidt
- Institute of ChemistryUniversity of GrazNAWI Graz, BioTechMed GrazGraz8010Austria
- ACIB GmbHGraz8010Austria
| | - Wolfgang Kroutil
- Institute of ChemistryUniversity of GrazNAWI Graz, BioTechMed GrazGraz8010Austria
- ACIB GmbHGraz8010Austria
| |
Collapse
|
16
|
Sudar M, Findrik Z, Szekrenyi A, Clapés P, Vasić-Rački Đ. Reactor and microreactor performance and kinetics of the aldol addition of dihydroxyacetone to benzyloxycarbonyl-N-3-aminopropanal catalyzed by D-fructose-6-phosphate aldolase variant A129G. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2018.1538975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Martina Sudar
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Zvjezdana Findrik
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Anna Szekrenyi
- IQAC-CSIC, Institute of Advanced Chemistry of Catalonia Biotransformation and Bioactive Molecules Group, Barcelona, Spain
| | - Pere Clapés
- IQAC-CSIC, Institute of Advanced Chemistry of Catalonia Biotransformation and Bioactive Molecules Group, Barcelona, Spain
| | - Đurđa Vasić-Rački
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
17
|
Haridas M, Abdelraheem EMM, Hanefeld U. 2-Deoxy-D-ribose-5-phosphate aldolase (DERA): applications and modifications. Appl Microbiol Biotechnol 2018; 102:9959-9971. [PMID: 30284013 PMCID: PMC6244999 DOI: 10.1007/s00253-018-9392-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/25/2022]
Abstract
2-Deoxy-D-ribose-5-phosphate aldolase (DERA) is a class I aldolase that offers access to several building blocks for organic synthesis. It catalyzes the stereoselective C-C bond formation between acetaldehyde and numerous other aldehydes. However, the practical application of DERA as a biocatalyst is limited by its poor tolerance towards industrially relevant concentrations of aldehydes, in particular acetaldehyde. Therefore, the development of proper experimental conditions, including protein engineering and/or immobilization on appropriate supports, is required. The present review is aimed to provide a brief overview of DERA, its history, and progress made in understanding the functioning of the enzyme. Furthermore, the current understanding regarding aldehyde resistance of DERA and the various optimizations carried out to modify this property are discussed.
Collapse
Affiliation(s)
- Meera Haridas
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Eman M M Abdelraheem
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Ulf Hanefeld
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
18
|
Pressnitz D, Fischereder E, Pletz J, Kofler C, Hammerer L, Hiebler K, Lechner H, Richter N, Eger E, Kroutil W. Asymmetric Synthesis of (
R
)‐1‐Alkyl‐Substituted Tetrahydro‐ß‐carbolines Catalyzed by Strictosidine Synthases. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Desiree Pressnitz
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Eva‐Maria Fischereder
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Jakob Pletz
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Christina Kofler
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Lucas Hammerer
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
- ACIB GmbH—Austrian Center of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
| | - Katharina Hiebler
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Horst Lechner
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Nina Richter
- ACIB GmbH—Austrian Center of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
| | - Elisabeth Eger
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Wolfgang Kroutil
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
19
|
Pressnitz D, Fischereder E, Pletz J, Kofler C, Hammerer L, Hiebler K, Lechner H, Richter N, Eger E, Kroutil W. Asymmetric Synthesis of (R)-1-Alkyl-Substituted Tetrahydro-ß-carbolines Catalyzed by Strictosidine Synthases. Angew Chem Int Ed Engl 2018; 57:10683-10687. [PMID: 29852524 PMCID: PMC6146909 DOI: 10.1002/anie.201803372] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/15/2018] [Indexed: 01/18/2023]
Abstract
Stereoselective methods for the synthesis of tetrahydro-ß-carbolines are of significant interest due to the broad spectrum of biological activity of the target molecules. In the plant kingdom, strictosidine synthases catalyze the C-C coupling through a Pictet-Spengler reaction of tryptamine and secologanin to exclusively form the (S)-configured tetrahydro-ß-carboline (S)-strictosidine. Investigating the biocatalytic Pictet-Spengler reaction of tryptamine with small-molecular-weight aliphatic aldehydes revealed that the strictosidine synthases give unexpectedly access to the (R)-configured product. Developing an efficient expression method for the enzyme allowed the preparative transformation of various aldehydes, giving the products with up to >98 % ee. With this tool in hand, a chemoenzymatic two-step synthesis of (R)-harmicine was achieved, giving (R)-harmicine in 67 % overall yield in optically pure form.
Collapse
Affiliation(s)
- Desiree Pressnitz
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Eva‐Maria Fischereder
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Jakob Pletz
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Christina Kofler
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Lucas Hammerer
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
- ACIB GmbH—Austrian Center of Industrial BiotechnologyPetersgasse 148010GrazAustria
| | - Katharina Hiebler
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Horst Lechner
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Nina Richter
- ACIB GmbH—Austrian Center of Industrial BiotechnologyPetersgasse 148010GrazAustria
| | - Elisabeth Eger
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Wolfgang Kroutil
- Department of Chemistry, Organic und Bioorganic ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| |
Collapse
|
20
|
Junker S, Roldan R, Joosten H, Clapés P, Fessner W. Complete Switch of Reaction Specificity of an Aldolase by Directed Evolution In Vitro: Synthesis of Generic Aliphatic Aldol Products. Angew Chem Int Ed Engl 2018; 57:10153-10157. [PMID: 29882622 PMCID: PMC6099348 DOI: 10.1002/anie.201804831] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/31/2018] [Indexed: 01/26/2023]
Abstract
A structure-guided engineering of fructose-6-phosphate aldolase was performed to expand its substrate promiscuity toward aliphatic nucleophiles, that is, unsubstituted alkanones and alkanals. A "smart" combinatorial library was created targeting residues D6, T26, and N28, which form a binding pocket around the nucleophilic carbon atom. Double-selectivity screening was executed by high-performance TLC that allowed simultaneous determination of total activity as well as a preference for acetone versus propanal as competing nucleophiles. D6 turned out to be the key residue that enabled activity with non-hydroxylated nucleophiles. Altogether 25 single- and double-site variants (D6X and D6X/T26X) were discovered that show useful synthetic activity and a varying preference for ketone or aldehyde as the aldol nucleophiles. Remarkably, all of the novel variants had completely lost their native activity for cleavage of fructose 6-phosphate.
Collapse
Affiliation(s)
- Sebastian Junker
- Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | - Raquel Roldan
- Instituto de Química Avanzada de Cataluña-IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | | | - Pere Clapés
- Instituto de Química Avanzada de Cataluña-IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Wolf‐Dieter Fessner
- Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| |
Collapse
|
21
|
Junker S, Roldan R, Joosten HJ, Clapés P, Fessner WD. Complete Switch of Reaction Specificity of an Aldolase by Directed Evolution In Vitro: Synthesis of Generic Aliphatic Aldol Products. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sebastian Junker
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Raquel Roldan
- Instituto de Química Avanzada de Cataluña-IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Henk-Jan Joosten
- Bio-Prodict; Nieuwe Marktstraat 54e 6511 AA Nijmegen The Netherlands
| | - Pere Clapés
- Instituto de Química Avanzada de Cataluña-IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| |
Collapse
|
22
|
Hernández K, Szekrenyi A, Clapés P. Nucleophile Promiscuity of Natural and Engineered Aldolases. Chembiochem 2018; 19:1353-1358. [DOI: 10.1002/cbic.201800135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Karel Hernández
- Department of Chemical Biology and Molecular Modelling; Catalonia Institute for Advanced Chemistry IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Anna Szekrenyi
- Institut für Organische Chemie und Biochemie; Technische Universität Darmstadt; Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Pere Clapés
- Department of Chemical Biology and Molecular Modelling; Catalonia Institute for Advanced Chemistry IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| |
Collapse
|
23
|
Guérard-Hélaine C, Heuson E, Ndiaye M, Gourbeyre L, Lemaire M, Hélaine V, Charmantray F, Petit JL, Salanoubat M, de Berardinis V, Gefflaut T. Stereoselective synthesis of γ-hydroxy-α-amino acids through aldolase-transaminase recycling cascades. Chem Commun (Camb) 2018; 53:5465-5468. [PMID: 28466909 DOI: 10.1039/c7cc00742f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Efficient bi-enzymatic cascades combining aldolases and α-transaminases were designed for the synthesis of γ-hydroxy-α-amino acids. These recycling cascades provide high stereoselectivity, atom economy, and an equilibrium shift of the transamination. l-syn or anti-4-hydroxyglutamic acid and d-anti-4,5-dihydroxynorvaline were thus prepared in 83-95% yield in one step from simple substrates.
Collapse
Affiliation(s)
- Christine Guérard-Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sudar M, Vasić-Rački Đ, Müller M, Walter A, Blažević ZF. Mathematical model of the MenD-catalyzed 1,4-addition (Stetter reaction) of α-ketoglutaric acid to acrylonitrile. J Biotechnol 2018; 268:71-80. [DOI: 10.1016/j.jbiotec.2018.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/17/2017] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
|
25
|
Enzyme-Promoted Direct Asymmetric Michael Reaction by Using Protease from Streptomyces griseus. Catal Letters 2017. [DOI: 10.1007/s10562-017-2095-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Schmidt NG, Pavkov‐Keller T, Richter N, Wiltschi B, Gruber K, Kroutil W. Biocatalytic Friedel-Crafts Acylation and Fries Reaction. Angew Chem Int Ed Engl 2017; 56:7615-7619. [PMID: 28544673 PMCID: PMC5488191 DOI: 10.1002/anie.201703270] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/26/2016] [Indexed: 11/07/2022]
Abstract
The Friedel-Crafts acylation is commonly used for the synthesis of aryl ketones, and a biocatalytic version, which may benefit from the chemo- and regioselectivity of enzymes, has not yet been introduced. Described here is a bacterial acyltransferase which can catalyze Friedel-Crafts C-acylation of phenolic substrates in buffer without the need of CoA-activated reagents. Conversions reach up to >99 %, and various C- or O-acyl donors, such as DAPG or isopropenyl acetate, are accepted by this enzyme. Furthermore the enzyme enables a Fries rearrangement-like reaction of resorcinol derivatives. These findings open an avenue for the development of alternative and selective C-C bond formation methods.
Collapse
Affiliation(s)
- Nina G. Schmidt
- ACIB GmbHPetersgasse 148010GrazAustria
- Institute of ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstraße 288010GrazAustria
| | - Tea Pavkov‐Keller
- ACIB GmbHPetersgasse 148010GrazAustria
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 50/38010GrazAustria
| | - Nina Richter
- ACIB GmbHPetersgasse 148010GrazAustria
- Institute of ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstraße 288010GrazAustria
| | | | - Karl Gruber
- ACIB GmbHPetersgasse 148010GrazAustria
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 50/38010GrazAustria
| | - Wolfgang Kroutil
- ACIB GmbHPetersgasse 148010GrazAustria
- Institute of ChemistryUniversity of Graz, NAWI Graz, BioTechMed GrazHeinrichstraße 288010GrazAustria
| |
Collapse
|
27
|
Guérard-Hélaine C, De Sousa Lopes Moreira M, Touisni N, Hecquet L, Lemaire M, Hélaine V. Transketolase-Aldolase Symbiosis for the Stereoselective Preparation of Aldoses and Ketoses of Biological Interest. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christine Guérard-Hélaine
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| | - Maxime De Sousa Lopes Moreira
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| | - Nadia Touisni
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| | - Laurence Hecquet
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| | - Marielle Lemaire
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| | - Virgil Hélaine
- Université Clermont Auvergne; CNRS; SIGMA Clermont; Institut de Chimie de Clermont-Ferrand, F-63000; Clermont-Ferrand BP 80026, F- 63171 Aubière France
| |
Collapse
|
28
|
Schmidt NG, Pavkov-Keller T, Richter N, Wiltschi B, Gruber K, Kroutil W. Biocatalytic Friedel-Crafts Acylation and Fries Reaction. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nina G. Schmidt
- ACIB GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Chemistry; University of Graz, NAWI Graz, BioTechMed Graz; Heinrichstraße 28 8010 Graz Austria
| | - Tea Pavkov-Keller
- ACIB GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Molecular Biosciences; University of Graz; Humboldtstraße 50/3 8010 Graz Austria
| | - Nina Richter
- ACIB GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Chemistry; University of Graz, NAWI Graz, BioTechMed Graz; Heinrichstraße 28 8010 Graz Austria
| | | | - Karl Gruber
- ACIB GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Molecular Biosciences; University of Graz; Humboldtstraße 50/3 8010 Graz Austria
| | - Wolfgang Kroutil
- ACIB GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Chemistry; University of Graz, NAWI Graz, BioTechMed Graz; Heinrichstraße 28 8010 Graz Austria
| |
Collapse
|
29
|
Yang X, Ye L, Li A, Yang C, Yu H, Gu J, Guo F, Jiang L, Wang F, Yu H. Engineering of d-fructose-6-phosphate aldolase A for improved activity towards cinnamaldehyde. Catal Sci Technol 2017. [DOI: 10.1039/c6cy01622g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
d-Fructose-6-phosphate aldolase A (FSAA) from Escherichia coli was engineered for enhanced catalytic efficiency towards cinnamaldehyde.
Collapse
|
30
|
MOHAJER S, BAHARFAR R. Diastereoselective synthesis of novel 2,5-dioxopyrrolidine derivatives via biocatalytic domino reactions. Turk J Chem 2017. [DOI: 10.3906/kim-1612-45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
31
|
Garrabou X, Verez R, Hilvert D. Enantiocomplementary Synthesis of γ-Nitroketones Using Designed and Evolved Carboligases. J Am Chem Soc 2016; 139:103-106. [PMID: 27992715 DOI: 10.1021/jacs.6b11928] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Artificial enzymes created by computational design and directed evolution are versatile biocatalysts whose promiscuous activities represent potentially attractive starting points for divergent evolution in the laboratory. The artificial aldolase RA95.5-8, for example, exploits amine catalysis to promote mechanistically diverse carboligations. Here we report that RA95.5-8 variants catalyze the asymmetric synthesis of γ-nitroketones via two alternative enantiocomplementary Michael-type reactions: enamine-mediated addition of acetone to nitrostyrenes, and nitroalkane addition to conjugated ketones activated as iminium ions. In addition, a cascade of three aldolase-catalyzed reactions enables one-pot assembly of γ-nitroketones from three simpler building blocks. Together, our results highlight the chemical versatility of artificial aldolases for the practical synthesis of important chiral synthons.
Collapse
Affiliation(s)
- Xavier Garrabou
- Laboratory of Organic Chemistry, ETH Zurich , 8093 Zurich, Switzerland
| | - Rebecca Verez
- Laboratory of Organic Chemistry, ETH Zurich , 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich , 8093 Zurich, Switzerland
| |
Collapse
|
32
|
Schmidt NG, Eger E, Kroutil W. Building Bridges: Biocatalytic C-C-Bond Formation toward Multifunctional Products. ACS Catal 2016; 6:4286-4311. [PMID: 27398261 PMCID: PMC4936090 DOI: 10.1021/acscatal.6b00758] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Indexed: 12/12/2022]
Abstract
Carbon-carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C-C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C-C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C-C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand.
Collapse
Affiliation(s)
- Nina G. Schmidt
- ACIB
GmbH c/o, Department of Chemistry, University
of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Elisabeth Eger
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- ACIB
GmbH c/o, Department of Chemistry, University
of Graz, Heinrichstrasse
28, 8010 Graz, Austria
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
33
|
Busto E, Simon RC, Richter N, Kroutil W. One-Pot, Two-Module Three-Step Cascade To Transform Phenol Derivatives to Enantiomerically Pure (R)- or (S)-p-Hydroxyphenyl Lactic Acids. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Eduardo Busto
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010-Graz, Austria
| | - Robert C. Simon
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010-Graz, Austria
| | - Nina Richter
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010-Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010-Graz, Austria
| |
Collapse
|
34
|
Ghirga F, Quaglio D, Ghirga P, Berardozzi S, Zappia G, Botta B, Mori M, D'Acquarica I. Occurrence of Enantioselectivity in Nature: The Case of (S)-Norcoclaurine. Chirality 2016; 28:169-80. [PMID: 26729048 DOI: 10.1002/chir.22566] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 11/06/2022]
Abstract
This review article is aimed at providing a monographic overview on (S)-norcoclaurine (NC) alkaloid from three diverse points of view, collected all together for the first time: 1) the synthetic one, where the compound is seen as a target chiral molecule to be obtained in the highest optical purity and as a starting point for the development of biocatalytic asymmetric syntheses of tetrahydroisoquinoline alkaloids; 2) the chromatographic one, which addresses the HPLC separation of the two NC enantiomers; and 3) the biochemical one, for which a thorough understanding of the topology and mechanism of action of norcoclaurine synthase (NCS) enzyme is still a matter of debate. Special emphasis on the most recent studies in the field is given by discussing the results published by the main research groups who are working on NC and NCS.
Collapse
Affiliation(s)
- Francesca Ghirga
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Deborah Quaglio
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, Rome, Italy
| | - Patrizio Ghirga
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, Rome, Italy
| | - Simone Berardozzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giovanni Zappia
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Bruno Botta
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, Rome, Italy
| | - Mattia Mori
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Ilaria D'Acquarica
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
35
|
Busto E, Gerstmann M, Tobola F, Dittmann E, Wiltschi B, Kroutil W. Systems biocatalysis: para-alkenylation of unprotected phenols. Catal Sci Technol 2016. [DOI: 10.1039/c6cy01947a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Commercially available phenol derivatives were transformed with pyruvate to form a new C–C bond leading to the correspondingpara-coumaric acids and only one molecule of water as an innocent side product in buffer.
Collapse
Affiliation(s)
- Eduardo Busto
- Department of Chemistry
- NAWI Graz
- BioTechMed Graz
- University of Graz
- 8010 Graz
| | | | - Felix Tobola
- Austrian Centre of Industrial Biotechnology (ACIB)
- 8010 Graz
- Austria
| | - Edmund Dittmann
- Austrian Centre of Industrial Biotechnology (ACIB)
- 8010 Graz
- Austria
| | - Birgit Wiltschi
- Austrian Centre of Industrial Biotechnology (ACIB)
- 8010 Graz
- Austria
| | - Wolfgang Kroutil
- Department of Chemistry
- NAWI Graz
- BioTechMed Graz
- University of Graz
- 8010 Graz
| |
Collapse
|
36
|
Tamaddon F, Ghazi S. Urease: A highly biocompatible catalyst for switchable Biginelli reaction and synthesis of 1,4-dihydropyridines from the in situ formed ammonia. CATAL COMMUN 2015. [DOI: 10.1016/j.catcom.2015.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
37
|
Sánchez-Moreno I, Bordes I, Castillo R, Ruiz-Pernía JJ, Moliner V, García-Junceda E. Tuning the Phosphoryl Donor Specificity of Dihydroxyacetone Kinase from ATP to Inorganic Polyphosphate. An Insight from Computational Studies. Int J Mol Sci 2015; 16:27835-49. [PMID: 26610480 PMCID: PMC4661931 DOI: 10.3390/ijms161126073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 11/23/2022] Open
Abstract
Dihydroxyacetone (DHA) kinase from Citrobacter freundii provides an easy entry for the preparation of DHA phosphate; a very important C3 building block in nature. To modify the phosphoryl donor specificity of this enzyme from ATP to inorganic polyphosphate (poly-P); a directed evolution program has been initiated. In the first cycle of evolution, the native enzyme was subjected to one round of error-prone PCR (EP-PCR) followed directly (without selection) by a round of DNA shuffling. Although the wild-type DHAK did not show activity with poly-P, after screening, sixteen mutant clones showed an activity with poly-phosphate as phosphoryl donor statistically significant. The most active mutant presented a single mutation (Glu526Lys) located in a flexible loop near of the active center. Interestingly, our theoretical studies, based on molecular dynamics simulations and hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) optimizations, suggest that this mutation has an effect on the binding of the poly-P favoring a more adequate position in the active center for the reaction to take place.
Collapse
Affiliation(s)
- Israel Sánchez-Moreno
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General, CSIC. Juan de la Cierva 3, Madrid 28006, Spain.
| | - Isabel Bordes
- Departament de Química Física i Analítica, Universitat Jaume I. Castellón 12071, Spain.
| | - Raquel Castillo
- Departament de Química Física i Analítica, Universitat Jaume I. Castellón 12071, Spain.
| | | | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I. Castellón 12071, Spain.
| | - Eduardo García-Junceda
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General, CSIC. Juan de la Cierva 3, Madrid 28006, Spain.
| |
Collapse
|
38
|
Busto E, Simon RC, Kroutil W. Vinylation of Unprotected Phenols Using a Biocatalytic System. Angew Chem Int Ed Engl 2015; 54:10899-902. [DOI: 10.1002/anie.201505696] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 11/10/2022]
|
39
|
Busto E, Simon RC, Kroutil W. Vinylation of Unprotected Phenols Using a Biocatalytic System. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Expanding the threonine aldolase toolbox for the asymmetric synthesis of tertiary α-amino acids. Appl Microbiol Biotechnol 2015; 99:9651-61. [DOI: 10.1007/s00253-015-6803-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/11/2015] [Accepted: 06/28/2015] [Indexed: 12/21/2022]
|
41
|
López-Iglesias M, Gotor-Fernández V. Recent Advances in Biocatalytic Promiscuity: Hydrolase-Catalyzed Reactions for Nonconventional Transformations. CHEM REC 2015; 15:743-59. [PMID: 26147872 DOI: 10.1002/tcr.201500008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 01/03/2023]
Abstract
Enzymes have emerged in recent decades as ideal catalysts for synthetic transformations under mild reaction conditions. Their capacity to accelerate a myriad of biotransformations with high levels of selectivity and broad substrate specificity including excellent atom economy has led to a current full recognition. The six classes of enzymes (oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases) possess outstanding abilities to perform specific modifications in target molecules. Nevertheless, in the last fifteen years, novel examples have appeared related to nonconventional processes catalyzed by various classes of biocatalysts. Amongst these, hydrolases have received special attention since they display remarkable activities in initially unexpected reactions such as carbon-carbon and carbon-heteroatom bond-formation reactions, oxidative processes and novel hydrolytic transformations. In this review, the main findings in this area will be disclosed, highlighting the catalytic properties of hydrolases not only to catalyze single processes but also multicomponent and tandem nonconventional reactions.
Collapse
Affiliation(s)
- María López-Iglesias
- Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias, Universidad de Oviedo, Avenida Julián Clavería s/n, Oviedo, 33006, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias, Universidad de Oviedo, Avenida Julián Clavería s/n, Oviedo, 33006, Spain
| |
Collapse
|
42
|
Guérard-Hélaine C, de Berardinis V, Besnard-Gonnet M, Darii E, Debacker M, Debard A, Fernandes C, Hélaine V, Mariage A, Pellouin V, Perret A, Petit JL, Sancelme M, Lemaire M, Salanoubat M. Genome Mining for Innovative Biocatalysts: New Dihydroxyacetone Aldolases for the Chemist’s Toolbox. ChemCatChem 2015. [DOI: 10.1002/cctc.201500014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Oroz-Guinea I, Hernández K, Camps Bres F, Guérard-Hélaine C, Lemaire M, Clapés P, García-Junceda E. L
-Rhamnulose-1-phosphate Aldolase from Thermotoga maritima
in Organic Synthesis: One-Pot Multistep Reactions for the Preparation of Imino- and Nitrocyclitols. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500187] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
44
|
|
45
|
Camps Bres F, Guérard-Hélaine C, Hélaine V, Fernandes C, Sánchez-Moreno I, Traïkia M, García-Junceda E, Lemaire M. l-Rhamnulose-1-phosphate and l-fuculose-1-phosphate aldolase mediated multi-enzyme cascade systems for nitrocyclitol synthesis. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2014.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
|
47
|
Li LY, Yang DC, Guan Z, He YH. Pepsin-catalyzed direct asymmetric aldol reactions for the synthesis of vicinal diol compounds. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.01.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Hernandez K, Zelen I, Petrillo G, Usón I, Wandtke CM, Bujons J, Joglar J, Parella T, Clapés P. EngineeredL-Serine Hydroxymethyltransferase fromStreptococcus thermophilusfor the Synthesis of α,α-Dialkyl-α-Amino Acids. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Hernandez K, Zelen I, Petrillo G, Usón I, Wandtke CM, Bujons J, Joglar J, Parella T, Clapés P. EngineeredL-Serine Hydroxymethyltransferase fromStreptococcus thermophilusfor the Synthesis of α,α-Dialkyl-α-Amino Acids. Angew Chem Int Ed Engl 2015; 54:3013-7. [DOI: 10.1002/anie.201411484] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 12/18/2014] [Indexed: 11/12/2022]
|
50
|
Recent developments in enzyme promiscuity for carbon-carbon bond-forming reactions. Curr Opin Chem Biol 2015; 25:115-23. [PMID: 25598537 DOI: 10.1016/j.cbpa.2014.12.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/22/2022]
Abstract
Numerous enzymes have been found to catalyze additional and completely different types of reactions relative to the natural activity they evolved for. This phenomenon, called catalytic promiscuity, has proven to be a fruitful guide for the development of novel biocatalysts for organic synthesis purposes. As such, enzymes have been identified with promiscuous catalytic activity for, one or more, eminent types of carbon-carbon bond-forming reactions like aldol couplings, Michael(-type) additions, Mannich reactions, Henry reactions, and Knoevenagel condensations. This review focuses on enzymes that promiscuously catalyze these reaction types and exhibit high enantioselectivities (in case chiral products are obtained).
Collapse
|