1
|
Kudalkar GP, Tiwari VK, Berkowitz DB. Exploiting Archaeal/Thermostable Enzymes in Synthetic Chemistry: Back to the Future? ChemCatChem 2024; 16:e202400835. [PMID: 40417414 PMCID: PMC12101612 DOI: 10.1002/cctc.202400835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Indexed: 05/27/2025]
Abstract
Billions of years of evolution have led to the selection of (hyper)thermophiles capable of flourishing at elevated temperatures. The corresponding native (hyper)thermophilic enzymes retain their tertiary and quaternary structures at near-boiling water temperatures and naturally retain catalytically competent conformational dynamics under these conditions. And yet, while hyper/thermophilic enzymes offer special opportunities in biocatalysis and in hybrid bio/chemocatalytic approaches to modern synthesis in both academia and industry, these enzymes remain underexplored in biocatalysis. Among the strategic advantages that can be leveraged in running biocatalytic transformations at higher temperatures are included more favorable kinetics, removal of volatile byproducts to drive reactions forward, improved substrate solubility and product separation, and accelerated stereodynamics for dynamic kinetic resolutions. These topics are discussed and illustrated with contemporary examples of note, in sections organized by stratagem. Finally, the reader is alerted in particular to archaeal enzymes that have proven useful in non-natural synthetic chemistry ventures, and at the same time is referred to a rich area of archaea whose genomes have been sequenced but whose enzymatic activities of interest have not yet been mined. Though hyperthermophilic archaea are among the most ancient of organisms, their enzymes may hold the key to many future innovations in biocatalytic chemistry - perhaps we really do need to go 'back to the future'.
Collapse
Affiliation(s)
- Gaurav P Kudalkar
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304 USA
| | - Virendra K Tiwari
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304 USA
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304 USA
| |
Collapse
|
2
|
Ooi T, Ohmatsu K, Kiyokawa M, Shirai Y, Nagato Y. Hybrid Catalysis of 8-Quinolinecarboxaldehyde and Brønsted Acid for Efficient Racemization of α-Amino Amides and Its Application in Chemoenzymatic Dynamic Kinetic Resolution. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Martínez-Rodríguez S, Torres JM, Sánchez P, Ortega E. Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Front Bioeng Biotechnol 2020; 8:887. [PMID: 32850740 PMCID: PMC7431475 DOI: 10.3389/fbioe.2020.00887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic AAs in the literature due to their appearance in ribosome-synthetized polypeptides. Beyond the borders of this key set of compounds, the rest of AAs are generally named imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide chains as a result of post-transductional machinery. Besides their importance as metabolites in life, many of D-α- and L-α-"non-canonical" amino acids (NcAAs) are of interest in the biotechnological and biomedical fields. They have found numerous applications in the discovery of new medicines and antibiotics, drug synthesis, cosmetic, and nutritional compounds, or in the improvement of protein and peptide pharmaceuticals. In addition to the numerous studies dealing with the asymmetric synthesis of NcAAs, many different enzymatic pathways have been reported in the literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of this group of molecules, this review is devoted to provide an overview on different established multienzymatic cascades for the production of non-canonical D-α- and L-α-AAs, supplying neophyte and experienced professionals in this field with different illustrative examples in the literature. Whereas the discovery of new or newly designed enzymes is of great interest, dusting off previous enzymatic methodologies by a "back and to the future" strategy might accelerate the implementation of new or improved multienzymatic cascades.
Collapse
|
4
|
Femmer C, Bechtold M, Held M, Panke S. In vivo directed enzyme evolution in nanoliter reactors with antimetabolite selection. Metab Eng 2020; 59:15-23. [DOI: 10.1016/j.ymben.2020.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 11/16/2022]
|
5
|
Yu J, Li J, Gao X, Zeng S, Zhang H, Liu J, Jiao Q. Dynamic Kinetic Resolution for Asymmetric Synthesis of L-Noncanonical Amino Acids from D-Ser Using Tryptophan Synthase and Alanine Racemase. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jinhai Yu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Xia Gao
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Shuiyun Zeng
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Hongjuan Zhang
- School of Pharmacy; Nanjing Medical University; 211166 Nanjing China
| | - Junzhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Qingcai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| |
Collapse
|
6
|
Kawahara N, Asano Y. Retracted: Chemoenzymatic Method for Enantioselective Synthesis of (R)‐2‐Phenylglycine and (R)‐2‐Phenylglycine Amide from Benzaldehyde and KCN Using Difference of Enzyme Affinity to the Enantiomers. ChemCatChem 2018. [DOI: 10.1002/cctc.201801254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nobuhiro Kawahara
- Biotechnology Research Center and Department of Biotechnology ToyamaPrefectural University Imizu 939-0398 Japan
- Asano Active Enzyme Molucule ProjectERATO JST Imizu 939-0398 Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology ToyamaPrefectural University Imizu 939-0398 Japan
- Asano Active Enzyme Molucule ProjectERATO JST Imizu 939-0398 Japan
| |
Collapse
|
7
|
Takeda R, Kawashima A, Yamamoto J, Sato T, Moriwaki H, Izawa K, Abe H, Soloshonok VA. Tandem Alkylation-Second-Order Asymmetric Transformation Protocol for the Preparation of Phenylalanine-Type Tailor-Made α-Amino Acids. ACS OMEGA 2018; 3:9729-9737. [PMID: 31459102 PMCID: PMC6644829 DOI: 10.1021/acsomega.8b01424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/08/2018] [Indexed: 05/02/2023]
Abstract
In this work, we disclose an advanced general process for the synthesis of tailor-made α-amino acids (α-AAs) via tandem alkylation-second-order asymmetric transformation. The first step is the alkylation of the chiral Ni(II) complex of glycine Schiff base, which is conducted under mild phase-transfer conditions allowing the structural construction of target α-AAs. The second step is based on the methodologically rare second-order asymmetric transformation, resulting in nearly complete precipitation of the corresponding (SC,RN,RC)-configured diastereomer, which can be collected by a simple filtration. The operational convenience and potential scalability of all experimental procedures, coupled with excellent stereochemical outcome, render this method of high synthetic value for the preparation of various tailor-made α-AAs.
Collapse
Affiliation(s)
- Ryosuke Takeda
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country (UPV/EHU), Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- E-mail: (R.T.)
| | - Aki Kawashima
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Junya Yamamoto
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Tatsunori Sato
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hiroki Moriwaki
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Kunisuke Izawa
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hidenori Abe
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country (UPV/EHU), Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013 Bilbao, Spain
- E-mail: (V.A.S.)
| |
Collapse
|
8
|
Frese A, Barrass SV, Sutton PW, Adams JP, Grogan G. An Aminocaprolactam Racemase from Ochrobactrum anthropi with Promiscuous Amino Acid Ester Racemase Activity. Chembiochem 2018; 19:1711-1715. [PMID: 29897155 DOI: 10.1002/cbic.201800265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 01/01/2023]
Abstract
The kinetic resolution of amino acid esters (AAEs) is a useful synthetic strategy for the preparation of single-enantiomer amino acids. The development of an enzymatic dynamic kinetic resolution (DKR) process for AAEs, which would give a theoretical yield of 100 % of the enantiopure product, would require an amino acid ester racemase (AAER); however, no such enzyme has been described. We have identified low AAER activity of 15 U mg-1 in a homologue of a PLP-dependent α-amino ϵ-caprolactam racemase (ACLR) from Ochrobactrum anthropi. We have determined the structure of this enzyme, OaACLR, to a resolution of 1.87 Å and, by using structure-guided saturation mutagenesis, in combination with a colorimetric screen for AAER activity, we have identified a mutant, L293C, in which the promiscuous AAER activity of this enzyme towards l-phenylalanine methyl ester is improved 3.7-fold.
Collapse
Affiliation(s)
- Amina Frese
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Sarah V Barrass
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Peter W Sutton
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
- Present address: Department of Chemical, Biological and Environmental Engineering, Bioprocess Engineering and Applied Biocatalysis Group, Engineering School, Campus de la UAB, 08193, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Joe P Adams
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Gideon Grogan
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
9
|
Sumida Y, Iwai S, Nishiya Y, Kumagai S, Yamada T, Azuma M. Characterization of d-succinylase from Cupriavidus sp. P4-10-C and its application in d-amino acid synthesis. J Biosci Bioeng 2018; 125:282-286. [DOI: 10.1016/j.jbiosc.2017.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
|
10
|
Nitrile Metabolizing Enzymes in Biocatalysis and Biotransformation. Appl Biochem Biotechnol 2018; 185:925-946. [DOI: 10.1007/s12010-018-2705-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/19/2018] [Indexed: 11/26/2022]
|
11
|
Xue YP, Cao CH, Zheng YG. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 2018; 47:1516-1561. [DOI: 10.1039/c7cs00253j] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review summarizes the progress achieved in the enzymatic asymmetric synthesis of chiral amino acids from prochiral substrates.
Collapse
Affiliation(s)
- Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Cheng-Hao Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
12
|
One-Pot Enantioselective Synthesis of d
-Phenylglycines from Racemic Mandelic Acids, Styrenes, or Biobased l
-Phenylalanine via
Cascade Biocatalysis. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700956] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Matsui D, Fuhshuku KI, Nagamori S, Takata M, Asano Y. Isolation and characterization of racemase from Ensifer sp. 23-3 that acts on α-aminolactams and α-amino acid amides. J Ind Microbiol Biotechnol 2017; 44:1503-1510. [PMID: 28929416 DOI: 10.1007/s10295-017-1981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/10/2017] [Indexed: 11/30/2022]
Abstract
Limited information is available on α-amino-ε-caprolactam (ACL) racemase (ACLR), a pyridoxal 5'-phosphate-dependent enzyme that acts on ACL and α-amino acid amides. In the present study, eight bacterial strains with the ability to racemize α-amino-ε-caprolactam were isolated and one of them was identified as Ensifer sp. strain 23-3. The gene for ACLR from Ensifer sp. 23-3 was cloned and expressed in Escherichia coli. The recombinant ACLR was then purified to homogeneity from the E. coli transformant harboring the ACLR gene from Ensifer sp. 23-3, and its properties were characterized. This enzyme acted not only on ACL but also on α-amino-δ-valerolactam, α-amino-ω-octalactam, α-aminobutyric acid amide, and alanine amide.
Collapse
Affiliation(s)
- Daisuke Matsui
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Ken-Ichi Fuhshuku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Department of Interdisciplinary Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo, 191-8506, Japan
| | - Shingo Nagamori
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Momoko Takata
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
- Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
14
|
Identification and characterization of a novel amidase signature family amidase from Parvibaculum lavamentivorans ZJB14001. Protein Expr Purif 2017; 129:60-68. [DOI: 10.1016/j.pep.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022]
|
15
|
Deng F, Ulcickas JRW, Simpson GJ. Theoretical Foundation for Electric-Dipole-Allowed Chiral-Specific Fluorescence Optical Rotary Dispersion (F-ORD) from Interfacial Assemblies. J Phys Chem Lett 2016; 7:4248-4252. [PMID: 27689450 PMCID: PMC5310532 DOI: 10.1021/acs.jpclett.6b01814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fluorescence optical rotary dispersion (F-ORD) is proposed as a novel chiral-specific and interface-specific spectroscopic method. F-ORD measurements of uniaxial assemblies are predicted to be fully electric-dipole-allowed, with corresponding increases in sensitivity to chirality relative to chiral-specific measurements in isotropic assemblies that are commonly interpreted through coupling between electric and magnetic dynamic dipoles. Observations of strong chiral sensitivity in prior single-molecule fluorescence measurements of chiral interfacial molecules are in excellent qualitative agreement with the predictions of the F-ORD mechanism and challenging to otherwise explain. F-ORD may provide methods to suppress background fluorescence in studies of biological interfaces, as the detected signal requires both polar local order and interfacial chirality. In addition, the molecular-level descriptions of the mechanisms underpinning F-ORD may also potentially apply to aid in interpreting chiral-specific Raman and surface-enhanced Raman spectroscopy measurements of uniaxially oriented assemblies, opening up opportunities for chiral-specific and interface-specific vibrational spectroscopy.
Collapse
Affiliation(s)
| | | | - Garth J. Simpson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Parmeggiani F, Ahmed ST, Thompson MP, Weise NJ, Galman JL, Gahloth D, Dunstan MS, Leys D, Turner NJ. Single-Biocatalyst Synthesis of Enantiopured-Arylalanines Exploiting an Engineeredd-Amino Acid Dehydrogenase. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600682] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fabio Parmeggiani
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| | - Syed T. Ahmed
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| | - Matthew P. Thompson
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| | - Nicholas J. Weise
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| | - James L. Galman
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| | - Deepankar Gahloth
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| | - Mark S. Dunstan
- SYNBIOCHEM, Manchester Institute of Biotechnology (MIB); The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| | - David Leys
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
- SYNBIOCHEM, Manchester Institute of Biotechnology (MIB); The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
- SYNBIOCHEM, Manchester Institute of Biotechnology (MIB); The University of Manchester; 131 Princess Street M1 7DN Manchester U.K
| |
Collapse
|
17
|
Miki Y, Okazaki S, Asano Y. Engineering an ATP-dependent D-Ala:D-Ala ligase for synthesizing amino acid amides from amino acids. J Ind Microbiol Biotechnol 2016; 44:667-675. [PMID: 27585794 DOI: 10.1007/s10295-016-1833-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/21/2016] [Indexed: 12/01/2022]
Abstract
We successfully engineered a new enzyme that catalyzes the formation of D-Ala amide (D-AlaNH2) from D-Ala by modifying ATP-dependent D-Ala:D-Ala ligase (EC 6.3.2.4) from Thermus thermophilus, which catalyzes the formation of D-Ala-D-Ala from two molecules of D-Ala. The new enzyme was created by the replacement of the Ser293 residue with acidic amino acids, as it was speculated to bind to the second D-Ala of D-Ala-D-Ala. In addition, a replacement of the position with Glu performed better than that with Asp with regards to specificity for D-AlaNH2 production. The S293E variant, which was selected as the best enzyme for D-AlaNH2 production, exhibited an optimal activity at pH 9.0 and 40 °C for D-AlaNH2 production. The apparent K m values of this variant for D-Ala and NH3 were 7.35 mM and 1.58 M, respectively. The S293E variant could catalyze the synthesis of 9.3 and 35.7 mM of D-AlaNH2 from 10 and 50 mM D-Ala and 3 M NH4Cl with conversion yields of 93 and 71.4 %, respectively. This is the first report showing the enzymatic formation of amino acid amides from amino acids.
Collapse
Affiliation(s)
- Yuta Miki
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.,MicroBiopharm Japan Co.Ltd., 1-3-1 Kyobashi, Chuo-ku, Tokyo, 104-0031, Japan
| | - Seiji Okazaki
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan. .,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
18
|
Sumida Y, Iwai S, Nishiya Y, Kumagai S, Yamada T, Azuma M. Identification and Characterization ofD-Succinylase, and a Proposed Enzymatic Method forD-Amino Acid Synthesis. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II-III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chem Rev 2016; 116:422-518. [PMID: 26756377 DOI: 10.1021/acs.chemrev.5b00392] [Citation(s) in RCA: 1914] [Impact Index Per Article: 212.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yu Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jiang Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zhanni Gu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Shuni Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wei Zhu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - José Luis Aceña
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,Department of Organic Chemistry, Autónoma University of Madrid , Cantoblanco, 28049 Madrid, Spain
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, Japan 533-0024
| | - Hong Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
20
|
da Silva Pinto L, de Souza FHD, Nascimento IR, Lopes LMX. Phenylpropanoids from Paspalum atratum (Poaceae). BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Lu D, Ma C, Yuan S, Zhou L, Zeng Q. Synthesis of Chiral 3-Substituted 1,3,4,5-Tetrahydro-1,4-benzo- diazepin-2-onesviaa Domino Copper-Catalyzed SN2/Coupling Reaction. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Tydlitát J, Bureš F, Růžičková Z. Phenylalanine-Derived Imidazolines Bearing Heteroaromatic Pendants: Synthesis, Characterization, and Application in the AsymmetricHenryReaction. Helv Chim Acta 2015. [DOI: 10.1002/hlca.201500128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Nian Y, Wang J, Zhou S, Wang S, Moriwaki H, Kawashima A, Soloshonok VA, Liu H. Recyclable Ligands for the Non‐Enzymatic Dynamic Kinetic Resolution of Challenging α‐Amino Acids. Angew Chem Int Ed Engl 2015; 54:12918-22. [DOI: 10.1002/anie.201507273] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Yong Nian
- School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing 210009 (China)
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (China)
| | - Jiang Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (China)
| | - Shengbin Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (China)
| | - Shuni Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (China)
| | - Hiroki Moriwaki
- Hamari Chemicals Ltd., 1‐4‐29 Kunijima, Higashi‐Yodogawa‐ku, Osaka 533‐0024 (Japan)
| | - Aki Kawashima
- Hamari Chemicals Ltd., 1‐4‐29 Kunijima, Higashi‐Yodogawa‐ku, Osaka 533‐0024 (Japan)
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián (Spain)
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36‐5, Plaza Bizkaia, 48013 Bilbao (Spain)
| | - Hong Liu
- School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing 210009 (China)
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (China)
| |
Collapse
|
24
|
Nian Y, Wang J, Zhou S, Wang S, Moriwaki H, Kawashima A, Soloshonok VA, Liu H. Recyclable Ligands for the Non-Enzymatic Dynamic Kinetic Resolution of Challenging α-Amino Acids. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507273] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
de Miranda AS, Miranda LS, de Souza RO. Lipases: Valuable catalysts for dynamic kinetic resolutions. Biotechnol Adv 2015; 33:372-93. [DOI: 10.1016/j.biotechadv.2015.02.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/10/2015] [Accepted: 02/25/2015] [Indexed: 12/22/2022]
|
26
|
Guo FM, Wu JP, Yang LR, Xu G. Soluble and functional expression of a recombinant enantioselective amidase from Klebsiella oxytoca KCTC 1686 in Escherichia coli and its biochemical characterization. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Payoungkiattikun W, Okazaki S, Nakano S, Ina A, H-Kittikun A, Asano Y. In Silico Identification for α-Amino-ε-Caprolactam Racemases by Using Information on the Structure and Function Relationship. Appl Biochem Biotechnol 2015. [DOI: 10.1007/s12010-015-1647-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Zhang F, Sun H, Song Z, Zhou S, Wen X, Xu QL, Sun H. Stereoselective Synthesis of Arylglycine Derivatives via Palladium-Catalyzed α-Arylation of a Chiral Nickel(II) Glycinate. J Org Chem 2015; 80:4459-64. [DOI: 10.1021/acs.joc.5b00314] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fan Zhang
- Jiangsu Key Laboratory of
Drug Discovery for Metabolic Diseases and State Key Laboratory of
Natural Medicines, China Pharmaceutical University, 24 Tongjia
Xiang, Nanjing 210009, China
| | - Hengzhi Sun
- Jiangsu Key Laboratory of
Drug Discovery for Metabolic Diseases and State Key Laboratory of
Natural Medicines, China Pharmaceutical University, 24 Tongjia
Xiang, Nanjing 210009, China
| | - Zhuang Song
- Jiangsu Key Laboratory of
Drug Discovery for Metabolic Diseases and State Key Laboratory of
Natural Medicines, China Pharmaceutical University, 24 Tongjia
Xiang, Nanjing 210009, China
| | - Shuxi Zhou
- Jiangsu Key Laboratory of
Drug Discovery for Metabolic Diseases and State Key Laboratory of
Natural Medicines, China Pharmaceutical University, 24 Tongjia
Xiang, Nanjing 210009, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of
Drug Discovery for Metabolic Diseases and State Key Laboratory of
Natural Medicines, China Pharmaceutical University, 24 Tongjia
Xiang, Nanjing 210009, China
| | - Qing-Long Xu
- Jiangsu Key Laboratory of
Drug Discovery for Metabolic Diseases and State Key Laboratory of
Natural Medicines, China Pharmaceutical University, 24 Tongjia
Xiang, Nanjing 210009, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of
Drug Discovery for Metabolic Diseases and State Key Laboratory of
Natural Medicines, China Pharmaceutical University, 24 Tongjia
Xiang, Nanjing 210009, China
| |
Collapse
|
29
|
Takeda R, Kawamura A, Kawashima A, Sato T, Moriwaki H, Izawa K, Akaji K, Wang S, Liu H, Aceña JL, Soloshonok VA. Chemical Dynamic Kinetic Resolution andS/R Interconversion of Unprotected α-Amino Acids. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407944] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Takeda R, Kawamura A, Kawashima A, Sato T, Moriwaki H, Izawa K, Akaji K, Wang S, Liu H, Aceña JL, Soloshonok VA. Chemical dynamic kinetic resolution and S/R interconversion of unprotected α-amino acids. Angew Chem Int Ed Engl 2014; 53:12214-7. [PMID: 25244328 DOI: 10.1002/anie.201407944] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Indexed: 12/17/2022]
Abstract
Reported herein is the first purely chemical method for the dynamic kinetic resolution (DKR) of unprotected racemic α-amino acids (α-AAs), a method which can rival the economic efficiency of the enzymatic reactions. The DKR reaction principle can be readily applied for S/R interconversions of α-AAs, the methodological versatility of which is unmatched by biocatalytic approaches. The presented process features a virtually complete stereochemical outcome, fully recyclable source of chirality, and operationally simple and convenient reaction conditions, thus allowing its ready scalability. A quite unique and novel mode of the thermodynamic control over the stereochemical outcome, including an exciting interplay between axial, helical, and central elements of chirality is proposed.
Collapse
Affiliation(s)
- Ryosuke Takeda
- Hamari Chemicals Ltd. 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024 (Japan)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fuhshuku KI, Takata M, Iwatsubo H, Asano Y. Preparation of d-α-aminolactams by l-enantioselective degradation of α-aminolactam mediated by Mesorhizobium sp. L88. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
da Silva MR, de Mattos MC, de Oliveira MDCF, de Lemos TLG, Ricardo NMPS, de Gonzalo G, Lavandera I, Gotor-Fernández V, Gotor V. Asymmetric chemoenzymatic synthesis of N-acetyl-α-amino esters based on lipase-catalyzed kinetic resolutions through interesterification reactions. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Moriwaki H, Resch D, Li H, Ojima I, Takeda R, Aceña JL, Soloshonok V. Inexpensive chemical method for preparation of enantiomerically pure phenylalanine. Amino Acids 2014; 46:945-52. [DOI: 10.1007/s00726-013-1656-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/17/2013] [Indexed: 12/16/2022]
|