1
|
Xuan T, Wang X, Wang Y. Asymmetric [3+2] Cycloannulation of Benzoxazinones for the Synthesis of Imidazo[5,1- c]oxazinones. Org Lett 2025; 27:3134-3138. [PMID: 40126411 DOI: 10.1021/acs.orglett.5c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The asymmetric catalytic [3+2] cycloannulation of benzoxazinones with isatin-derived ketimines for the efficient construction of imidazo[5,1-c]oxazinones has been developed, which realized the first asymmetric reaction of benzoxazinones with excellent stereoselectivities. A series of imidazo[5,1-c]oxazinones containing three stereogenic centers with one gem-diamine-type spiro tetrasubstituted center were obtained in this organocatalytic reaction with good yields and high functional group tolerance.
Collapse
Affiliation(s)
- Tengfei Xuan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xia Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yang Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Zhao W, Li H, Ge Q, Cong H, Yang S. Synthesis of Dihydroquinoxalinones from Biomass-Derived Keto Acids and o-Phenylenediamines. J Org Chem 2024; 89:3987-3994. [PMID: 38437716 DOI: 10.1021/acs.joc.3c02821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A novel catalyst-free cascade amination/cyclization/reduction reaction was developed for the synthesis of various Dihydroquinoxalinones under mild conditions from accessible biomass-derived keto acids and 1,2-phenylenediamines with ammonia borane as a hydrogen donor. This single-step approach enables a simple and eco-friendly route toward the direct synthesis of 12 kinds of Dihydroquinoxalinones in moderate to excellent yields in the green solvent dimethyl carbonate. The results of deuterium-labeling experiments and density function calculations demonstrate that the reductive process proceeds along a double hydrogen transfer pathway. An acceptable yield of Dihydroquinoxalinone can be afforded in a gram-scale experiment, illustrating the practicality of the as-reported reaction system.
Collapse
Affiliation(s)
- Wenfeng Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), State-Local Joint Engineering Lab for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), State-Local Joint Engineering Lab for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Qingmei Ge
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), State-Local Joint Engineering Lab for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Efficient hydrogenation of N-heteroarenes into N-heterocycles over MOF-derived CeO2 supported nickel nanoparticles. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
4
|
Tummalapalli KSS, Zhao X, Rainier JD. A Biaryl-Cyclohexenone Photoelectrocyclization/Dearomatization Sequence to Substituted Terpenes. Tetrahedron 2023; 131:133180. [PMID: 37593114 PMCID: PMC10430876 DOI: 10.1016/j.tet.2022.133180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Described here is the development of sequential cross-coupling, photoelectrocyclizations, and reductive dearomatizations of biaryl cyclohexenones as a means of synthesizing terpene skeletons. This methodology promises to provide insight that will enable us and others to use this approach to generate a variety of biologically active small molecules, including members of the abietane and morphinan skeletons.
Collapse
Affiliation(s)
| | - Xuchen Zhao
- Department of Chemistry University of Utah Salt Lake City, UT 84112
| | - Jon D Rainier
- Department of Chemistry University of Utah Salt Lake City, UT 84112
| |
Collapse
|
5
|
Zhang Y, Wei B, Liang H. Rhodium-Based MOF-on-MOF Difunctional Core-Shell Nanoreactor for NAD(P)H Regeneration and Enzyme Directed Immobilization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3442-3454. [PMID: 36609187 DOI: 10.1021/acsami.2c18440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An organometallic complex-catalyzed artificial coenzyme regeneration system has attracted widespread attention. However, the combined use of organometallic complex catalysts and natural enzymes easily results in mutual inactivation. Herein, we establish a rhodium-based metal-organic framework (MOF)-on-MOF difunctional core-shell nanoreactor as an artificial enzymatic NAD(P)H regeneration system. UiO67 as the core is used to capture rhodium molecules for catalyzing NAD(P)H regeneration. UiO66 as the shell is used to specifically immobilize His-tagged lactate dehydrogenase (LDH) and serve as a protection shield for LDH and [Cp*Rh(bpy)Cl]+ to prevent mutual inactivation. A variety of results indicate that UiO67@Rh@UiO66 has good activity in realizing NAD(P)H regeneration. Noteworthily, UiO67@Rh@UiO66@LDH maintains a high activity level even after 10 cycles. This work reports a novel NAD(P)H regeneration platform to open up a new avenue for constructing chemoenzyme coupling systems.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| | - Bin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| |
Collapse
|
6
|
Bhat MF, Luján AP, Saifuddin M, Poelarends GJ. Chemoenzymatic Asymmetric Synthesis of Complex Heterocycles: Dihydrobenzoxazinones and Dihydroquinoxalinones. ACS Catal 2022; 12:11421-11427. [PMID: 36158903 PMCID: PMC9486952 DOI: 10.1021/acscatal.2c03008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/25/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Mohammad Faizan Bhat
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alejandro Prats Luján
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Mohammad Saifuddin
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Gerrit J. Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
7
|
Iordanidou D, Kallitsakis MG, Tzani MA, Ioannou DI, Zarganes-Tzitzikas T, Neochoritis CG, Dömling A, Terzidis MA, Lykakis IN. Supported Gold Nanoparticle-Catalyzed Selective Reduction of Multifunctional, Aromatic Nitro Precursors into Amines and Synthesis of 3,4-Dihydroquinoxalin-2-Ones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144395. [PMID: 35889270 PMCID: PMC9323044 DOI: 10.3390/molecules27144395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
The synthesis of 3,4-dihydroquinoxalin-2-ones via the selective reduction of aromatic, multifunctional nitro precursors catalyzed by supported gold nanoparticles is reported. The reaction proceeds through the in situ formation of the corresponding amines under heterogeneous transfer hydrogenation of the initial nitro compounds catalyzed by the commercially available Au/TiO2-Et3SiH catalytic system, followed by an intramolecular C-N transamidation upon treatment with silica acting as a mild acid. Under the present conditions, the Au/TiO2-TMDS system was also found to catalyze efficiently the present selective reduction process. Both transfer hydrogenation processes showed very good functional-group tolerance and were successfully applied to access more structurally demanding products bearing other reducible moieties such as chloro, aldehyde or methyl ketone. An easily scalable (up to 1 mmol), low catalyst loading (0.6 mol%) synthetic protocol was realized, providing access to this important scaffold. Under these mild catalytic conditions, the desired products were isolated in good to high yields and with a TON of 130. A library analysis was also performed to demonstrate the usefulness of our synthetic strategy and the physicochemical profile of the derivatives.
Collapse
Affiliation(s)
- Domna Iordanidou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.I.); (M.G.K.); (M.A.T.); (D.I.I.)
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
| | - Michael G. Kallitsakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.I.); (M.G.K.); (M.A.T.); (D.I.I.)
| | - Marina A. Tzani
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.I.); (M.G.K.); (M.A.T.); (D.I.I.)
| | - Dimitris I. Ioannou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.I.); (M.G.K.); (M.A.T.); (D.I.I.)
| | | | | | - Alexander Dömling
- Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9700 AV Groningen, The Netherlands;
| | - Michael A. Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
- Correspondence: (M.A.T.); (I.N.L.)
| | - Ioannis N. Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.I.); (M.G.K.); (M.A.T.); (D.I.I.)
- Correspondence: (M.A.T.); (I.N.L.)
| |
Collapse
|
8
|
Highly efficient and selective hydrogenation of quinolines at room temperature over Ru@NC-500 catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Maji B, Bhandari A, Sadhukhan R, Choudhury J. Water-soluble and reusable Ru-NHC catalyst for aqueous-phase transfer hydrogenation of quinolines with formic acid. Dalton Trans 2022; 51:8258-8265. [PMID: 35579118 DOI: 10.1039/d2dt00571a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water-soluble Ru-NHC complexes were synthesized and their catalytic activity was tested in the transfer hydrogenation of quinoline-type N-heteroarenes using a formic acid/sodium formate buffer solution. The unique multifunctional features of the designed ligand within the catalyst backbone endowed it with excellent durability, reusability and compatibility with a simple aqueous-phase operation. Thus, it was possible to reuse as little as 0.25 mol% of the catalyst for three consecutive catalytic runs to provide an overall turnover number of around 900. A mechanistic investigation suggested that hydride generation was the rate-limiting step, whereas hydride transfer was relatively facile. Furthermore, computational studies supported that the reaction pathway was dominated by 1,4-hydride insertion at the N-heteroarene substrates.
Collapse
Affiliation(s)
- Babulal Maji
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| | - Anirban Bhandari
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| | - Rayantan Sadhukhan
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| |
Collapse
|
10
|
Maji B, Choudhury J. Reusable Water‐Soluble Homogeneous Catalyst in Aqueous‐Phase Transfer Hydrogenation of N‐Heteroarenes with Formic Acid: Uracil–Based Bifunctional Ir–NHC Catalyst is the Key. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Babulal Maji
- Organometallics & Smart Materials Laboratory, Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal India
| |
Collapse
|
11
|
Nasiruzzaman Shaikh M, Aziz A, Shakil Hussain SM, Helal A. Rh‐Complex Supported on Magnetic Nanoparticles as Catalysts for Hydroformylations and Transfer Hydrogenation Reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- M. Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum and Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| | - Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum and Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| | - S. M. Shakil Hussain
- Center for Integrative Petroleum Research (CIPR) King Fahd University of Petroleum and Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum and Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| |
Collapse
|
12
|
Active repair of a dinuclear photocatalyst for visible-light-driven hydrogen production. Nat Chem 2022; 14:500-506. [DOI: 10.1038/s41557-021-00860-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/19/2021] [Indexed: 12/30/2022]
|
13
|
Li Z, Zhang H, Tan T, Lei M. The mechanism of direct reductive amination of aldehyde and amine with formic acid catalyzed by boron trifluoride complexes: insights from a DFT study. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00967f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A volcano diagram of BF3 catalytic species and their activities was proposed for the DRA of aldehyde and amine with formic acid.
Collapse
Affiliation(s)
- Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Institute of Computational Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huili Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Institute of Computational Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Institute of Computational Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
14
|
Yao Z, Zhang X, Luo Z, Pan Y, Zhao H, Li B, Xu L, Shi Q, Fan Q. Na
2
S
2
O
8
‐Mediated Tandem One‐Pot Construction of 3,3‐Disubsituted 3,4‐Dihydroquinoxalin‐2(1
H
)‐ones with 4‐Alkyl‐1,4‐dihydropyridines as Alkyl Radical Sources. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhen Yao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Xin Zhang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Zhenli Luo
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Yixiao Pan
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Haoqiang Zhao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Bohan Li
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Qian Shi
- College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Qing‐Hua Fan
- Institute of Chemistry Chinese Academy of Sciences
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
15
|
Guo Q, Chen J, Shen G, Lu G, Yang X, Tang Y, Zhu Y, Wu S, Fan B. Tetrabutylammonium Bromide-Catalyzed Transfer Hydrogenation of Quinoxaline with HBpin as a Hydrogen Source. J Org Chem 2021; 87:540-546. [PMID: 34905381 DOI: 10.1021/acs.joc.1c02537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A metal-free environmentally benign, simple, and efficient transfer hydrogenation process of quinoxaline has been developed using the HBpin reagent as a hydrogen source. This reaction is compatible with a variety of quinoxalines offering the desired tetrahydroquinoxalines in moderate-to-excellent yields with Bu4NBr as a noncorrosive and low-cost catalyst.
Collapse
Affiliation(s)
- Qi Guo
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| | - Jingchao Chen
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan University, Kunming 600091, China
| | - Guoli Shen
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| | - Guangfu Lu
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| | - Xuemei Yang
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| | - Yan Tang
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| | - Yuanbin Zhu
- Yunnan Tiefeng High Tech Mining Chemicals Co. Ltd., Qingfeng Industrial Park, Lufeng 651200, Yunnan, China
| | - Shiyuan Wu
- Yunnan Tiefeng High Tech Mining Chemicals Co. Ltd., Qingfeng Industrial Park, Lufeng 651200, Yunnan, China
| | - Baomin Fan
- Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University), State Ethnic Affairs Commission, Kunming 650500, China
| |
Collapse
|
16
|
Yao Z, Luo Z, Pan Y, Zhang X, Li B, Xu L, Wang P, Shi Q. Metal‐Free Tandem One‐Pot Construction of 3,3‐Disubsituted 3,4‐Dihydroquinoxalin‐2(1
H
)‐Ones under Visible‐Light Photoredox Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhen Yao
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Zhenli Luo
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Yixiao Pan
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Xin Zhang
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Bohan Li
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Peng Wang
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Qian Shi
- College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| |
Collapse
|
17
|
Niu L, An Y, Yang X, Bian G, Wu Q, Xia Z, Bai G. Highly dispersed Ni nanoparticles encapsulated in hollow mesoporous silica spheres as an efficient catalyst for quinoline hydrogenation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Wang Z, Xu S, Wang K, Kong N, Liu X. Recent Studies of Bifunctionalization of Simple Indoles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhan‐Yong Wang
- School of Pharmacy Xinxiang University Xinxiang Henan 453003 P. R. China
| | - Shaohong Xu
- School of Pharmacy Xinxiang University Xinxiang Henan 453003 P. R. China
| | - Kai‐Kai Wang
- School of Pharmacy Xinxiang University Xinxiang Henan 453003 P. R. China
| | - Niuniu Kong
- School of Pharmacy Xinxiang University Xinxiang Henan 453003 P. R. China
| | - Xue Liu
- Department of Chemistry Lishui University Zhejiang P. R. China
| |
Collapse
|
19
|
Rimpiläinen T, Nunes A, Calado R, Fernandes AS, Andrade J, Ntungwe E, Spengler G, Szemerédi N, Rodrigues J, Gomes JP, Rijo P, Candeias NR. Increased antibacterial properties of indoline-derived phenolic Mannich bases. Eur J Med Chem 2021; 220:113459. [PMID: 33915373 DOI: 10.1016/j.ejmech.2021.113459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023]
Abstract
The search for antibacterial agents for the combat of nosocomial infections is a timely problem, as antibiotic-resistant bacteria continue to thrive. The effect of indoline substituents on the antibacterial properties of aminoalkylphenols was studied, leading to the development of a library of compounds with minimum inhibitory concentrations (MICs) as low as 1.18 μM. Two novel aminoalkylphenols were identified as particularly promising, after MIC and minimum bactericidal concentrations (MBC) determination against a panel of reference strain Gram-positive bacteria, and further confirmed against 40 clinical isolates (Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Enterococcus faecium, and Listeria monocytogenes). The same two aminoalkylphenols displayed low toxicity against two in vivo models (Artemia salina brine shrimp and Saccharomyces cerevisiae). The in vitro cytotoxicity evaluation (on human keratinocytes and human embryonic lung fibroblast cell lines) of the same compounds was also carried out. They demonstrated a particularly toxic effect on the fibroblast cell lines, with IC50 in the 1.7-5.1 μM range, thus narrowing their clinical use. The desired increase in the antibacterial properties of the aminoalkylphenols, particularly indoline-derived phenolic Mannich bases, was reached by introducing an additional nitro group in the indolinyl substituent or by the replacement of a methyl by a bioisosteric trifluoromethyl substituent in the benzyl group introduced through use of boronic acids in the Petasis borono-Mannich reaction. Notably, the introduction of an additional nitro moiety did not confer added toxicity to the aminoalkylphenols.
Collapse
Affiliation(s)
- Tatu Rimpiläinen
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101, Tampere, Finland
| | - Alexandra Nunes
- Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024, Lisboa, Portugal; CBIOS-Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal.
| | - Rita Calado
- Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016, Lisboa, Portugal
| | - Ana S Fernandes
- CBIOS-Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Joana Andrade
- CBIOS-Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Epole Ntungwe
- CBIOS-Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, 6720, Szeged, Hungary
| | - Nikoletta Szemerédi
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, 6720, Szeged, Hungary
| | - João Rodrigues
- Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016, Lisboa, Portugal
| | - João Paulo Gomes
- Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016, Lisboa, Portugal
| | - Patricia Rijo
- CBIOS-Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Nuno R Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101, Tampere, Finland; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
20
|
Han YR, Kim JS, Park WJ, Lee CH, Cheon J, Jun CH. Recyclable Transition Metal Catalysis using Bipyridine-Functionalized SBA-15 by Co-condensation of Methallylsilane with TEOS. Chem Asian J 2021; 16:197-201. [PMID: 33241669 DOI: 10.1002/asia.202001152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/20/2020] [Indexed: 11/10/2022]
Abstract
Well-defined recyclable Pd- and Rh-bipyridyl group-impregnated SBA-15 catalysts were prepared for C-C bond coupling reaction and selective hydrogenation reactions, respectively. These SBA-15 derived ligands for the catalysts were prepared by direct and indirect co-condensation method using bipyridyl-linked methallylsilane. This indirect method, involving methoxysilane generated from methallylsilane shows higher loading efficiency of transition metal catalysts on SBA-15 than the direct use of methallylsilane.
Collapse
Affiliation(s)
- Ye Ri Han
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae Soon Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Woo-Jin Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Department of Chemistry Center for NanoMedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| | - Chang-Hee Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Department of Chemistry Center for NanoMedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| | - Jinwoo Cheon
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Department of Chemistry Center for NanoMedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| | - Chul-Ho Jun
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Department of Chemistry Center for NanoMedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| |
Collapse
|
21
|
Gong Y, He J, Wen X, Xi H, Wei Z, Liu W. Transfer hydrogenation of N-heteroarenes with 2-propanol and ethanol enabled by manganese catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo01552d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient well-defined manganese catalyzed transfer hydrogenation of N-heteroarenes using 2-propanol and ethanol as hydrogen sources is developed. DFT calculations support an outer sphere hydrogenation mechanism.
Collapse
Affiliation(s)
- Yingjie Gong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jingxi He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoting Wen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Hui Xi
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zhihong Wei
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, P. R. China
| | - Weiping Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
22
|
Abstract
Quinoxalines are observed in several bioactive molecules and have been widely employed in designing molecules for DSSC's, optoelectronics, and sensing applications. Therefore, developing newer synthetic routes as well as novel ways for their functionalization is apparent.
Collapse
Affiliation(s)
- Gauravi Yashwantrao
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Satyajit Saha
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
23
|
Kaiwa Y, Oka K, Nishide H, Oyaizu K. Facile reversible hydrogenation of a poly(6‐vinyl‐2,3‐dimethyl‐1,2,3,4‐tetrahydroquinoxaline) gel‐like solid. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yusuke Kaiwa
- Department of Applied Chemistry and Research Institute for Science and Engineering Waseda University Tokyo Japan
| | - Kouki Oka
- Department of Applied Chemistry and Research Institute for Science and Engineering Waseda University Tokyo Japan
| | - Hiroyuki Nishide
- Department of Applied Chemistry and Research Institute for Science and Engineering Waseda University Tokyo Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry and Research Institute for Science and Engineering Waseda University Tokyo Japan
| |
Collapse
|
24
|
Li D, Yang J, Fan X. Ligand-free Pd(II)-catalyzed cyclization of α-chloroimino-N-arylamides to synthesis of quinoxalin-2(1H)-ones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Wang J, Zhao ZB, Zhao Y, Luo G, Zhu ZH, Luo Y, Zhou YG. Chiral and Regenerable NAD(P)H Models Enabled Biomimetic Asymmetric Reduction: Design, Synthesis, Scope, and Mechanistic Studies. J Org Chem 2020; 85:2355-2368. [PMID: 31886670 DOI: 10.1021/acs.joc.9b03054] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The coenzyme NAD(P)H plays an important role in electron as well as proton transmission in the cell. Thus, a variety of NAD(P)H models have been involved in biomimetic reduction, such as stoichiometric Hantzsch esters and achiral regenerable dihydrophenantheridine. However, the development of a general and new-generation biomimetic asymmetric reduction is still a long-term challenge. Herein, a series of chiral and regenerable NAD(P)H models with central, axial, and planar chiralities have been designed and applied in biomimetic asymmetric reduction using hydrogen gas as a terminal reductant. Combining chiral NAD(P)H models with achiral transfer catalysts such as Brønsted acids and Lewis acids, the substrate scope could be also expanded to imines, heteroaromatics, and electron-deficient tetrasubstituted alkenes with up to 99% yield and 99% enantiomeric excess (ee). The mechanism of chiral regenerable NAD(P)H models was investigated as well. Isotope-labeling reactions indicated that chiral NAD(P)H models were regenerated by the ruthenium complex under hydrogen gas first, and then the hydride of NAD(P)H models was transferred to unsaturated bonds in the presence of transfer catalysts. In addition, density functional theory calculations were also carried out to give further insight into the transition states for the corresponding transfer catalysts.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Zi-Biao Zhao
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Yanan Zhao
- Zhang Dayu School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Gen Luo
- Zhang Dayu School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Zhou-Hao Zhu
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Yi Luo
- Zhang Dayu School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China.,Zhang Dayu School of Chemistry , Dalian University of Technology , Dalian 116024 , P. R. China
| |
Collapse
|
26
|
Leng Y, Du S, Feng G, Sang X, Jiang P, Li H, Wang D. Cobalt-Polypyrrole/Melamine-Derived Co-N@NC Catalysts for Efficient Base-Free Formic Acid Dehydrogenation and Formylation of Quinolines through Transfer Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:474-483. [PMID: 31802662 DOI: 10.1021/acsami.9b14839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is highly desired but remains a great challenge to develop non-noble metal heterogeneous catalysts to supersede noble metal catalysts for formic acid (FA) dehydrogenation and the corresponding transfer hydrogenation reactions. Herein, we developed a simple and feasible melamine-assisted pyrolysis strategy for the preparation of atomic cobalt-nitrogen (Co-N)-anchored mesoporous carbon with high metal loading (>6.8 wt %) and high specific surface area (750 m2 g-1). Systematic investigation reveals that both the organic carbon source polypyrrole and the nitrogen source melamine are crucial for the successful generation of such Co-N-based materials. The obtained samples (Co-N)n@NC were demonstrated to be highly efficient and robust catalysts for FA dehydrogenation and formylation of quinolines through transfer hydrogenation, exhibiting a very high hydrogen production rate of 16 451 mL·gCo-1·h-1 for FA dehydrogenation and affording excellent yields (up to 99%), selectivity (up to 98%), and stability for transfer hydrogenation. This work may provide a promising route for the fabrication of more low-cost metal-nitrogen catalysts for green fine chemical synthesis.
Collapse
Affiliation(s)
- Yan Leng
- School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Shengyu Du
- School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Guodong Feng
- Key Lab of Advanced Molecular Engineering Materials , Baoji University of Arts and Science , Baoji 721013 , China
| | - Xinxin Sang
- School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Pingping Jiang
- School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Hui Li
- School of Pharmaceutical Science , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Dawei Wang
- School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| |
Collapse
|
27
|
Hervochon J, Dorcet V, Junge K, Beller M, Fischmeister C. Convenient synthesis of cobalt nanoparticles for the hydrogenation of quinolines in water. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00582g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Easily accessible cobalt nanoparticles are prepared by hydrolysis of NaBH4 in the presence of inexpensive Co(ii) salts.
Collapse
Affiliation(s)
- Julien Hervochon
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Vincent Dorcet
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Kathrin Junge
- Leibniz-Institut für Katalyse
- Albert-Einstein-Straße 29a
- Rostock
- Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse
- Albert-Einstein-Straße 29a
- Rostock
- Germany
| | - Cedric Fischmeister
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| |
Collapse
|
28
|
Pan Y, Luo Z, Xu X, Zhao H, Han J, Xu L, Fan Q, Xiao J. Ru‐Catalyzed Deoxygenative Transfer Hydrogenation of Amides to Amines with Formic Acid/Triethylamine. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yixiao Pan
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Zhenli Luo
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Xin Xu
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Haoqiang Zhao
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Jiahong Han
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Lijin Xu
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Qinghua Fan
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Jianliang Xiao
- Department of ChemistryUniversity of Liverpool Liverpool L69 7ZD United Kingdom
| |
Collapse
|
29
|
Recent advances in heterogeneous catalytic hydrogenation and dehydrogenation of N-heterocycles. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63336-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Zhong Y, Zhou T, Zhang Z, Chang R. Copper-Catalyzed Transfer Hydrogenation of N-Heteroaromatics with an Oxazaborolidine Complex. ACS OMEGA 2019; 4:8487-8494. [PMID: 31459938 PMCID: PMC6648510 DOI: 10.1021/acsomega.9b00930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/03/2019] [Indexed: 06/10/2023]
Abstract
The first-time use of the oxazaborolidine complex in transfer hydrogenation was accomplished. It was prepared without difficulty from cheap materials: ethanolamine and BH3·THF. A general and efficient method for copper-catalyzed transfer hydrogenation of a variety of N-heteroaromatics with an oxazaborolidine-BH3 complex under mild reaction conditions afforded the corresponding hydrogenated products in up to 96% yield. Mechanistic studies indicate that the hydrogen source originated from water and borane that coordinate with the nitrogen atom of oxazaborolidine. Accordingly, a plausible mechanism for this reaction was proposed. This method was successfully used in the key step synthesis of natural products (±)-angustureine and (±)-galipinine in three steps.
Collapse
Affiliation(s)
- Yuanhai Zhong
- College
of Chemistry and
Chemical Engineering and State Key Laboratory of Oil and Gas Reservoir Geology
and Exploitation, Southwest Petroleum University, Xindu Road 8, Chengdu, Sichuan 610500, China
| | - Taigang Zhou
- College
of Chemistry and
Chemical Engineering and State Key Laboratory of Oil and Gas Reservoir Geology
and Exploitation, Southwest Petroleum University, Xindu Road 8, Chengdu, Sichuan 610500, China
| | - Zhuohua Zhang
- College
of Chemistry and
Chemical Engineering and State Key Laboratory of Oil and Gas Reservoir Geology
and Exploitation, Southwest Petroleum University, Xindu Road 8, Chengdu, Sichuan 610500, China
| | - Ruiqing Chang
- College
of Chemistry and
Chemical Engineering and State Key Laboratory of Oil and Gas Reservoir Geology
and Exploitation, Southwest Petroleum University, Xindu Road 8, Chengdu, Sichuan 610500, China
| |
Collapse
|
31
|
Himiyama T, Waki M, Maegawa Y, Inagaki S. Cooperative Catalysis of an Alcohol Dehydrogenase and Rhodium‐Modified Periodic Mesoporous Organosilica. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tomoki Himiyama
- Toyota Central R&D Laboratories, Inc. Nagakute Aichi 480-1192 Japan
- Current address: National Institute of Advanced Industrial Science and Technology Ikeda Osaka 563-8577 Japan
| | - Minoru Waki
- Toyota Central R&D Laboratories, Inc. Nagakute Aichi 480-1192 Japan
| | | | - Shinji Inagaki
- Toyota Central R&D Laboratories, Inc. Nagakute Aichi 480-1192 Japan
| |
Collapse
|
32
|
Himiyama T, Waki M, Maegawa Y, Inagaki S. Cooperative Catalysis of an Alcohol Dehydrogenase and Rhodium-Modified Periodic Mesoporous Organosilica. Angew Chem Int Ed Engl 2019; 58:9150-9154. [PMID: 31025503 DOI: 10.1002/anie.201904116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 01/30/2023]
Abstract
The combined use of a metal-complex catalyst and an enzyme is attractive, but typically results in mutual inactivation. A rhodium (Rh) complex immobilized in a bipyridine-based periodic mesoporous organosilica (BPy-PMO) shows high catalytic activity during transfer hydrogenation, even in the presence of bovine serum albumin (BSA), while a homogeneous Rh complex exhibits reduced activity due to direct interaction with BSA. The use of a smaller protein or an amino acid revealed a clear size-sieving effect of the BPy-PMO that protected the Rh catalyst from direct interactions. A combination of Rh-immobilized BPy-PMO and an enzyme (horse liver alcohol dehydrogenase; HLADH) promoted sequential reactions involving the transfer hydrogenation of NAD+ to give NADH followed by the asymmetric hydrogenation of 4-phenyl-2-butanone with high enantioselectivity. The use of BPy-PMO as a support for metal complexes could be applied to other systems consisting of a metal-complex catalyst and an enzyme.
Collapse
Affiliation(s)
- Tomoki Himiyama
- Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan.,Current address: National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka, 563-8577, Japan
| | - Minoru Waki
- Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Yoshifumi Maegawa
- Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Shinji Inagaki
- Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| |
Collapse
|
33
|
Muthukrishnan I, Sridharan V, Menéndez JC. Progress in the Chemistry of Tetrahydroquinolines. Chem Rev 2019; 119:5057-5191. [PMID: 30963764 DOI: 10.1021/acs.chemrev.8b00567] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrahydroquinoline is one of the most important simple nitrogen heterocycles, being widespread in nature and present in a broad variety of pharmacologically active compounds. This Review summarizes the progress achieved in the chemistry of tetrahydroquinolines, with emphasis on their synthesis, during the period from mid-2010 to early 2018.
Collapse
Affiliation(s)
- Isravel Muthukrishnan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India
| | - Vellaisamy Sridharan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India.,Department of Chemistry and Chemical Sciences , Central University of Jammu , Rahya-Suchani (Bagla) , District-Samba, Jammu 181143 , Jammu and Kashmir , India
| | - J Carlos Menéndez
- Unidad de Química Orgańica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia , Universidad Complutense , 28040 Madrid , Spain
| |
Collapse
|
34
|
Capretz Agy A, Rodrigues MT, Zeoly LA, Simoni DA, Coelho F. Palladium-Mediated Oxidative Annulation of δ-Indolyl-α,β-Unsaturated Compounds toward the Synthesis of Cyclopenta[b]indoles and Heterogeneous Hydrogenation To Access Fused Indolines. J Org Chem 2019; 84:5564-5581. [DOI: 10.1021/acs.joc.9b00505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
35
|
Dubey A, Rahaman SMW, Fayzullin RR, Khusnutdinova JR. Transfer Hydrogenation of Carbonyl Groups, Imines and
N
‐Heterocycles Catalyzed by Simple, Bipyridine‐Based Mn
I
Complexes. ChemCatChem 2019. [DOI: 10.1002/cctc.201900358] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Abhishek Dubey
- Coordination Chemistry and Catalysis UnitOkinawa Institute of Science and Technology 1919-1 Tancha Onna-son, Okinawa 904-0495 Japan
- Current address: Ram Jaipal College (A Post Graduate Unit of Jai Prakash University) Dak Bunglow Road Saran, Chhapra Bihar-841301 India
| | - S. M. Wahidur Rahaman
- Coordination Chemistry and Catalysis UnitOkinawa Institute of Science and Technology 1919-1 Tancha Onna-son, Okinawa 904-0495 Japan
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific CenterRussian Academy of Sciences Arbuzov Street 8 Kazan 420088 Russian Federation
| | - Julia R. Khusnutdinova
- Coordination Chemistry and Catalysis UnitOkinawa Institute of Science and Technology 1919-1 Tancha Onna-son, Okinawa 904-0495 Japan
| |
Collapse
|
36
|
Pan Y, Luo Z, Han J, Xu X, Chen C, Zhao H, Xu L, Fan Q, Xiao J. B(C
6
F
5
)
3
‐Catalyzed Deoxygenative Reduction of Amides to Amines with Ammonia Borane. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801447] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yixiao Pan
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Zhenli Luo
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Jiahong Han
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Xin Xu
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Changjun Chen
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Haoqiang Zhao
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Lijin Xu
- Department of ChemistryRenmin University of China Beijing 100872 People's Republic of China
| | - Qinghua Fan
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Jianliang Xiao
- Department of ChemistryUniversity of Liverpool Liverpool L69 7ZD United Kingdom
| |
Collapse
|
37
|
Zhang X, Chen J, Khan R, Shen G, He Z, Zhou Y, Fan B. Rhodium-catalyzed transfer hydrogenation of quinoxalines with water as a hydrogen source. Org Biomol Chem 2019; 17:10142-10147. [DOI: 10.1039/c9ob02095k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodium-catalyzed transfer hydrogenation of quinoxalines with water as a hydrogen source was reported.
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University)
- State Ethnic Affairs Commission & Ministry of Education
- Kunming
- China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University)
- State Ethnic Affairs Commission & Ministry of Education
- Kunming
- China
| | - Ruhima Khan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University)
- State Ethnic Affairs Commission & Ministry of Education
- Kunming
- China
| | - Guoli Shen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University)
- State Ethnic Affairs Commission & Ministry of Education
- Kunming
- China
| | - Zhenxiu He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University)
- State Ethnic Affairs Commission & Ministry of Education
- Kunming
- China
| | - Yongyun Zhou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University)
- State Ethnic Affairs Commission & Ministry of Education
- Kunming
- China
- School of Chemistry and Environment
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University)
- State Ethnic Affairs Commission & Ministry of Education
- Kunming
- China
- School of Chemistry and Environment
| |
Collapse
|
38
|
Chen MW, Deng Z, Yang Q, Huang J, Peng Y. Enantioselective synthesis of trifluoromethylated dihydroquinoxalinones via palladium-catalyzed hydrogenation. Org Chem Front 2019. [DOI: 10.1039/c8qo01361f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective palladium-catalyzed asymmetric hydrogenation of 3-(trifluoromethyl)quinoxalinones has been successfully developed, providing a general and facile access to chiral 3-(trifluoromethyl)-3,4-dihydroquinoxalinones with up to 99% ee.
Collapse
Affiliation(s)
- Mu-Wang Chen
- Key Laboratory of Small Functional Organic Molecule
- Ministry of Education
- Jiangxi's Key Laboratory of Green Chemistry and College of Chemistry & Chemical Engineering
- Jiangxi Normal University Nanchang
- Jiangxi 330022
| | - Zhihong Deng
- Key Laboratory of Small Functional Organic Molecule
- Ministry of Education
- Jiangxi's Key Laboratory of Green Chemistry and College of Chemistry & Chemical Engineering
- Jiangxi Normal University Nanchang
- Jiangxi 330022
| | - Qin Yang
- Key Laboratory of Small Functional Organic Molecule
- Ministry of Education
- Jiangxi's Key Laboratory of Green Chemistry and College of Chemistry & Chemical Engineering
- Jiangxi Normal University Nanchang
- Jiangxi 330022
| | - Jian Huang
- Key Laboratory of Small Functional Organic Molecule
- Ministry of Education
- Jiangxi's Key Laboratory of Green Chemistry and College of Chemistry & Chemical Engineering
- Jiangxi Normal University Nanchang
- Jiangxi 330022
| | - Yiyuan Peng
- Key Laboratory of Small Functional Organic Molecule
- Ministry of Education
- Jiangxi's Key Laboratory of Green Chemistry and College of Chemistry & Chemical Engineering
- Jiangxi Normal University Nanchang
- Jiangxi 330022
| |
Collapse
|
39
|
Li D, Ollevier T. Iron- or Zinc-Mediated Synthetic Approach to Enantiopure Dihydroquinoxalinones. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dazhi Li
- Département de chimie; Université Laval; 1045 avenue de la Médecine Québec, QC, G1V 0A6 Canada
| | - Thierry Ollevier
- Département de chimie; Université Laval; 1045 avenue de la Médecine Québec, QC, G1V 0A6 Canada
| |
Collapse
|
40
|
Iordanidou D, Zarganes-Tzitzikas T, Neochoritis CG, Dömling A, Lykakis IN. Application of Silver Nanoparticles in the Multicomponent Reaction Domain: A Combined Catalytic Reduction Methodology to Efficiently Access Potential Hypertension or Inflammation Inhibitors. ACS OMEGA 2018; 3:16005-16013. [PMID: 30533584 PMCID: PMC6276200 DOI: 10.1021/acsomega.8b02749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
The catalytic efficacy of silver nanoparticles was investigated toward the chemoselective reduction of nitro-tetrazole or amino acid-substituted derivatives into the corresponding amines in high isolated yields. This highly efficient protocol was thereafter applied toward the multicomponent reaction synthesis of heterocyclic dihydroquinoxalin-2-ones with high isolated yields. The reaction proceeds with low catalyst loading (0.8-1.4 mol %) and under mild catalytic conditions, a very good functional-group tolerance, and high yields and can be easily scaled up to more than 1 mmol of product. Thus, the present catalytic methodology highlights a useful synthetic application. Different molecules are designed and accordingly synthesized with the current protocol that could play the role of inhibitors of the soluble epoxide hydrolase, an important target for therapies against hypertension or inflammation.
Collapse
Affiliation(s)
- Domna Iordanidou
- Department
of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Tryfon Zarganes-Tzitzikas
- Department
of Pharmacy, Drug Design Group, University
of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Constantinos G. Neochoritis
- Department
of Pharmacy, Drug Design Group, University
of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Alexander Dömling
- Department
of Pharmacy, Drug Design Group, University
of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Ioannis N. Lykakis
- Department
of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| |
Collapse
|
41
|
Fidalgo J, Ruiz-Castañeda M, García-Herbosa G, Carbayo A, Jalón FA, Rodríguez AM, Manzano BR, Espino G. Versatile Rh- and Ir-Based Catalysts for CO2 Hydrogenation, Formic Acid Dehydrogenation, and Transfer Hydrogenation of Quinolines. Inorg Chem 2018; 57:14186-14198. [DOI: 10.1021/acs.inorgchem.8b02164] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jairo Fidalgo
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Margarita Ruiz-Castañeda
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, IRICA, Universidad de Castilla-La Mancha, Avda. Camilo J. Cela 10, 13071 Ciudad Real, Spain
| | - Gabriel García-Herbosa
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Arancha Carbayo
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Félix A. Jalón
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, IRICA, Universidad de Castilla-La Mancha, Avda. Camilo J. Cela 10, 13071 Ciudad Real, Spain
| | - Ana M. Rodríguez
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Escuela Técnica Superior de Ingenieros Industriales, Avda. C. J. Cela, 3, 13071 Ciudad Real, Spain
| | - Blanca R. Manzano
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, IRICA, Universidad de Castilla-La Mancha, Avda. Camilo J. Cela 10, 13071 Ciudad Real, Spain
| | - Gustavo Espino
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| |
Collapse
|
42
|
Xu X, Zhao H, Xu J, Chen C, Pan Y, Luo Z, Zhang Z, Li H, Xu L. Rhodium(III)-Catalyzed Oxidative Annulation of 2,2′-Bipyridine N-Oxides with Alkynes via Dual C–H Bond Activation. Org Lett 2018; 20:3843-3847. [DOI: 10.1021/acs.orglett.8b01434] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Haoqiang Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Jianbin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Changjun Chen
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yixiao Pan
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhenli Luo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zongyao Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Huanrong Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
43
|
Kanyiva KS, Horiuchi M, Shibata T. Metal-Free N-H/C-H Coupling for Efficient Asymmetric Synthesis of Chiral Dihydroquinoxalinones from Readily Available α-Amino Acids. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kyalo Stephen Kanyiva
- Global Center for Science and Engineering; School of Advanced Science and Engineering; Waseda University; Shinjuku 8555 Tokyo 169- Japan
| | - Masashi Horiuchi
- Department of Chemistry and Biochemistry; School of Advanced Science and Engineering; Waseda University; Shinjuku 8555 Tokyo 169- Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry; School of Advanced Science and Engineering; Waseda University; Shinjuku 8555 Tokyo 169- Japan
| |
Collapse
|
44
|
Matsui K, Maegawa Y, Waki M, Inagaki S, Yamamoto Y. Transfer hydrogenation of nitrogen heterocycles using a recyclable rhodium catalyst immobilized on bipyridine-periodic mesoporous organosilica. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02167d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transfer hydrogenation of unsaturated nitrogen heterocycles using a rhodium catalyst immobilized on bipyridine-periodic mesoporous organosilica (BPy-PMO) is described.
Collapse
Affiliation(s)
- Kazuma Matsui
- Department of Basic Medicinal Sciences
- Graduate School of Pharmaceutical Sciences
- Nagoya University
- Chikusa
- Japan
| | | | - Minoru Waki
- Toyota Central R&D Laboratories, Inc
- Nagakute
- Japan
| | | | - Yoshihiko Yamamoto
- Department of Basic Medicinal Sciences
- Graduate School of Pharmaceutical Sciences
- Nagoya University
- Chikusa
- Japan
| |
Collapse
|
45
|
Imanishi M, Sonoda M, Miyazato H, Sugimoto K, Akagawa M, Tanimori S. Sequential Synthesis, Olfactory Properties, and Biological Activity of Quinoxaline Derivatives. ACS OMEGA 2017; 2:1875-1885. [PMID: 30023648 PMCID: PMC6044855 DOI: 10.1021/acsomega.7b00124] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/20/2017] [Indexed: 06/08/2023]
Abstract
A simple, practical, and rapid access to quinoxalin-2-ones 1, 1,2,3,4-tetrahydroquinoxalines 2, quinoxalines 3, and quinoxalin-2(1H)-ones 4 has been achieved, based on the copper-catalyzed quinoxalinone formation of 2-haloanilines and amino acids followed by their reduction and oxidation. The olfactory properties and lipid accumulation inhibitory activity in cultured hepatocytes of the quinoxaline derivatives were also evaluated.
Collapse
Affiliation(s)
- Mia Imanishi
- Department
of Applied Biosciences, Graduate School of Life and Environmental
Sciences, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8241, Japan
| | - Motohiro Sonoda
- Department
of Applied Biosciences, Graduate School of Life and Environmental
Sciences, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8241, Japan
| | - Hironari Miyazato
- Research
and Development Center, Nagaoka Co., Ltd., 1-3-30 Itsukaichi, Ibaraki, Osaka 567-0005, Japan
| | - Keiichiro Sugimoto
- Research
and Development Center, Nagaoka Co., Ltd., 1-3-30 Itsukaichi, Ibaraki, Osaka 567-0005, Japan
| | - Mitsugu Akagawa
- Department
of Applied Biosciences, Graduate School of Life and Environmental
Sciences, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8241, Japan
| | - Shinji Tanimori
- Department
of Applied Biosciences, Graduate School of Life and Environmental
Sciences, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8241, Japan
| |
Collapse
|
46
|
Product Selectivity in Homogeneous Artificial Photosynthesis Using [(bpy)Rh(Cp*)X]n+-Based Catalysts. INORGANICS 2017. [DOI: 10.3390/inorganics5020035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Due to the limited amount of fossil energy carriers, the storage of solar energy in chemical bonds using artificial photosynthesis has been under intensive investigation within the last decades. As the understanding of the underlying working principle of these complex systems continuously grows, more focus will be placed on a catalyst design for highly selective product formation. Recent reports have shown that multifunctional photocatalysts can operate with high chemoselectivity, forming different catalysis products under appropriate reaction conditions. Within this context [(bpy)Rh(Cp*)X]n+-based catalysts are highly relevant examples for a detailed understanding of product selectivity in artificial photosynthesis since the identification of a number of possible reaction intermediates has already been achieved.
Collapse
|
47
|
Bromination of quinoxaline and derivatives: Effective synthesis of some new brominated quinoxalines. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
A safe and selective method for reduction of 2-nitrophenylacetic acid systems to N-aryl hydroxamic acids using continuous flow hydrogenation. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Cabrero-Antonino JR, Adam R, Junge K, Jackstell R, Beller M. Cobalt-catalysed transfer hydrogenation of quinolines and related heterocycles using formic acid under mild conditions. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00437k] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, transfer hydrogenation of quinolines and related heterocycles is performed with a non-noble metal based catalyst. [Co(BF4)2·6H2O] in combination with phosphine L1 catalyses selectively, the mild reduction of N-heteroarenes using formic acid as hydrogen donor.
Collapse
Affiliation(s)
| | - Rosa Adam
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rostock
- Germany
| |
Collapse
|
50
|
Wu CJ, Cao WX, Lei T, Li ZH, Meng QY, Yang XL, Chen B, Ramamurthy V, Tung CH, Wu LZ. A sustainable synthesis of 2-aryl-3-carboxylate indolines from N-aryl enamines under visible light irradiation. Chem Commun (Camb) 2017; 53:8320-8323. [DOI: 10.1039/c7cc04358a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
With visible light irradiation of a catalytic amount of Ir(ppy)3 at room temperature, a number of N-aryl enamines were transformed into their corresponding indoline products in good to excellent yields without requiring any extra additives.
Collapse
Affiliation(s)
- Cheng-Juan Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences
- the Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Wen-Xiao Cao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences
- the Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences
- the Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Zhi-Hua Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences
- the Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Qing-Yuan Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences
- the Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences
- the Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences
- the Chinese Academy of Sciences
- Beijing
- P. R. China
| | | | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences
- the Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences
- the Chinese Academy of Sciences
- Beijing
- P. R. China
| |
Collapse
|