1
|
Elsherbeni S, Melen RL, Pulis AP, Morrill LC. Accessing Highly Substituted Indoles via B(C 6F 5) 3-Catalyzed Secondary Alkyl Group Transfer. J Org Chem 2024; 89:4244-4248. [PMID: 38389441 PMCID: PMC10949240 DOI: 10.1021/acs.joc.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Herein, we report a synthetic method to access a range of highly substituted indoles via the B(C6F5)3-catalyzed transfer of 2° alkyl groups from amines. The transition-metal-free catalytic approach has been demonstrated across a broad range of indoles and amine 2° alkyl donors, including various substituents on both reacting components, to access useful C(3)-alkylated indole products. The alkyl transfer process can be performed using Schlenk line techniques in combination with commercially available B(C6F5)3·nH2O and solvents, which obviates the requirement for specialized equipment (e.g., glovebox).
Collapse
Affiliation(s)
- Salma
A. Elsherbeni
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rebecca L. Melen
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ, U.K.
| | | | - Louis C. Morrill
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
| |
Collapse
|
2
|
Cheng X, Wang L, Liu Y, Wan X, Xiang Z, Li R, Wan X. Molecular Iodine‐Catalysed Reductive Alkylation of Indoles: Late‐Stage Diversification for Bioactive Molecules. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xionglve Cheng
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Lili Wang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Yide Liu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Xiao Wan
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Zixin Xiang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Ruyi Li
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Xiaobing Wan
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Renai road 215123 Suzhou CHINA
| |
Collapse
|
3
|
Li J, Huang C, Li C. Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jianbin Li
- Department of Chemistry FRQNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| | - Chia‐Yu Huang
- Department of Chemistry FRQNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| | - Chao‐Jun Li
- Department of Chemistry FRQNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
4
|
Li J, Li CJ, Huang CY. Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. Angew Chem Int Ed Engl 2021; 61:e202112770. [PMID: 34780098 DOI: 10.1002/anie.202112770] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/12/2022]
Abstract
Conversion of carbonyl compounds, including aldehydes, ketones and carboxylic acids, into functionalized alkanes via deoxygenation would be highly desirable from a sustainability perspective and very enabling in chemical synthesis. This review covers the recent methodology development in carbonyl and carboxyl deoxygenative functionalizations, highlighting some typical and significant contributions in this field. These advances will be categorized based on types of bond formation, and in each part, selected examples will be discussed from their generalized mechanistic perspectives. Four summarized reactivity modes of aldehydes and ketones during the deoxygenation, namely, bis-electrophile, carbenoid, bis-nucleophile and alkyl radical, are presented, while the carboxylic acids are deoxygenated mainly via activated carbonyl or acetal intermediates.
Collapse
Affiliation(s)
| | - Chao-Jun Li
- McGill University, Chemistry, 801 Sherbrooke St. West, H3A0B8, Montreal, CANADA
| | | |
Collapse
|
5
|
Decarboxylative Addition of Propiolic Acids with Indoles to Synthesize Bis(indolyl)methane Derivatives with a Pd(II)/LA Catalyst. J Org Chem 2021; 86:8333-8350. [PMID: 34056902 DOI: 10.1021/acs.joc.1c00762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Exploring new protocols for efficient organic synthesis is crucial for pharmaceutical developments. The present work introduces a Pd(II)/LA-catalyzed (LA: Lewis acid) decarboxylative addition reaction for the synthesis of bis(indolyl)methane derivatives. The presence of Lewis acid such as Sc(OTf)3 triggered Pd(II)-catalyzed decarboxylative addition of propiolic acids with indoles to offer the bis(indolyl)methane derivatives in moderate to good yields, whereas neither Pd(II) nor Lewis acid alone was active for this synthesis. The catalytic efficiency of Pd(OAc)2 was highly dependent on the Lewis acidity of the added Lewis acid, that is, a stronger Lewis acid provided a higher yield of the bis(indolyl)methane derivatives. Meanwhile, this Pd(II)/LA-catalyzed decarboxylative addition reaction showed good tolerance toward versatile electron-rich or -deficient substituents on the indole skeleton and on the benzyl ring of propiolic acids. The studies on the in situ 1H NMR kinetics of this Pd(II)/Sc(III) catalysis disclosed the formation of a transient vinyl-Pd(II)/Sc(III) intermediate generated by the pyrrole addition to the alkynyl-Pd(II)/Sc(III) species after decarboxylation, which was scarcely observed before.
Collapse
|
6
|
Kiyokawa K, Urashima N, Minakata S. Tris(pentafluorophenyl)borane-Catalyzed Formal Cyanoalkylation of Indoles with Cyanohydrins. J Org Chem 2021; 86:8389-8401. [PMID: 34077225 DOI: 10.1021/acs.joc.1c00808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the significant achievements related to the C3 functionalization of indoles, cyanoalkylation reactions continue to remain rather limited. We herein report on the formal C3 cyanoalkylation of indoles with cyanohydrins in the presence of a tris(pentafluorophenyl)borane (B(C6F5)3) catalyst. It is noteworthy that cyanohydrins are used as a cyanoalkylating reagent in the present reaction, even though they are usually used as only a HCN source. Mechanistic investigations revealed the unique reactivity of the B(C6F5)3 catalyst in promoting the decomposition of a cyanohydrin by a Lewis acidic activation through the coordination of the cyano group to the boron center. In addition, a catalytic three-component reaction using indoles, aldehydes as a carbon unit, and acetone cyanohydrin that avoids the discrete preparation of each aldehyde-derived cyanohydrin is also reported. The developed methods provide straightforward, highly efficient, and atom-economic access to various types of synthetically useful indole-3-acetonitrile derivatives containing α-tertiary or quaternary carbon centers.
Collapse
Affiliation(s)
- Kensuke Kiyokawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Naruyo Urashima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Satoshi Minakata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Wang D, Sun J, Liu RZ, Wang Y, Yan CG. Diastereoselective Synthesis of Tetrahydrospiro[carbazole-1,3′-indolines] via an InBr3-Catalyzed Domino Diels–Alder Reaction. J Org Chem 2021; 86:5616-5629. [DOI: 10.1021/acs.joc.1c00103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daqian Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ru-Zhang Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yang Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
8
|
Sakai N, Shimada R, Ogiwara Y. Indium‐Catalyzed Deoxygenation of Sulfoxides with Hydrosilanes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Norio Sakai
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science (RIKADAI) Noda Chiba 278-8510 Japan
| | - Retsu Shimada
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science (RIKADAI) Noda Chiba 278-8510 Japan
| | - Yohei Ogiwara
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science (RIKADAI) Noda Chiba 278-8510 Japan
| |
Collapse
|
9
|
Tsuchimoto T, Johshita T, Sambai K, Saegusa N, Hayashi T, Tani T, Osano M. In(ONf) 3-catalyzed 7-membered carbon-ring-forming annulation of heteroarylindoles with α,β-unsaturated carbonyl compounds. Org Chem Front 2021. [DOI: 10.1039/d1qo00050k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We developed the two recipes, on the indium-catalyzed reductive and oxidative 7-membered carbon-ring-forming annulations of heteroarylindoles with a,β-unsaturated carbonyl compounds.
Collapse
Affiliation(s)
- Teruhisa Tsuchimoto
- Department of Applied Chemistry
- School of Science and Technology
- Meiji University
- Tama-ku
- Japan
| | - Takahiro Johshita
- Department of Applied Chemistry
- School of Science and Technology
- Meiji University
- Tama-ku
- Japan
| | - Kazuhiro Sambai
- Department of Applied Chemistry
- School of Science and Technology
- Meiji University
- Tama-ku
- Japan
| | - Naoki Saegusa
- Department of Applied Chemistry
- School of Science and Technology
- Meiji University
- Tama-ku
- Japan
| | - Takumi Hayashi
- Department of Applied Chemistry
- School of Science and Technology
- Meiji University
- Tama-ku
- Japan
| | - Tomohiro Tani
- Department of Applied Chemistry
- School of Science and Technology
- Meiji University
- Tama-ku
- Japan
| | - Mana Osano
- Department of Applied Chemistry
- School of Science and Technology
- Meiji University
- Tama-ku
- Japan
| |
Collapse
|
10
|
Lee SO, Choi J, Kook S, Lee SY. Lewis acid-catalyzed double addition of indoles to ketones: synthesis of bis(indolyl)methanes with all-carbon quaternary centers. Org Biomol Chem 2020; 18:9060-9064. [PMID: 33124627 DOI: 10.1039/d0ob01916j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report herein a Lewis acid-catalyzed nucleophilic double-addition of indoles to ketones under mild conditions. This process occurs with various ketones ranging from dialkyl ketones to diaryl ketones, thereby providing access to an array of bis(indolyl)methanes bearing all-carbon quaternary centers, including tetra-aryl carbon centers. The products can be transformed into bis(indole)-fused polycyclics and bis(indolyl)alkenes.
Collapse
Affiliation(s)
- Si On Lee
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| | - Jeongin Choi
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| | - Seunghoon Kook
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
11
|
Miao W, Ye P, Bai M, Yang Z, Duan S, Duan H, Wang X. Iodine-catalyzed efficient synthesis of xanthene/thioxanthene-indole derivatives under mild conditions. RSC Adv 2020; 10:25165-25169. [PMID: 35517437 PMCID: PMC9055358 DOI: 10.1039/d0ra05217e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 06/26/2020] [Indexed: 01/18/2023] Open
Abstract
An iodine-catalyzed nucleophilic substitution reaction of xanthen-9-ol and thioxanthen-9-ol with indoles has been developed, providing an efficient procedure for the synthesis of xanthene/thioxanthene-indole derivatives with good to excellent yields. This protocol offers several advantages, such as short reaction times, green solvent, operational simplicity, easily available catalyst and mild reaction conditions. Moreover, this method showed good tolerance of functional groups and a wide range of substrates.
Collapse
Affiliation(s)
- Weihang Miao
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University Mengzi Yunnan 661100 China
| | - Pingting Ye
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University Mengzi Yunnan 661100 China
| | - Mengjiao Bai
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University Mengzi Yunnan 661100 China
| | - Zhixin Yang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University Mengzi Yunnan 661100 China
| | - Suyue Duan
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University Mengzi Yunnan 661100 China
| | - Hengpan Duan
- International Academy of Targeted Therapeutics and Innovation, School of Pharmacy, Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Xuequan Wang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University Mengzi Yunnan 661100 China
| |
Collapse
|
12
|
Ferric Chloride Catalyzed 1,3-Rearrangement of (Phenoxymethyl)heteroarenes to (Heteroarylmethyl)phenols. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Barbero M, Dughera S, Alberti S, Ghigo G. A simple, direct synthesis of 3-vinylindoles from the carbocation-catalysed dehydrative cross-coupling of ketones and indoles. A combined experimental and computational study. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Miranda S, Gómez AM, López JC. Diversity-Oriented Synthetic Endeavors of Newly Designed Ferrier and Ferrier-Nicholas Systems Derived from 1-C-Alkynyl-2-deoxy-2-C-Methylene Pyranosides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Silvia Miranda
- Bioorganic Chemistry Department; Instituto Quimica Organica General (IQOG-CSIC); Juan de la Cierva 3 28006 Madrid Spain
| | - Ana M. Gómez
- Bioorganic Chemistry Department; Instituto Quimica Organica General (IQOG-CSIC); Juan de la Cierva 3 28006 Madrid Spain
| | - J. Cristóbal López
- Bioorganic Chemistry Department; Instituto Quimica Organica General (IQOG-CSIC); Juan de la Cierva 3 28006 Madrid Spain
| |
Collapse
|
15
|
Qiao C, Liu XF, Fu HC, Yang HP, Zhang ZB, He LN. Directly Bridging Indoles to 3,3′-Bisindolylmethanes by Using Carboxylic Acids and Hydrosilanes under Mild Conditions. Chem Asian J 2018; 13:2664-2670. [DOI: 10.1002/asia.201800766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/11/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Chang Qiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
| | - Xiao-Fang Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
| | - Hong-Chen Fu
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
| | - Hao-Peng Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
| | - Zhi-Bo Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 China
| |
Collapse
|
16
|
Indium-Catalyzed Annulation of o-Acylanilines with Alkoxyheteroarenes: Synthesis of Heteroaryl[b]quinolines and Subsequent Transformation to Cryptolepine Derivatives. Molecules 2018; 23:molecules23040838. [PMID: 29621195 PMCID: PMC6017974 DOI: 10.3390/molecules23040838] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/25/2018] [Accepted: 03/31/2018] [Indexed: 12/30/2022] Open
Abstract
We disclose herein the first synthetic method that is capable of offering heteroaryl[b]quinolines (HA[b]Qs) with structural diversity, which include tricyclic and tetracyclic structures with (benzo)thienyl, (benzo)furanyl, and indolyl rings. The target HA[b]Q is addressed by the annulation of o-acylanilines and MeO–heteroarenes with the aid of an indium Lewis acid that effectively works to make two different types of the N–C and C–C bonds in one batch. A series of indolo[3,2-b]quinolines prepared here can be subsequently transformed to structurally unprecedented cryptolepine derivatives. Mechanistic studies showed that the N–C bond formation is followed by the C–C bond formation. The indium-catalyzed annulation reaction thus starts with the nucleophilic attack of the NH2 group of o-acylanilines to the MeO-connected carbon atom of the heteroaryl ring in an SNAr fashion, and thereby the N–C bond is formed. The resulting intermediate then cyclizes to make the C–C bond through the nucleophilic attack of the heteroaryl-ring-based carbon atom to the carbonyl carbon atom, providing the HA[b]Q after aromatizing dehydration.
Collapse
|
17
|
One-pot two-step conversion of aromatic carboxylic acids and esters to aromatic aldehydes via indium-catalyzed reductive thioacetalization and desulfurization. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.10.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Cabrero-Antonino JR, Adam R, Junge K, Beller M. Cobalt-catalysed reductive C-H alkylation of indoles using carboxylic acids and molecular hydrogen. Chem Sci 2017; 8:6439-6450. [PMID: 29163930 PMCID: PMC5632795 DOI: 10.1039/c7sc02117h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/11/2017] [Indexed: 12/29/2022] Open
Abstract
The direct CH-alkylation of indoles using carboxylic acids is presented for the first time. The catalytic system based on the combination of Co(acac)3 and 1,1,1-tris(diphenylphosphinomethyl)-ethane (Triphos, L1), in the presence of Al(OTf)3 as co-catalyst, is able to perform the reductive alkylation of 2-methyl-1H-indole with a wide range of carboxylic acids. The utility of the protocol was further demonstrated through the C3 alkylation of several substituted indole derivatives using acetic, phenylacetic or diphenylacetic acids. In addition, a careful selection of the reaction conditions allowed to perform the selective C3 alkenylation of some indole derivatives. Moreover, the alkenylation of C2 position of 3-methyl-1H-indole was also possible. Control experiments indicate that the aldehyde, in situ formed from the carboxylic acid hydrogenation, plays a central role in the overall process. This new protocol enables the direct functionalization of indoles with readily available and stable carboxylic acids using a non-precious metal based catalyst and hydrogen as reductant.
Collapse
Affiliation(s)
- Jose R Cabrero-Antonino
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany .
| | - Rosa Adam
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany .
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany .
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany .
| |
Collapse
|
19
|
Yonekura K, Iketani Y, Sekine M, Tani T, Matsui F, Kamakura D, Tsuchimoto T. Zinc-Catalyzed Dehydrogenative Silylation of Indoles. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyohei Yonekura
- Department of Applied Chemistry,
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Yoshihiko Iketani
- Department of Applied Chemistry,
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Masaru Sekine
- Department of Applied Chemistry,
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Tomohiro Tani
- Department of Applied Chemistry,
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Fumiya Matsui
- Department of Applied Chemistry,
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Daiki Kamakura
- Department of Applied Chemistry,
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Teruhisa Tsuchimoto
- Department of Applied Chemistry,
School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| |
Collapse
|
20
|
Nishino K, Minato K, Miyazaki T, Ogiwara Y, Sakai N. Indium-Catalyzed Reductive Dithioacetalization of Carboxylic Acids with Dithiols: Scope, Limitations, and Application to Oxidative Desulfurization. J Org Chem 2017; 82:3659-3665. [DOI: 10.1021/acs.joc.7b00170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kota Nishino
- Department of Pure and Applied
Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan
| | - Kohei Minato
- Department of Pure and Applied
Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan
| | - Takahiro Miyazaki
- Department of Pure and Applied
Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan
| | - Yohei Ogiwara
- Department of Pure and Applied
Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan
| | - Norio Sakai
- Department of Pure and Applied
Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan
| |
Collapse
|
21
|
Ogiwara Y, Sakurai Y, Sakai N. Indium-catalyzed Reduction of a Nitroarene Using a Hydrosilane: A Selective Reduction Strategy for the Efficient Synthesis of Indoprofen. CHEM LETT 2017. [DOI: 10.1246/cl.161008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|