1
|
Feng D, Xu C, Wang W, Zhan H, Ge C, Huang P. Triphosgene and Triphenylphosphine Oxide-Mediated Cascade Heterocyclization of N-Acylated Anilines: One-Pot Synthesis of 2,4-Dichloroquinolines. J Org Chem 2023; 88:14610-14618. [PMID: 37818975 DOI: 10.1021/acs.joc.3c01617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A one-pot cascade chlorination/heterocyclization strategy has been developed for the synthesis of 2,4-dichloro-substituted quinolines from acylated anilines using triphosgene and triphenylphosphine oxide. Obviating the conventional harsh conditions of chlorination, synthetic useful quinolines with moderate to good yields were obtained through this reaction. The mechanism study exhibited that the formation of a β-enamine intermediate plays a vital role in the generation of the final product.
Collapse
Affiliation(s)
- Daming Feng
- College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, P. R. China
| | - Changlin Xu
- College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, P. R. China
| | - Wenhao Wang
- College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, P. R. China
| | - Haoming Zhan
- College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, P. R. China
| | - Chunhua Ge
- College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, P. R. China
| | - Peng Huang
- College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, P. R. China
- Judicial Authentication & Forensic Sciences Institute, Liaoning University, Shenyang, Liaoning 110036, P. R. China
| |
Collapse
|
2
|
Shao C, Xu T, Chen C, Yang Q, Tang C, Chen P, Lu M, Hu Z, Hu H, Zhang T. Copper-catalyzed selective C5-H bromination and difluoromethylation of 8-aminoquinoline amides using ethyl bromodifluoroacetate as the bifunctional reagent. RSC Adv 2023; 13:6993-6999. [PMID: 36874938 PMCID: PMC9977446 DOI: 10.1039/d3ra00088e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
A simple and effective method for the copper-catalyzed selective C5-H bromination and difluoromethylation of 8-aminoquinoline amides with ethyl bromodifluoroacetate as the bifunctional reagent was developed. The combination of cupric catalyst and alkaline additive results in a C5-bromination reaction, whereas cuprous catalyst combined with silver additive results in the C5-difluoromethylation reaction. This method has a broad substrate scope and allows for easy and convenient access to desired C5-functionalized quinolones with good to excellent yields.
Collapse
Affiliation(s)
- Changdong Shao
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Tianyi Xu
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Chen Chen
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Qionglin Yang
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Chao Tang
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Ping Chen
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Mingzhu Lu
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Zhengsong Hu
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Huayou Hu
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Tingting Zhang
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| |
Collapse
|
3
|
Manganese(II)/cobalt(II) co-catalyzed phosphorylation of 8-aminoquinoline amides to construct Csp2-P bond. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Tran C, Hamze A. Recent Developments in the Photochemical Synthesis of Functionalized Imidazopyridines. Molecules 2022; 27:molecules27113461. [PMID: 35684399 PMCID: PMC9182178 DOI: 10.3390/molecules27113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Imidazopyridines constitute one of the most important scaffolds in medicinal chemistry, as their skeleton could be found in a myriad of biologically active molecules. Although numerous strategies were elaborated for imidazopyridine preparation in the 2010s, novel eco-compatible synthetic approaches have emerged, conscious of climate change concerns. In this framework, photochemical methods have been promoted to conceive this heterocyclic motif over the last decade. This review covers the recently published works on synthesizing highly functionalized imidazopyridines by light induction.
Collapse
|
5
|
Zhang R, Wang J, Jin W, Zhang Y, Wang B, Xia Y, Liu C. Iodine‐Catalyzed Construction of Dihydrooxepines via 3‐Methyl‐5‐Pyrazolones C−H Oxidation/Functionalization of Quinolines Cascade. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology The Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region School of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Jun Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology The Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region School of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology The Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region School of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology The Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region School of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology The Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region School of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology The Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region School of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology The Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region School of Chemistry Xinjiang University Urumqi 830046 P. R. China
| |
Collapse
|
6
|
Ruthenium(II)-catalyzed para-selective C H difluoroalkylation of aromatic aldehydes and ketones using transient directing groups. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Qin H, Zhang J, Qiao K, Zhang D, He W, Liu C, Fang Z, Guo K. Palladium-Catalyzed C2-Regioselective Perfluoroalkylation of the Free (NH)-Heteroarenes. J Org Chem 2021; 86:2840-2853. [PMID: 33433213 DOI: 10.1021/acs.joc.0c02782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A highly regioselective and atom-efficient strategy for the construction of fused free (NH) heteroarenes through a palladium-catalyzed perfluoroalkyl insertion reaction has been accomplished. This protocol employed multiple iodofluoroalkanes as practical and available perfluoroalkyl sources to provide an operationally simple and versatile route for the synthesis of perfluoroalkylated indoles. Moreover, indoles without the assistance of guide groups were utilized as substrates, achieving C(sp2)-H site-selective functionalization of indoles in yields up to 95%. Furthermore, this protocol was also used for late-stage C2 perfluoroalkylation of bioactive compounds such as auxin, tryptophan, and melatonin analogues.
Collapse
Affiliation(s)
- Hong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Jie Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Kai Qiao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Dong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
8
|
Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Visible light photocatalysis in the late-stage functionalization of pharmaceutically relevant compounds. Chem Soc Rev 2020; 50:766-897. [PMID: 33350402 DOI: 10.1039/d0cs00493f] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The late stage functionalization (LSF) of complex biorelevant compounds is a powerful tool to speed up the identification of structure-activity relationships (SARs) and to optimize ADME profiles. To this end, visible-light photocatalysis offers unique opportunities to achieve smooth and clean functionalization of drugs by unlocking site-specific reactivities under generally mild reaction conditions. This review offers a critical assessment of current literature, pointing out the recent developments in the field while emphasizing the expected future progress and potential applications. Along with paragraphs discussing the visible-light photocatalytic synthetic protocols so far available for LSF of drugs and drug candidates, useful and readily accessible synoptic tables of such transformations, divided by functional groups, will be provided, thus enabling a useful, fast, and easy reference to them.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Remote C–H Functionalization of 8-Aminoquinoline Ring. Top Curr Chem (Cham) 2020; 378:42. [DOI: 10.1007/s41061-020-00303-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
|
10
|
Li Y, Neumann H, Beller M. Ruthenium-Catalyzed Site-Selective Trifluoromethylations and (Per)Fluoroalkylations of Anilines and Indoles. Chemistry 2020; 26:6784-6788. [PMID: 32216068 PMCID: PMC7317475 DOI: 10.1002/chem.202001439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 01/05/2023]
Abstract
Introducing (per)fluoroalkyl groups into arenes continues to be an interesting, but challenging area in organofluorine chemistry. We herein report an ortho-selective C-H perfluoroalkylation including trifluoromethylations of anilines and indoles without the need of protecting groups using Rf I and Rf Br as commercially available reagents. The availability and price of the starting materials and the inherent selectivity make this novel methodology attractive for the synthesis of diverse (per)fluoroalkylated building blocks, for example, for bioactive compounds and materials.
Collapse
Affiliation(s)
- Yang Li
- Leibniz-Institut für Katalyse e.V., RostockAlbert-Einstein-Straße 29a18059RostockGermany
- School of Environmental and Chemical EngineeringXi'an Polytechnic UniversityNo.19 Jinhua South Road710048Xi'anChina
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e.V., RostockAlbert-Einstein-Straße 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., RostockAlbert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
11
|
Israr M, Xiong H, Li Y, Bao H. Copper‐Catalyzed Enantioselective Cyano(Fluoro)Alkylation of Alkenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Muhammad Israr
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterUniversity of Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou, Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Haigen Xiong
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterUniversity of Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou, Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterUniversity of Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou, Fujian 350002 People's Republic of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterUniversity of Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou, Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
12
|
Affiliation(s)
- Quan Zheng
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chen‐Fu Liu
- College of Pharmaceutical ScienceGannan Medical University Ganzhou 341000 People's Republic of China
| | - Jie Chen
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Guo‐Wu Rao
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
13
|
Czyz ML, Weragoda GK, Horngren TH, Connell TU, Gomez D, O'Hair RAJ, Polyzos A. Photoexcited Pd(ii) auxiliaries enable light-induced control in C(sp 3)-H bond functionalisation. Chem Sci 2020; 11:2455-2463. [PMID: 34084410 PMCID: PMC8157331 DOI: 10.1039/c9sc05722f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Herein we report the photophysical and photochemical properties of palladacycle complexes derived from 8-aminoquinoline ligands, commonly used auxiliaries in C–H activation. Spectroscopic, electrochemical and computational studies reveal that visible light irradiation induces a mixed LLCT/MLCT charge transfer providing access to synthetically relevant Pd(iii)/Pd(iv) redox couples. The Pd(ii) complex undergoes photoinduced electron transfer with alkyl halides generating C(sp3)–H halogenation products rather than C–C bond adducts. Online photochemical ESI-MS analysis implicates participation of a mononuclear Pd(iii) species which promotes C–X bond formation via a distinct Pd(iii)/Pd(iv) pathway. To demonstrate the synthetic utility, we developed a general method for inert C(sp3)–H bond bromination, chlorination and iodination with alkyl halides. This new strategy in auxiliary-directed C–H activation provides predictable and controllable access to distinct reactivity pathways proceeding via Pd(iii)/Pd(iv) redox couples induced by visible light irradiation. Visible light irradiation of 8-aminoquinoline Pd(ii) complexes initiates photoinduced electron transfer with alkyl halides, affording C–H halogenation over C–C bond adducts. A method for inert C(sp3)–H bond halogenation (Br, Cl and I) is reported.![]()
Collapse
Affiliation(s)
- Milena L Czyz
- School of Chemistry, The University of Melbourne Parkville 3010 Victoria Australia
| | | | - Tyra H Horngren
- School of Chemistry, The University of Melbourne Parkville 3010 Victoria Australia
| | - Timothy U Connell
- School of Science, RMIT University Melbourne Victoria 3000 Australia
| | - Daniel Gomez
- School of Science, RMIT University Melbourne Victoria 3000 Australia
| | - Richard A J O'Hair
- School of Chemistry, The University of Melbourne Parkville 3010 Victoria Australia
| | - Anastasios Polyzos
- School of Chemistry, The University of Melbourne Parkville 3010 Victoria Australia .,CSIRO Manufacturing Research Way Clayton VIC 3168 Australia
| |
Collapse
|
14
|
Zhu L, Le L, Yan M, Au CT, Qiu R, Kambe N. Carbon-Carbon Bond Formation of Trifluoroacetyl Amides with Grignard Reagents via C(O)-CF 3 Bond Cleavage. J Org Chem 2019; 84:5635-5644. [PMID: 30950272 DOI: 10.1021/acs.joc.9b00583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reaction of trifluoroacetyl amides with Grignard reagent for the substitution of CF3 group with various alkyl or aryl groups is described. A variety of aryl, quinolin-8-yl, and (hetero)alkyl functional groups as well as F, Cl, and Br atoms are well tolerated. These moisture-stable and easily available trifluoroacetyl amides can be conveniently obtained and used as new versatile precursors for isocyanates. The control experiments show that the reaction proceeds via an isocyanate intermediate and/or alkoxide/amide dual anionic intermediate.
Collapse
Affiliation(s)
- Longzhi Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Liyuan Le
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Mingpan Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Chak-Tong Au
- College of Chemistry and Chemical Engineering , Hunan Institute of Engineering , Xiangtan 411104 , P. R. China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China.,Department of Applied Chemistry, Graduate School of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan
| |
Collapse
|
15
|
Xiong J, Liu Y. Transition‐Metal‐free C5, C7‐Dihalogenation and the Switchable C5 Halogenation of 8‐Hydroxyquinolines. ChemistrySelect 2019. [DOI: 10.1002/slct.201803965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jin Xiong
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
16
|
Fosu SC, Hambira CM, Chen AD, Fuchs JR, Nagib DA. Site-Selective C-H Functionalization of (Hetero)Arenes via Transient, Non-Symmetric Iodanes. Chem 2018; 5:417-428. [PMID: 31032461 DOI: 10.1016/j.chempr.2018.11.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A strategy for C-H functionalization of arenes and heteroarenes has been developed to allow site-selective incorporation of various anions, including Cl, Br, OMs, OTs, and OTf. This approach is enabled by in situ generation of reactive, non-symmetric iodanes by combining anions and bench-stable PhI(OAc)2. The utility of this mechanism is demonstrated via para-selective chlorination of medicinally relevant arenes, as well as site-selective C-H chlorination of heteroarenes. Spectroscopic, computational, and competition experiments describe the unique nature, reactivity, and selectivity of these transient, unsymmetrical iodanes.
Collapse
Affiliation(s)
- Stacy C Fosu
- The Ohio State University, Department of Chemistry and Biochemistry, Columbus, OH 43210, United States
| | - Chido M Hambira
- The Ohio State University, Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Columbus, OH 43210, United States
| | - Andrew D Chen
- The Ohio State University, Department of Chemistry and Biochemistry, Columbus, OH 43210, United States
| | - James R Fuchs
- The Ohio State University, Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Columbus, OH 43210, United States
| | - David A Nagib
- The Ohio State University, Department of Chemistry and Biochemistry, Columbus, OH 43210, United States.,Lead contact
| |
Collapse
|
17
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1518] [Impact Index Per Article: 216.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
18
|
A para
-C-H Functionalization of Aniline Derivatives via In situ Generated Bulky Hypervalent Iodinium Reagents. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801058] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Yu Q, Yang Y, Wan JP, Liu Y. Copper-Catalyzed C5–H Sulfenylation of Unprotected 8-Aminoquinolines Using Sulfonyl Hydrazides. J Org Chem 2018; 83:11385-11391. [DOI: 10.1021/acs.joc.8b01658] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qing Yu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Yiming Yang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| |
Collapse
|
20
|
Affiliation(s)
- Bhuttu Khan
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Himangsu Sekhar Dutta
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Dipankar Koley
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow 226031 India
| |
Collapse
|
21
|
Aribi F, Panossian A, Vors JP, Pazenok S, Leroux FR. 2,4-Bis(fluoroalkyl)quinoline-3-carboxylates as Tools for the Development of Potential Agrochemical Ingredients. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Fallia Aribi
- Université de Strasbourg; Université de Haute-Alsace; CNRS; LIMA UMR 7042; 67000 Strasbourg France
- Joint Laboratory Unistra-CNRS-Bayer (Chemistry of Organofluorine Compounds); France
| | - Armen Panossian
- Université de Strasbourg; Université de Haute-Alsace; CNRS; LIMA UMR 7042; 67000 Strasbourg France
- Joint Laboratory Unistra-CNRS-Bayer (Chemistry of Organofluorine Compounds); France
| | - Jean-Pierre Vors
- Joint Laboratory Unistra-CNRS-Bayer (Chemistry of Organofluorine Compounds); France
- Bayer S.A.S.; 14 Impasse Pierre Baizet, BP99163 69263 Lyon CEDEX 09 France
| | - Sergii Pazenok
- Joint Laboratory Unistra-CNRS-Bayer (Chemistry of Organofluorine Compounds); France
- Bayer AG; Alfred-Nobel-Strasse 50 40789 Monheim Germany
| | - Frédéric R. Leroux
- Université de Strasbourg; Université de Haute-Alsace; CNRS; LIMA UMR 7042; 67000 Strasbourg France
- Joint Laboratory Unistra-CNRS-Bayer (Chemistry of Organofluorine Compounds); France
| |
Collapse
|
22
|
Pan Z, Fan Z, Lu B, Cheng J. Halogen-Bond-Promoted α-C−H Amination of Ethers for the Synthesis of Hemiaminal Ethers. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhangjin Pan
- College of Chemistry; Fuzhou University; 2 Xueyuan Road Fuzhou 350116 People's Republic of China, Fax: (+86)-591-2286-6227
| | - Zhenwei Fan
- College of Chemistry; Fuzhou University; 2 Xueyuan Road Fuzhou 350116 People's Republic of China, Fax: (+86)-591-2286-6227
| | - Beili Lu
- College of Material Engineering; Fujian Agriculture and Forestry University; Fuzhou 350002 People's Republic of China
| | - Jiajia Cheng
- College of Chemistry; Fuzhou University; 2 Xueyuan Road Fuzhou 350116 People's Republic of China, Fax: (+86)-591-2286-6227
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou, Fujian 350002 People's Republic of China
| |
Collapse
|
23
|
Zhang D, Qiao K, Hua J, Liu Z, Qi H, Yang Z, Zhu N, Fang Z, Guo K. Preparation of fluoroalkoxy or fluorophenoxy substituted N-heterocycles from heterocyclic N-oxides and polyfluoroalcohols. Org Chem Front 2018. [DOI: 10.1039/c8qo00499d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel and efficient approach to introduce fluorine-containing groups into N-heterocycles was reported.
Collapse
Affiliation(s)
- Dong Zhang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Kai Qiao
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhuang Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Hao Qi
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhao Yang
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
24
|
Samanta S, Ravi C, Rao SN, Joshi A, Adimurthy S. Visible-light-promoted selective C–H amination of heteroarenes with heteroaromatic amines under metal-free conditions. Org Biomol Chem 2017; 15:9590-9594. [DOI: 10.1039/c7ob02504a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The regioselective C–H amination of quinoline amides (C5) and imidazopyridines (C3) under transition-metal-free conditions at room temperature with a high degree of functional group tolerance is reported.
Collapse
Affiliation(s)
- Supravat Samanta
- Academy of Scientific & Innovative Research
- CSIR-Central Salt & Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
| | - Chitrakar Ravi
- Academy of Scientific & Innovative Research
- CSIR-Central Salt & Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
| | - Sadu Nageswara Rao
- Academy of Scientific & Innovative Research
- CSIR-Central Salt & Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
| | - Abhisek Joshi
- Academy of Scientific & Innovative Research
- CSIR-Central Salt & Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
| | - Subbarayappa Adimurthy
- Academy of Scientific & Innovative Research
- CSIR-Central Salt & Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
| |
Collapse
|