1
|
Brusa A, Iapadre D, Casacchia ME, Carioscia A, Giorgianni G, Magagnano G, Pesciaioli F, Carlone A. Acetaldehyde in the Enders triple cascade reaction via acetaldehyde dimethyl acetal. Beilstein J Org Chem 2023; 19:1243-1250. [PMID: 37674523 PMCID: PMC10477997 DOI: 10.3762/bjoc.19.92] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Asymmetric organocatalyzed multicomponent reactions represent an important toolbox in the field of organic synthesis to build complex scaffolds starting from simple starting materials. The Enders three-component cascade reaction was a cornerstone in the field and a plethora of organocatalyzed cascade reactions followed. However, acetaldehyde was not shown as a successful reaction partner, probably because of its high reactivity. Herein, we report the Enders-type cascade reaction using acetaldehyde dimethyl acetal, as a masked form of acetaldehyde. This strategy directly converts acetaldehyde, nitroalkenes and enals into stereochemically dense cyclohexenals in good yield and excellent enantioselectivity.
Collapse
Affiliation(s)
- Alessandro Brusa
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100, L’Aquila, Italy
| | - Debora Iapadre
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100, L’Aquila, Italy
| | - Maria Edith Casacchia
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100, L’Aquila, Italy
- IUSS Scuola Universitaria Superiore di Pavia, Palazzo del Broletto, Piazza della Vittoria, 15, 27100, Pavia, Italy
| | - Alessio Carioscia
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100, L’Aquila, Italy
| | - Giuliana Giorgianni
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100, L’Aquila, Italy
| | - Giandomenico Magagnano
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100, L’Aquila, Italy
| | - Fabio Pesciaioli
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100, L’Aquila, Italy
| | - Armando Carlone
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100, L’Aquila, Italy
- INSTM, Consorzio Nazionale per la Scienza e Tecnologia dei Materiali, RU L’Aquila, Italy
| |
Collapse
|
2
|
A cascade catalytic system of photocatalytic oxidation based on Cu@PCN-222(Ni) and enzyme catalysis for the synthesis of chalcone compounds in one pot. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Yu Y, Lin RD, Yao Y, Shi ML, Lu WF, Wang N, Yu XQ. Development of a Metal- and Oxidant-Free Enzyme–Photocatalyst Hybrid System for Highly Efficient C-3 Acylation Reactions of Indoles with Aldehydes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ru-De Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yao Yao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ming-Liang Shi
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Wei-Fan Lu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Na Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
4
|
Shaikh S, Ramana MMV. Lipase-catalysed one-pot synthesis of thiazole-based Betti bases and their evaluation as potential cholinesterase inhibitors. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04441-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Wang Y, Wang N. Hydrolase-Catalyzed Promiscuous Reactions and Applications in Organic Synthesis. Mol Biotechnol 2021. [DOI: 10.5772/intechopen.89918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The potential of biocatalysis becomes increasingly recognized as an efficient and green tool for modern organic synthesis. Biocatalytic promiscuity, a new frontier extended the use of enzymes in organic synthesis, has attracted much attention and expanded rapidly in the past decade. It focuses on the enzyme catalytic activities with unnatural substrates and alternative chemical transformations. Exploiting enzyme catalytic unconventional reactions might lead to improvements in existing catalysts and provide novel synthesis pathways that are currently not available. Among these enzymes, hydrolase (such as lipase, protease, acylase) undoubtedly has received special attention since they display remarkable activities for some unexpected reactions such as aldol reaction and other novel carbon-carbon and carbon-heteroatom bond-forming reactions. This chapter introduces the recent progress in hydrolase catalytic unconventional reactions and application in organic synthesis. Some important examples of hydrolase catalytic unconventional reactions in addition reactions are reviewed, highlighting the catalytic promiscuity of hydrolases focuses on aldol reaction, Michael addition, and multicomponent reactions.
Collapse
|
6
|
Yang ZJ, Gong QT, Yu Y, Lu WF, Wu ZN, Wang N, Yu XQ. Fast and high-efficiency synthesis of 2-substituted benzothiazoles via combining enzyme catalysis and photoredox catalysis in one-pot. Bioorg Chem 2020; 107:104607. [PMID: 33450543 DOI: 10.1016/j.bioorg.2020.104607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/28/2023]
Abstract
An efficient and green method, combining enzymatic and visible-light catalysis for synthesis of the widely applicable 2-substituted benzothiazoles, has been developed. This method features a relay catalysis protocol consisting of biocatalytic promiscuity and visible-light-induced subsequent oxidization of 2-phenyl benzothiazolines. The whole reaction process is very high-efficiency, achieving 99% yield in just 10 min, under an air atmosphere, nearly 100% atomic utilization, and the 2-substituted benzothiazole products were obtained in good to excellent yields with a wide range of substrates. This reaction is the other example of combining the non-natural catalytic activity of hydrolases with visible-light catalysis for organic synthesis and the catalytic system does not require additional oxidants or metals, which is good for the environment.
Collapse
Affiliation(s)
- Zeng-Jie Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Qing-Tian Gong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Yuan Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Wei-Fan Lu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Zhe-Ning Wu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Na Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
7
|
Yu Y, Zhang W, Gong QT, Liu YH, Yang ZJ, He WX, Wang N, Yu XQ. Enzyme-catalysed one-pot synthesis of 4H-pyrimido[2,1-b] benzothiazoles and their application in subcellular imaging. J Biotechnol 2020; 324:91-98. [PMID: 33010308 DOI: 10.1016/j.jbiotec.2020.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Enzymes, which provide more efficient and eco-friendly strategies for various functional molecules' construction than traditional chemo-catalysts, were utilized for the synthesis of 4H-pyrimido[2,1-b] benzothiazole derivatives. Reported herein is a trypsin-catalysed three- component Biginelli reaction of aldehyde, β-ketoester and 2-amino benzothiazole in one pot, affording a streamlined pathway to diverse ring-fused pyrimidines. In addition to using commercially available aromatic aldehydes as substrates, acetaldehyde, the chemical liquid with rather low boiling point and difficult to handle above room temperature, is utilized to further extend the range of substrates. It was verified that most of the tested substrates exhibited satisfactory reactivity. In addition, several substrates indicated AIE (Aggregation-Induced Emission) property and have been investigated as potential biomarkers.
Collapse
Affiliation(s)
- Yuan Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Wei Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Qing-Tian Gong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Zeng-Jie Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Wei-Xun He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Na Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
8
|
Yu Y, Lu WF, Yang ZJ, Wang N, Yu XQ. Combining photo-redox and enzyme catalysis for the synthesis of 4H-pyrimido[2,1-b] benzothiazole derivatives in one pot. Bioorg Chem 2020; 107:104534. [PMID: 33339664 DOI: 10.1016/j.bioorg.2020.104534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
A novel strategy combining visible-light and enzyme catalysis in one pot for the synthesis of 4H-pyrimido[2,1-b] benzothiazole derivatives from alcohols is described for the first time. Fourteen 4H-pyrimido[2,1-b] benzothiazole derivatives were prepared with yields of up to 98% under mild reaction conditions by a simple operation. The photoorgano catalyst rose Bengal (rB) was employed to oxyfunctionalise alcohols to aldehydes. Compared with aldehydes, alcohols with more stable properties and lower cost, thus we used photocatalysis to oxidize alcohols into aldehydes. Next, the enzyme was used to further catalyze the reaction of Biginelli to produce the target product of 4H-pyrimidine [2,1-b] benzothiazole. Experimental results show that this method provides a more efficient and eco-friendly strategy for the synthesis of 4H-pyrimido[2,1-b] benzothiazole derivatives.
Collapse
Affiliation(s)
- Yuan Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Wei-Fan Lu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Zeng-Jie Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Na Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
9
|
Yu Y, Gong QT, Lu WF, Liu YH, Yang ZJ, Wang N, Yu XQ. Aggregation-Induced Emission Probes for Specific Turn-On Quantification of Bovine Serum Albumin. ACS APPLIED BIO MATERIALS 2020; 3:5193-5201. [PMID: 35021694 DOI: 10.1021/acsabm.0c00589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of aggregation-induced emission (AIE) fluorescence probes, coined 4H-pyrimido[2,1-b]benzothiazole derivatives, has been synthesized by Biginelli reactions. Utilizing spectroscopic techniques, their photophysical properties have been comprehensively investigated in working environment both in vitro and in vivo. Density functional theory (DFT) calculations were performed to better understand the mechanism of these probes. The interactions between 4H-pyrimido[2,1-b]benzothiazoles with different substituents and bovine serum albumin (BSA) were analyzed using UV-vis and fluorescence spectroscopy, synchronous fluorescence, and docking analysis. Studies found that 4H-pyrimido[2,1-b]benzothiazole could bind to bovine serum albumin (BSA) through a hydrogen bond and hydrophobic interactions, resulting in enhancement of fluorescence emission of probes 1a-6f and fluorescence quenching of BSA. Combined with cell imaging experiments, these provide information on potential effects of benzothiazoles on disease treatment.
Collapse
Affiliation(s)
- Yuan Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qing-Tian Gong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Wei-Fan Lu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zeng-Jie Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Na Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
10
|
Yang ZJ, Gong QT, Wang Y, Yu Y, Liu YH, Wang N, Yu XQ. Biocatalytic tandem multicomponent reactions for one-pot synthesis of 2-Amino-4H-Pyran library and in vitro biological evaluation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Le Pham NS, Shin H, Kang JY, Sohn JH. Oxidative Dehydrosulfurative Cross-Coupling of 3,4-Dihydropyrimidine-2-thiones with Alkynes for Access to 2-Alkynylpyrimidines. J Org Chem 2020; 85:5087-5096. [PMID: 32159960 DOI: 10.1021/acs.joc.0c00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A reaction method is described for the one-step synthesis of 2-alkynylpyrimidines from 3,4-dihydropyrimidin-1H-2-thiones (DHPMs) via dehydrosulfurative Sonogashira cross-coupling with concomitant oxidative dehydrogenation using a Pd/Cu catalytic system. Together with the ready availability of DHPMs possessing various substituents at the C4-C6 positions, this transformation offers rapid and general access to diverse 2-alkynylpyrimidine derivatives.
Collapse
Affiliation(s)
- Ngoc Son Le Pham
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyunik Shin
- Yonsung Fine Chemicals R&D Center, Suwon 16675, Republic of Korea
| | - Jun Yong Kang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - Jeong-Hun Sohn
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
12
|
Yang ZJ, Wang N, He WX, Yu Y, Gong QT, Yu XQ. Lipase-Catalyzed Highly Efficient 1,6-Conjugated Addition for Synthesis of Triarylmethanes. Catal Letters 2019. [DOI: 10.1007/s10562-019-03043-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Gu B, E Hu Z, Yang Z, Li J, Zhou Z, Wang N, Yu X. Probing the Mechanism of CAL‐B‐Catalyzed aza‐Michael Addition of Aniline Compounds with Acrylates Using Mutation and Molecular Docking Simulations. ChemistrySelect 2019. [DOI: 10.1002/slct.201900112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Bo Gu
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Zu− E Hu
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Zeng‐Jie Yang
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Jun Li
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Zi‐Wen Zhou
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Na Wang
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Xiao‐Qi Yu
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 People's Republic of China
| |
Collapse
|
14
|
Dwivedee BP, Soni S, Sharma M, Bhaumik J, Laha JK, Banerjee UC. Promiscuity of Lipase-Catalyzed Reactions for Organic Synthesis: A Recent Update. ChemistrySelect 2018. [DOI: 10.1002/slct.201702954] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bharat P. Dwivedee
- Department of Pharmaceutical Technology (Biotechnology); National Institute of Pharmaceutical Education and Research; S.A.S. Nagar 160062 Punjab India
| | - Surbhi Soni
- Department of Biotechnology; National Institute of Pharmaceutical Education and Research, S.A.S. Nagar; 160062 Punjab India
| | - Misha Sharma
- Department of Pharmaceutical Technology (Process Chemistry); National Institute of Pharmaceutical Education and Research; S.A.S. Nagar 160062 Punjab India
| | - Jayeeta Bhaumik
- Department of Pharmaceutical Technology (Biotechnology); National Institute of Pharmaceutical Education and Research; S.A.S. Nagar 160062 Punjab India
| | - Joydev K. Laha
- Department of Pharmaceutical Technology (Process Chemistry); National Institute of Pharmaceutical Education and Research; S.A.S. Nagar 160062 Punjab India
| | - Uttam C. Banerjee
- Department of Pharmaceutical Technology (Biotechnology); National Institute of Pharmaceutical Education and Research; S.A.S. Nagar 160062 Punjab India
| |
Collapse
|
15
|
Xie ZB, Le ZG, Fu LH, Lan J, Liu LS, Li HX. Biginelli Reaction of Aliphatic Aldehydes Catalyzed by α-Chymotrypsin: One-Pot Biocatalytic Synthesis of Dihydropyrimidinones. HETEROCYCLES 2018. [DOI: 10.3987/com-18-13977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2017; 34:1340-1344. [PMID: 29090285 DOI: 10.1039/c7np90044a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as tryptorubin A isolated from a Streptomyces species.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, UKG12 8QQ.
| | | |
Collapse
|