1
|
Yang DS, Xiang JC, Wu AX. Recent advances in the synthesis of N-heterocycles from α-amino acids mediated by iodine. Chem Commun (Camb) 2024. [PMID: 39564680 DOI: 10.1039/d4cc05285d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The synthesis of N-heterocycles has received extensive attention from scientists considering their important role in organic synthesis, pharmaceuticals, and materials chemistry. α-Amino acids (α-AAs), both natural and non-natural, are structurally diverse, containing basic amino groups, acidic carboxyl groups, and various side-chain R groups in a single molecule. Given their structural properties and wide range of sources, they have undoubtedly become suitable synthetic building blocks for organic synthesis. However, conventional transformations of amino acids (AAs) focus on the amino and carboxyl groups independently. Conversions for these two prominent functional groups generally do not affect both their alpha positions and their branched chains. Over the past decade, with the application of iodine (I2) in the field of heterocyclic synthesis, the use of α-AAs for diverse construction of complex N-heterocyclic structures has gained increasing attention. This synthetic strategy relies on the I2-mediated Strecker degradation, which introduces α-AAs as electrophilic carbon species into the domino reaction sequence via decarboxylation and deamination processes. In this review, we have summarized recent advances in this emerging area.
Collapse
Affiliation(s)
- Dong-Sheng Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Bio-sensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Jia-Chen Xiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Bio-sensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
2
|
Ma JT, Chen T, Chen XL, Zhou Y, Yu ZC, Zhuang SY, Wu YD, Xiang JC, Wu AX. Aniline assisted dimerization of phenylalanines: convenient synthesis of 2-aroyl-3-arylquinoline in an I 2-DMSO system. Org Biomol Chem 2023; 21:2091-2095. [PMID: 36809309 DOI: 10.1039/d2ob02283d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We herein report an efficient synthesis of 2-aroyl-3-arylquinolines from phenylalanines and anilines. The mechanism involves I2-mediated Strecker degradation enabled catabolism and reconstruction of amino acids and a cascade aniline-assisted annulation. Both DMSO and water act as oxygen sources in this convenient protocol.
Collapse
Affiliation(s)
- Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Ting Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Xiang-Long Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Zhi-Cheng Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Shi-Yi Zhuang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Jia-Chen Xiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
3
|
Zhu YP, Zhou Y, Li WJ, Liu FR, Wang WC, Hao KY, Chao BY, Shi TR, Wu AX, Sun YY. Iodine-Promoted Oxidative Cyclization of Methyl Azaarenes and α-Amino Ketones for One-Pot Synthesis of 2-Azaaryl-5-aryl Oxazoles. J Org Chem 2022; 87:12460-12469. [PMID: 36067376 DOI: 10.1021/acs.joc.2c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A high efficiency protocol was developed for the synthesis of 2,5-disubstituted oxazoles via iodine-promoted oxidative domino cyclization. These reactions were performed with readily available methyl azaarenes and α-amino ketones under metal-free conditions. This protocol is a simple method with high functional group compatibility, a wide range of substrates, and excellent yield, providing a new way to synthesize azaarene-attached oxazoles.
Collapse
Affiliation(s)
- Yan-Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| | - Yu Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| | - Wen-Juan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| | - Fu-Rao Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| | - Wen-Cheng Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| | - Kai-Yan Hao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| | - Bing-Yu Chao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| | - Tian-Ru Shi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Hubei Wuhan, 430079, P. R. China
| | - Yuan-Yuan Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| |
Collapse
|
4
|
Shinde S, Inamdar S, Shinde M, Kushwaha N, Obakachi V, Girase P, Kushwaha B, Dhawan S, Kumar V, Karpoormath R. Recent advances and approaches in the metal-free synthesis of 1,3-oxazole derivatives. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Suraj Shinde
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Shaukatali Inamdar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Mahadev Shinde
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Narvadeshwar Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Vincent Obakachi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Pankaj Girase
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Babita Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Vishal Kumar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| |
Collapse
|
5
|
Samanta SK, Sarkar R, Sengupta U, Das S, Ganguly D, Hasija A, Chopra D, Bera MK. A direct entry to polycyclic quinoxaline derivatives via I 2-DMSO mediated oxidative decarboxylation of α-amino acids and the subsequent Pictet-Spengler cyclization reaction. Org Biomol Chem 2022; 20:4650-4658. [PMID: 35612282 DOI: 10.1039/d2ob00503d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A facile and highly efficient iodine-promoted strategy has been delineated for the synthesis of indolo and pyrrolo[1,2-a]quinoxaline derivatives via an oxidative Pictet-Spengler type amino cyclo-annulation reaction using ∝-amino acids as aldehyde surrogates. The concomitant benzylic oxidation and the compatibility of different starting materials under standard conditions made the current method versatile. The salient features of the protocol such as readily available starting materials, inexpensive promoters, environmental benignity, broad substrate scope, scalability, and good to excellent yield make the method more attractive to practitioners of organic synthesis.
Collapse
Affiliation(s)
- Surya Kanta Samanta
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah 711 103, WB, India.
| | - Rumpa Sarkar
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah 711 103, WB, India.
| | - Utsav Sengupta
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah 711 103, WB, India.
| | - Sayan Das
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, India
| | - Debabani Ganguly
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, India
| | - Avantika Hasija
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Deepak Chopra
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Mrinal K Bera
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah 711 103, WB, India.
| |
Collapse
|
6
|
Liu L, Zhang J. KI/K2S2O8 Mediated Cascade C(sp3)‐H/C(sp2)‐H Thiolation for the Synthesis of Multi‐Substituted Thiazoles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lang Liu
- Northwest University College of Chemistry & Materials Science Xuefu avenue 710127 xi'an CHINA
| | - Jun Zhang
- Northwest University College of Chemistry & Materials Science Xuefu avenue 710069 Xi'an CHINA
| |
Collapse
|
7
|
Chen L, Xuchen X, Wang F, Yang Y, Deng G, Liu Y, Liang Y. Double C-S bond formation via multiple Csp 3-H bond cleavage: synthesis of 4-hydroxythiazoles from amides and elemental sulfur under metal-free conditions. Org Biomol Chem 2021; 19:10068-10072. [PMID: 34762083 DOI: 10.1039/d1ob01989a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel and efficient approach for the synthesis of 4-hydroxythiazoles from amides and elemental sulfur has been developed. In the presence of P2O5, DMSO and HMPA, this metal-free protocol proceeds smoothly and tolerates a spectrum of functional groups. Furthermore, this strategy involves the process of double Csp3-S bond formation through the cleavage of multiple Csp3-H bonds for the first time.
Collapse
Affiliation(s)
- Liang Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China. .,Huaihua Normal College, Huaihua 418008, China
| | - Xinyu Xuchen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Fei Wang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China. .,Ministry of Education Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yilin Liu
- Institute of Organic Synthesis, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China.
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
8
|
Ma JT, Wang LS, Chai Z, Chen XF, Tang BC, Chen XL, He C, Wu YD, Wu AX. Access to 2-arylquinazolines via catabolism/reconstruction of amino acids with the insertion of dimethyl sulfoxide. Chem Commun (Camb) 2021; 57:5414-5417. [PMID: 33949486 DOI: 10.1039/d1cc00623a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quinazoline skeletons are synthesized by amino acid catabolism/reconstruction combined with the insertion/cyclization of dimethyl sulfoxide for the first time. The amino acid acts as a carbon and nitrogen source through HI-mediated catabolism and is then reconstructed using aromatic amines and dimethyl sulfoxide (DMSO) as a one-carbon synthon. This protocol is of great significance for the further study of the conversion of amino acids.
Collapse
Affiliation(s)
- Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Zhi Chai
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Xin-Feng Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Bo-Cheng Tang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Xiang-Long Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Cai He
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
9
|
Xia Y, Huang H, Hu W, Deng GJ. NH 4I-promoted oxidative formation of benzothiazoles and thiazoles from arylacetic acids and phenylalanines with elemental sulfur. Org Biomol Chem 2021; 19:5108-5113. [PMID: 34009226 DOI: 10.1039/d1ob00671a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A NH4I/K3PO4-based catalytic system has been established to enable oxidative formation of thiazole compounds from arylacetic acids and phenylalanines with elemental sulfur. While the three-component reaction of anilines or β-naphthylamines with arylacetic acids and elemental sulfur affords benzo[2,1-d]thiazoles and naphtho[2,1-d]thiazoles, the annulation of phenylalanines with elemental sulfur produces 2-benzyl and 2-benzoylthiazoles. This work well complements previous three-component annulations of benzothiazoles from other coupling partners.
Collapse
Affiliation(s)
- Yujia Xia
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Wei Hu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
10
|
Zhao MN, Ning GW, Yang DS, Fan MJ, Zhang S, Gao P, Zhao LF. Iron-Catalyzed Cycloaddition of Amides and 2,3-Diaryl-2 H-azirines To Access Oxazoles via C-N Bond Cleavage. J Org Chem 2021; 86:2957-2964. [PMID: 33443426 DOI: 10.1021/acs.joc.0c02843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel and efficient iron-catalyzed cycloaddition reaction using readily available 2,3-diaryl-2H-azirines and primary amides is reported. A wide range of trisubstituted oxazoles could be achieved in good yields with good functional group compatibility. In this transformation, two C-N bonds were cleaed and new C-N and C-O bonds were formed.
Collapse
Affiliation(s)
- Mi-Na Zhao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Gui-Wan Ning
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - De-Suo Yang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Ming-Jin Fan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Sheng Zhang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Peng Gao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Li-Fang Zhao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| |
Collapse
|
11
|
Dhawan S, Kumar V, Girase PS, Mokoena S, Karpoormath R. Recent Progress in Iodine‐Catalysed C−O/C−N Bond Formation of 1,3‐Oxazoles: A Comprehensive Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202003969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sanjeev Dhawan
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Vishal Kumar
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Pankaj S. Girase
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Sithabile Mokoena
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| |
Collapse
|
12
|
Liu J, Xie Y, Yang Q, Huang N, Wang L. Ugi Four-Component Reaction Based on the in situ Capture of Amines and Subsequent Modification Tandem Cyclization Reaction: "One-Pot" Synthesis of Six- and Seven-Membered Heterocycles. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Zhang H, Wang H, Jiang Y, Cao F, Gao W, Zhu L, Yang Y, Wang X, Wang Y, Chen J, Feng Y, Deng X, Lu Y, Hu X, Li X, Zhang J, Shi T, Wang Z. Recent Advances in Iodine-Promoted C-S/N-S Bonds Formation. Chemistry 2020; 26:17289-17317. [PMID: 32470225 DOI: 10.1002/chem.202001414] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/27/2020] [Indexed: 12/19/2022]
Abstract
Sulfur-containing scaffold, as a ubiquitous structural motif, has been frequently used in natural products, bioactive chemicals and pharmaceuticals, particularly C-S/N-S bonds are indispensable in many biological important compounds and pharmaceuticals. Development of mild and general methods for C-S/N-S bonds formation has great significance in modern research. Iodine and its derivatives have been recognized as inexpensive, environmentally benign and easy-handled catalysts or reagents to promote the construction of C-S/N-S bonds under mild reaction conditions, with good regioselectivities and broad substrate scope. Especially based on this, several new strategies, such as oxidation relay strategy, have been greatly developed and accelerated the advancement of this field. This review focuses on recent advances in iodine and its derivatives promoted hybridized C-S/N-S bonds formation. The features and mechanisms of corresponding reactions are summarized and the results of some cases are compared with those of previous reports. In addition, the future of this domain is discussed.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Huihong Wang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yi Jiang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Fei Cao
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Weiwei Gao
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Longqing Zhu
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Yuhang Yang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Yongqiang Wang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Jinhong Chen
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Yiyue Feng
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Xuemei Deng
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Yingmei Lu
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Xiangxiang Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Juan Zhang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P. R. China.,State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
14
|
Facile synthesis of 1,3,4-oxadiazoles via iodine promoted oxidative annulation of methyl-azaheteroarenes and hydrazides. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Geng X, Wang C, Huang C, Bao Y, Zhao P, Zhou Y, Wu YD, Feng LL, Wu AX. Employing TosMIC as a C1N1 “Two-Atom Synthon” in Imidazole Synthesis by Neighboring Group Assistance Strategy. Org Lett 2019; 22:140-144. [DOI: 10.1021/acs.orglett.9b04060] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiao Geng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Can Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chun Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yang Bao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Peng Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | | | - Ling-ling Feng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
16
|
Zhang Y, Chen C, Zhao J, Liu G. Rhodium‐Catalyzed Cascade Radical Cyclization of 1,6‐Enynes with Br−CX
3
: Access to Bromine‐Containing Trihalomethylated Pyrrolidines. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yingying Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Jinghui Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Guiyan Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
17
|
Sun M, Zhao L, Ding MW. One-Pot–Three-Component Synthesis of 2-(1,2,3,4-Tetrahydroisoquinolin-1-yl)oxazoles via DEAD-Promoted Oxidative Ugi/Wittig Reaction. J Org Chem 2019; 84:14313-14319. [DOI: 10.1021/acs.joc.9b02016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| | - Long Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| | - Ming-Wu Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
18
|
De Schouwer F, Claes L, Vandekerkhove A, Verduyckt J, De Vos DE. Protein-Rich Biomass Waste as a Resource for Future Biorefineries: State of the Art, Challenges, and Opportunities. CHEMSUSCHEM 2019; 12:1272-1303. [PMID: 30667150 DOI: 10.1002/cssc.201802418] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Protein-rich biomass provides a valuable feedstock for the chemical industry. This Review describes every process step in the value chain from protein waste to chemicals. The first part deals with the physicochemical extraction of proteins from biomass, hydrolytic degradation to peptides and amino acids, and separation of amino acid mixtures. The second part provides an overview of physical and (bio)chemical technologies for the production of polymers, commodity chemicals, pharmaceuticals, and other fine chemicals. This can be achieved by incorporation of oligopeptides into polymers, or by modification and defunctionalization of amino acids, for example, their reduction to amino alcohols, decarboxylation to amines, (cyclic) amides and nitriles, deamination to (di)carboxylic acids, and synthesis of fine chemicals and ionic liquids. Bio- and chemocatalytic approaches are compared in terms of scope, efficiency, and sustainability.
Collapse
Affiliation(s)
- Free De Schouwer
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Laurens Claes
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Annelies Vandekerkhove
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Jasper Verduyckt
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Dirk E De Vos
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| |
Collapse
|
19
|
Rahman M, Mukherjee A, Kovalev IS, Kopchuk DS, Zyryanov GV, Tsurkan MV, Majee A, Ranu BC, Charushin VN, Chupakhin ON, Santra S. Recent Advances on Diverse Decarboxylative Reactions of Amino Acids. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801331] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Matiur Rahman
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| | - Anindita Mukherjee
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| | - Igor S. Kovalev
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| | - Dmitry S. Kopchuk
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic SynthesisUral Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Grigory V. Zyryanov
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic SynthesisUral Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Mikhail V. Tsurkan
- Max Bergmann Center of BiomaterialsLeibniz Institute of Polymer Research Hohe Strasse 6 01069 Dresden Germany
| | - Adinath Majee
- Department of ChemistryVisva-Bharati (A Central University) Santiniketan 731235 India
| | - Brindaban C. Ranu
- Department of Organic ChemistryIndian Association for the Cultivation of Science, Jadavpur Kolkata 700032 India
| | - Valery N. Charushin
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic SynthesisUral Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Oleg N. Chupakhin
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic SynthesisUral Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Sougata Santra
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| |
Collapse
|
20
|
Wang C, Geng X, Zhao P, Zhou Y, Wu YD, Wu AX. Employing thiocyanate salts as a nitrogen source via CN bond cleavage: divergent synthesis of α-ketoamides and 2-acyloxazoles. Org Chem Front 2019. [DOI: 10.1039/c9qo00570f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A switchable procedure for the synthesis of α-ketoamides and 2-acyloxazoles from aryl methyl ketones and thiocyanate salts is reported.
Collapse
Affiliation(s)
- Can Wang
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Xiao Geng
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Peng Zhao
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| |
Collapse
|
21
|
Wang ZX, Xiang JC, Cheng Y, Ma JT, Wu YD, Wu AX. Direct Biomimetic Synthesis of β-Carboline Alkaloids from Two Amino Acids. J Org Chem 2018; 83:12247-12254. [PMID: 30134110 DOI: 10.1021/acs.joc.8b01668] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increasing importance of enzyme mimics in organic synthesis inspired us to design a novel biomimetic synthesis of β-carboline alkaloids directly from tryptophan and a second amino acid. This novel one-pot protocol utilizes abundant and readily available starting materials and thus presents a green and user-friendly alternative to conventional methods that rely on stepwise synthesis. Driven by molecular iodine and TFA, decarboxylation, deamination, Pictet-Spengler reaction, and oxidation reactions proceeded sequentially, transforming biomass amino acids into value-added alkaloid motifs.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Jia-Chen Xiang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Yan Cheng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| |
Collapse
|
22
|
Geng X, Wu X, Wang C, Zhao P, Zhou Y, Sun X, Wang LJ, Guan WJ, Wu YD, Wu AX. NaHS·nH2O-induced umpolung: the synthesis of 2-acyl-3-aminoindoles from aryl methyl ketones and 2-aminobenzonitriles. Chem Commun (Camb) 2018; 54:12730-12733. [DOI: 10.1039/c8cc07599a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for constructing 2-acyl-3-aminoindoles from methyl ketones and 2-aminobenzonitriles is described, in which NaHS·nH2O is used as a novel umpolung reagent for the first time in organic synthesis.
Collapse
|