1
|
Lee S, Park YS. Configurationally labile α-bromoacid derivatives for asymmetric preparation of heterocycles. Org Biomol Chem 2025. [PMID: 40266563 DOI: 10.1039/d5ob00207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
α-Bromoacid derivatives are configurationally labile under various conditions, and the dynamic resolution of them has been recognized as an effective strategy in asymmetric synthesis. This article is a concise review of our efforts on the heteroannulation of α-bromoacid derivatives through nucleophilic substitution and subsequent ring formation with diverse carbon, nitrogen, oxygen, and sulfur nucleophiles. Chiral auxiliary (Xc)-bound α-bromoacid derivatives serve as versatile chiral building blocks for the direct incorporation of a two-carbon unit in cyclization reactions. Eight readily available chiral auxiliaries are investigated and identified to be suitable for the dynamic resolution of α-bromoacid derivatives. We have presented selected results about three distinct dynamic resolutions such as dynamic kinetic resolution (DKR), dynamic thermodynamic resolution (DTR) and crystallization induced dynamic resolution (CIDR) that have been successfully employed in the asymmetric synthesis of fourteen different scaffolds of six- or five-membered heterocycles.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Chemistry, Konkuk University, Seoul 05029, Korea.
| | - Yong Sun Park
- Department of Chemistry, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
2
|
Zhang Y, Chen W, Zhang Y, Qiu X, Fan Y, Liu J, Wang A, Xu Y. Zeaamine, a new amine from roots of Zea mays and its cytotoxic activity against CT26 and SW480 cell lines. Nat Prod Res 2025; 39:2107-2113. [PMID: 38050768 DOI: 10.1080/14786419.2023.2290149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/06/2023]
Abstract
A new amine, zeaamine (1), along with nine known compounds (2-10), were isolated from the roots of Zea mays. Among these, compound 2 was first isolated from this plant, and compound 3 was first isolated from the roots. In the current investigation, the cytotoxicity against CT26 and SW480 cells of the compounds were evaluated. Zeaamine (1) exhibited moderately affected CT26 and SW480 cells with IC50 values of 17.91 and 10.21 µM.
Collapse
Affiliation(s)
- Yunqiang Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Weiguo Chen
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Yiling Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xue Qiu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanhua Fan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Jianyu Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Andong Wang
- School of Pharmacy, Nantong University, Nantong, P. R. China
| | - Yongnan Xu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
3
|
Lee K, Kim YA, Jung C, Sim J, Rajasekar S, Kwak JH, Viji M, Jung JK. Microwave-Mediated, Catalyst-Free Synthesis of 1,2,4-Triazolo[1,5- a]pyridines from Enaminonitriles. Molecules 2024; 29:894. [PMID: 38398645 PMCID: PMC10892893 DOI: 10.3390/molecules29040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
A catalyst-free, additive-free, and eco-friendly method for synthesizing 1,2,4-triazolo[1,5-a]pyridines under microwave conditions has been established. This tandem reaction involves the use of enaminonitriles and benzohydrazides, a transamidation mechanism followed by nucleophilic addition with nitrile, and subsequent condensation to yield the target compound in a short reaction time. The methodology demonstrates a broad substrate scope and good functional group tolerance, resulting in the formation of products in good-to-excellent yields. Furthermore, the scale-up reaction and late-stage functionalization of triazolo pyridine further demonstrate its synthetic utility. A plausible reaction pathway, based on our findings, has been proposed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea; (K.L.); (Y.-A.K.); (C.J.); (J.S.); (S.R.); (J.-H.K.)
| | - Jae-Kyung Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea; (K.L.); (Y.-A.K.); (C.J.); (J.S.); (S.R.); (J.-H.K.)
| |
Collapse
|
4
|
Chen KL, Tanaka F. Organocatalytic enantioselective Mannich and retro-Mannich reactions and combinations of these reactions to afford tetrasubstituted α-amino acid derivatives. Org Biomol Chem 2024; 22:477-481. [PMID: 38099926 DOI: 10.1039/d3ob01855e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Organocatalytic asymmetric Mannich reactions and kinetic resolutions of the products via retro-Mannich reactions that afford enantiomerically enriched tetrasubstituted α-amino acid derivatives (α,α-disubstituted-α-amino acid derivatives) were developed. Furthermore, the combination of the Mannich reaction and the retro-Mannich reaction allowed access to products with almost perfect enantiopurities.
Collapse
Affiliation(s)
- Kuan-Lin Chen
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan.
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan.
| |
Collapse
|
5
|
Zhou M, Feng Z, Zhang X. Recent advances in the synthesis of fluorinated amino acids and peptides. Chem Commun (Camb) 2023; 59:1434-1448. [PMID: 36651307 DOI: 10.1039/d2cc06787k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The site-selective modification of amino acids, peptides, and proteins has always been an intensive topic in organic synthesis, medicinal chemistry, and chemical biology due to the vital role of amino acids in life. Among the developed methods, the site-selective introduction of fluorine functionalities into amino acids and peptides has emerged as a useful approach to change their physicochemical and biological properties. With the increasing demand for life science, the direct fluorination/fluoroalkylation of proteins has also received increasing attention because of the unique properties of fluorine atom(s) that can change the protein structure, increase their lipophilicity, and enable fluorine functionality as a biological tracer or probe for chemical biology studies. In this feature article, we summarized the recent advances in the synthesis of fluorinated amino acids and peptides, wherein two strategies have been discussed. One is based on the fluorinated building blocks to prepare fluorinated amino acids and peptides with diversified structures, including the transformations of fluorinated imines and nickel-catalyzed dicarbofunctionalization of alkenes with bromodifluoroacetate and its derivatives; the other is direct fluorination/fluoroakylation of amino acids, peptides, and proteins, in which the selective transformations of the functional groups on serine, threonine, tyrosine, tryptophan, and cysteine lead to a wide range of fluorinated α-amino acids, peptides, and proteins, featuring synthetic convenience and late-stage modification of biomacromolecules. These two strategies complement each other, wherein transition-metal catalysis and new fluoroalkylating reagents provide powerful tools to selectively access fluorinated amino acids, peptides, and proteins, showing the prospect of medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Minqi Zhou
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhang Feng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xingang Zhang
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
6
|
Long CJ, Pu HP, Zhao YN, He YH, Guan Z. Cooperative photocatalysis and l-/ d-proline catalysis enables enantioselective oxidative cross-dehydrogenative coupling of acyclic benzylic secondary amines with ketones. Org Chem Front 2023. [DOI: 10.1039/d2qo01956f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
We developed an enantioselective cross-dehydrogenative coupling of acyclic benzylic secondary amines with ketones by combining photocatalysis and l-/d-proline catalysis.
Collapse
|
7
|
Silver-catalyzed cross-dehydrogenative coupling of benzoxazine-2-ones with resorcinol. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Vishwanath M, Chaudhary CL, Park Y, Viji M, Jung C, Lee K, Sim J, Hong SM, Yoon DH, Lee DH, Lee JK, Lee H, Lee MK, Kim SY, Jung JK. Total Synthesis of Isohericerinol A and Its Analogues to Access Their Potential Neurotrophic Effects. J Org Chem 2022; 87:10836-10847. [PMID: 35946352 DOI: 10.1021/acs.joc.2c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The secondary metabolites from Hericium erinaceus are well-known to have neurotrophic and neuroprotective effects. Isohericerinol A (1), isolated by our colleagues from its fruiting parts has a strong ability to increase the nerve growth factor secretion in C6 glioma cells. The current work describes the total synthesis of 1 and its regioisomer 5 in a few steps. We present two different approaches to 1 and a regiodivergent approach for both 1 and 5 by utilizing easily accessible feedstocks. Interestingly, the natural product 1, regioisomer 5, and their intermediates exhibited potent neurotrophic activity in in vitro experimental systems. Thus, these synthetic strategies provide access to a systematic structure-activity relationship study of natural product 1.
Collapse
Affiliation(s)
- Manjunatha Vishwanath
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Chhabi Lal Chaudhary
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Yunjeong Park
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Chanhyun Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Kwanghee Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Jaeuk Sim
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Seong Min Hong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Da Hye Yoon
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| | | | | | - Heesoon Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Mi Kyeong Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Jae-Kyung Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| |
Collapse
|
9
|
Modern Approaches to Synthetic Design of Chiral α-Tertiary Amines Based on Trifluoromethylcontaining Ketimines: A Review. THEOR EXP CHEM+ 2022. [DOI: 10.1007/s11237-022-09710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
He L, Liang C, Ouyang Y, Li L, Guo Y, Zhang P, Li W. α-Functionalization of ketones promoted by sunlight and heterogeneous catalysis in the aqueous phase. Org Biomol Chem 2022; 20:790-795. [PMID: 34994749 DOI: 10.1039/d1ob02249k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, a protocol that combines heterogeneous catalysis and solar photocatalysis for the regioselective α-substitution of asymmetric ketones with quinoxalinones has been reported. The result indicates that the reaction is more likely to occur on the α-carbon. This strategy provides a green and efficient way for the α-functionalization of ketones. A singlet oxygen involved mechanism is suggested for the transformation.
Collapse
Affiliation(s)
- Lei He
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Chenfeng Liang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yani Ouyang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Lin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yirui Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
11
|
Byun Y, Moon J, An W, Mishra NK, Kim HS, Ghosh P, Kim IS. Transition-Metal-Free Alkylation and Acylation of Benzoxazinones with 1,4-Dihydropyridines. J Org Chem 2021; 86:12247-12256. [PMID: 34406002 DOI: 10.1021/acs.joc.1c01558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The direct functionalization of N-heterocycles is a vital transformation for the development of pharmaceuticals, functional materials, and other chemical entities. Herein, the transition-metal-free alkylation and acylation of C(sp2)-H bonds in biologically relevant 2-benzoxazinones with 1,4-dihydropyridines as readily accessible radical surrogates is described. Excellent functional group compatibility and a broad substrate scope were attained. Gram-scale reaction and transformations of the synthesized adducts via Suzuki coupling with heteroaryl boronic acids demonstrated the synthetic potential of the developed protocol.
Collapse
Affiliation(s)
- Youjung Byun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junghyea Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won An
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
12
|
Abstract
Organocatalysts are abundantly used for various transformations, particularly to obtain highly enantio- and diastereomeric pure products by controlling the stereochemistry. These applications of organocatalysts have been the topic of several reviews. Organocatalysts have emerged as one of the very essential areas of research due to their mild reaction conditions, cost-effective nature, non-toxicity, and environmentally benign approach that obviates the need for transition metal catalysts and other toxic reagents. Various types of organocatalysts including amine catalysts, Brønsted acids, and Lewis bases such as N-heterocyclic carbene (NHC) catalysts, cinchona alkaloids, 4-dimethylaminopyridine (DMAP), and hydrogen bond-donating catalysts, have gained renewed interest because of their regioselectivity. In this review, we present recent advances in regiodivergent reactions that are governed by organocatalysts. Additionally, we briefly discuss the reaction pathways of achieving regiodivergent products by changes in conditions such as solvents, additives, or the temperature.
Collapse
|
13
|
Geng Y, Hua Y, Jia S, Wang M. Direct Asymmetric α‐Selective Mannich Reaction of β,γ‐Unsaturated Ketones with Cyclic α‐Imino Ester: Divergent Synthesis of Cyclocanaline and Tetrahydro Pyridazinone Derivatives. Chemistry 2021; 27:5130-5135. [DOI: 10.1002/chem.202100284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Yu‐Huan Geng
- College of Chemistry and Institute of Green Catalysis Zhengzhou University No. 100, Science Road Zhengzhou City Henan province 450000 P. R. China
| | - Yuan‐Zhao Hua
- College of Chemistry and Institute of Green Catalysis Zhengzhou University No. 100, Science Road Zhengzhou City Henan province 450000 P. R. China
| | - Shi‐Kun Jia
- College of Chemistry and Institute of Green Catalysis Zhengzhou University No. 100, Science Road Zhengzhou City Henan province 450000 P. R. China
| | - Min‐Can Wang
- College of Chemistry and Institute of Green Catalysis Zhengzhou University No. 100, Science Road Zhengzhou City Henan province 450000 P. R. China
| |
Collapse
|
14
|
Viji M, Vishwanath M, Sim J, Park Y, Jung C, Lee S, Lee H, Lee K, Jung JK. α-Hydroxy acid as an aldehyde surrogate: metal-free synthesis of pyrrolo[1,2- a]quinoxalines, quinazolinones, and other N-heterocycles via decarboxylative oxidative annulation reaction. RSC Adv 2020; 10:37202-37208. [PMID: 35521290 PMCID: PMC9057147 DOI: 10.1039/d0ra07093a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/04/2020] [Indexed: 01/18/2023] Open
Abstract
A metal-free and efficient procedure for the synthesis of pyrrolo[1,2-a]quinoxalines, quinazolinones, and indolo[1,2-a]quinoxaline has been developed. The key features of our method include the in situ generation of aldehyde from α-hydroxy acid in the presence of TBHP (tert-butyl hydrogen peroxide), and further condensation with various amines, followed by intramolecular cyclization and subsequent oxidation to afford the corresponding quinoxalines, quinazolinones derivatives in moderate to high yields.
Collapse
Affiliation(s)
- Mayavan Viji
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Manjunatha Vishwanath
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Jaeuk Sim
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Yunjeong Park
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Chanhyun Jung
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Seohu Lee
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Heesoon Lee
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Kiho Lee
- College of Pharmacy, Korea University Sejong 30019 Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| |
Collapse
|
15
|
Advances in the Organocatalytic Asymmetric Mannich Reaction of Six‐Membered Unsaturated Heterocycles: Methodology and Application. ChemCatChem 2019. [DOI: 10.1002/cctc.201900379] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Chen Z, Yin X, Dong XQ, Zhang X. Efficient access to chiral dihydrobenzoxazinones via Rh-catalyzed hydrogenation. RSC Adv 2019; 9:15466-15469. [PMID: 35514854 PMCID: PMC9064260 DOI: 10.1039/c9ra02694k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
Rh/(S)-DTBM-SegPhos-catalyzed asymmetric hydrogenation of prochiral (Z)-2-(2-oxo-2H-benzo[b][1,4]oxazin-3(4H)-ylidene)acetate esters was successfully developed. A series of chiral dihydrobenzoxazinones were prepared through this efficient methodology with good to excellent results (up to >99% conversion, 93% yield and >99% ee), which are important motifs in the biologically active molecules. Rh/(S)-DTBM-SegPhos-catalyzed asymmetric hydrogenation of prochiral (Z)-2-(2-oxo-2H-benzo[b][1,4]oxazin-3(4H)-ylidene)acetate esters was successfully developed to prepare various chiral dihydrobenzoxazinones with good to excellent results.![]()
Collapse
Affiliation(s)
- Ziyi Chen
- Key Laboratory of Biomedical Polymers
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
| | - Xuguang Yin
- Key Laboratory of Biomedical Polymers
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
| | - Xiu-Qin Dong
- Key Laboratory of Biomedical Polymers
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
| | - Xumu Zhang
- Key Laboratory of Biomedical Polymers
- Engineering Research Centre of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
| |
Collapse
|