1
|
Xu S, Xu W, Dong S, Liu D, Zhang W. RuPHOX-Ru Catalyzed Asymmetric Cascade Hydrogenation of 3-Substituted Chromones for the Synthesis of Corresponding Chiral Chromanols. Chemistry 2024; 30:e202400978. [PMID: 38695858 DOI: 10.1002/chem.202400978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 06/15/2024]
Abstract
An efficient RuPHOX-Ru catalyzed asymmetric cascade hydrogenation of 3-substituted chromones has been achieved under mild reaction conditions, affording the corresponding chiral 3-substituted chromanols in high yields with excellent enantio- and diastereoselectivities (up to 99 % yield, >99 % ee and >20 : 1 dr). Control reactions and deuterium labelling experiments revealed that a dynamic kinetic resolution process occurs during the subsequent hydrogenation of the C=O double bond, which is responsible for the high performance of the asymmetric cascade hydrogenation. The resulting products allow for several transformations and it was shown that the protocol provides a practical and alternative strategy for the synthesis of chiral 3-substituted chromanols and their derivatives.
Collapse
Affiliation(s)
- Shaofeng Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wenqi Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Siqi Dong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
2
|
He J, Li Z, Li R, Kou X, Liu D, Zhang W. Bimetallic Ru/Ru-Catalyzed Asymmetric One-Pot Sequential Hydrogenations for the Stereodivergent Synthesis of Chiral Lactones. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400621. [PMID: 38509867 PMCID: PMC11187880 DOI: 10.1002/advs.202400621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Indexed: 03/22/2024]
Abstract
Asymmetric sequential hydrogenations of α-methylene γ- or δ-keto carboxylic acids are established in one-pot using a bimetallic Ru/Ru catalyst system, achieving the stereodivergent synthesis of all four stereoisomers of both chiral γ- and δ-lactones with two non-vicinal carbon stereocenters in high yields (up to 99%) and with excellent stereoselectivities (up to >99% ee and >20:1 dr). The compatibility of the two chiral Ru catalyst systems is investigated in detail, and it is found that the basicity of the reaction system plays a key role in the sequential hydrogenation processes. The protocol can be performed on a gram-scale with a low catalyst loading (up to 11000 S/C) and the resulting products allow for many transformations, particularly for the synthesis of several key intermediates useful for the preparation of chiral drugs and natural products.
Collapse
Affiliation(s)
- Jingli He
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Zhaodi Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Ruhui Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Xuezhen Kou
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
3
|
Zhou J, Meng L, Yang Z, Wang JJ. Enantio- and Regioselective Cascade Hydroboration of Methylenecyclopropanes for Facile Access to Chiral 1,3- and 1,4-Bis(boronates). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400096. [PMID: 38477439 DOI: 10.1002/advs.202400096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Chiral 1, n-bis(boronate) plays a crucial role in organic synthesis and medicinal chemistry. However, their catalytic and asymmetric synthesis has long posed a challenge in terms of operability and accessibility from readily available substrates. The recent discovery of the C═C bond formation through β-C elimination of methylenecyclopropanes (MCP) has provided an exciting opportunity to enhance molecular complexity. In this study, the catalyzed asymmetric cascade hydroboration of MCP is developed. By employing different ligands, various homoallylic boronate intermediate are obtained through the hydroboration ring opening process. Subsequently, the cascade hydroboration with HBpin or B2pin2 resulted in the synthesis of enantioenriched chiral 1,3- and 1,4-bis(boronates) in high yields, accompanied by excellent chemo- and enantioselectivities. The selective transformation of these two distinct C─B bonds also demonstrated their application potential in organic synthesis.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Ling Meng
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Ziyi Yang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Jun Joelle Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| |
Collapse
|
4
|
Xiao G, Xie C, Guo Q, Zi G, Hou G, Huang Y. Nickel-Catalyzed Asymmetric Hydrogenation of γ-Keto Acids, Esters, and Amides to Chiral γ-Lactones and γ-Hydroxy Acid Derivatives. Org Lett 2022; 24:2722-2727. [PMID: 35363497 DOI: 10.1021/acs.orglett.2c00826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient asymmetric hydrogenation of a series of γ-keto acid derivatives, including γ-keto acids, esters, and amides, using a Ni-(R,R)-QuinoxP* complex as the catalyst has been developed to afford chiral γ-hydroxy acid derivatives with excellent enantioselectivities, up to 99.9% ee. This method provides not only an economical one-pot approach for the synthesis of chiral γ-lactones but also access to (S)-norfluoxetine, an inhibitor of neural serotonin reuptake and an essential intermediate for pharmaceutical synthesis.
Collapse
Affiliation(s)
- Guiying Xiao
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chaochao Xie
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qianling Guo
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuping Huang
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| |
Collapse
|
5
|
Deng CQ, Deng J. Ni-Catalyzed Asymmetric Hydrogenation of Aromatic Ketoacids for the Synthesis of Chiral Lactones. Org Lett 2022; 24:2494-2498. [PMID: 35349293 DOI: 10.1021/acs.orglett.2c00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A highly efficient Ni-catalyzed asymmetric hydrogenation of aromatic γ- and δ-ketoacids has been developed, affording a series of γ- and δ-aryl lactones in high yields and excellent enantioselectivities (≤98% ee). The hydrogenation could occur smoothly on a gram scale with 0.05 mol % catalyst loading (S/C = 2000). This protocol provides an efficient and practical approach for accessing chiral lactones with important potential applications in organic synthesis and the pharmaceutical industry.
Collapse
Affiliation(s)
- Chen-Qiang Deng
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin Deng
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Li B, Liu D, Hu Y, Chen J, Zhang Z, Zhang W. Nickel‐Catalyzed Asymmetric Hydrogenation of Hydrazones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bowen Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Dan Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zhenfeng Zhang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 R. China
- College of Chemistry Zhengzhou University 75 Daxue Road Zhengzhou 450052 P. R. China
| |
Collapse
|
7
|
Zhang K, Zhang X, Chen J, Liu Z, Pan C, Zhu Y, Wu S, Fan B. Palladium/Zinc Co-Catalyzed Asymmetric Hydrogenation of γ-Keto Carboxylic Acids. Chem Asian J 2021; 16:1229-1232. [PMID: 33852193 DOI: 10.1002/asia.202100244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Indexed: 12/23/2022]
Abstract
A palladium-catalyzed asymmetric hydrogenation of levulinic acid has been successful developed by using Zn(OTf)2 as co-catalyst. The present method not only has provided a strategy in the palladium-catalyzed asymmetric hydrogenation of ketone, but also allowed the preparation of a wide range of chiral γ-valerolactones in good yields with excellent enantioselectivities.
Collapse
Affiliation(s)
- Keyang Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, P. R. China
| | - Xuexin Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, P. R. China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, P. R. China
| | - Zixiu Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, P. R. China
| | - Chunxiang Pan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, P. R. China
| | - Yuanbin Zhu
- Yunnan Tiefeng High Tech Mining Chemicals Co.Ltd, Qingfeng industrial park, Lufeng, 651200, P. R China
| | - Shiyuan Wu
- Yunnan Tiefeng High Tech Mining Chemicals Co.Ltd, Qingfeng industrial park, Lufeng, 651200, P. R China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, P. R. China
| |
Collapse
|
8
|
Parker PD, Hou X, Dong VM. Reducing Challenges in Organic Synthesis with Stereoselective Hydrogenation and Tandem Catalysis. J Am Chem Soc 2021; 143:6724-6745. [PMID: 33891819 DOI: 10.1021/jacs.1c00750] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tandem catalysis enables the rapid construction of complex architectures from simple building blocks. This Perspective shares our interest in combining stereoselective hydrogenation with transformations such as isomerization, oxidation, and epimerization to solve diverse challenges. We highlight the use of tandem hydrogenation for preparing complex natural products from simple prochiral building blocks and present tandem catalysis involving transfer hydrogenation and dynamic kinetic resolution. Finally, we underline recent breakthroughs and opportunities for asymmetric hydrogenation.
Collapse
Affiliation(s)
- Patrick D Parker
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Xintong Hou
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
9
|
Huang L, Xie Y, Ge P, Huang J, Feng H. Glyoxylic Acid: A Carboxyl Group‐Assisted Metal‐Free Decarboxylative Reaction Toward Propargylamines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liliang Huang
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Yujuan Xie
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Panyuan Ge
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Junhai Huang
- China State Institute of Pharmaceutical Industry Shanghai Institute of Pharmaceutical Industry Shanghai 201203 China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 China
| |
Collapse
|
10
|
Liu G, Tian K, Li C, You C, Tan X, Zhang H, Zhang X, Dong XQ. Nickel-Catalyzed Asymmetric Hydrogenation of Cyclic Alkenyl Sulfones, Benzo[ b]thiophene 1,1-Dioxides, with Mechanistic Studies. Org Lett 2021; 23:668-675. [PMID: 33471538 DOI: 10.1021/acs.orglett.0c03723] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A highly efficient catalytic system based on the cheap transition metal nickel for the asymmetric hydrogenation of challenging cyclic alkenyl sulfones, 3-substituted benzo[b]thiophene 1,1-dioxides, was first successfully developed. A series of hydrogenation products, chiral 2,3-dihydrobenzo[b]thiophene 1,1-dioxides, were obtained in high yields (95-99%) with excellent enantioselectivities (90-99% ee). According to the results of nonlinear effect studies, deuterium-labeling experiments, and DFT calculation investigations, a reasonable catalytic mechanism for this nickel-catalyzed asymmetric hydrogenation was provided, which displayed that the two added hydrogen atoms of the hydrogenation products could be from H2 through the insertion of Ni-H and subsequent hydrogenolysis.
Collapse
Affiliation(s)
- Gongyi Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, Hubei 430205, China
| | - Kui Tian
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Chenzong Li
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, Hubei 430205, China
| | - Cai You
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xuefeng Tan
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Heng Zhang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xumu Zhang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,Suzhou Institute of Wuhan University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
11
|
Zhu Y, Zhou J, Li J, Xu K, Ye J, Lu Y, Liu D, Zhang W. Kinetic resolution of azaflavanones via a RuPHOX-Ru catalyzed asymmetric hydrogenation. Org Chem Front 2021. [DOI: 10.1039/d1qo01310f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The kinetic resolution of azaflavanones has been established via RuPHOX-Ru catalyzed asymmetric hydrogenation, providing chiral azaflavanones and azaflavanols in high yields with up to >20 : 1 dr and 99.7% ee.
Collapse
Affiliation(s)
- Yue Zhu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayu Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jing Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kai Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianxun Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yufei Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
12
|
Li ML, Li Y, Pan JB, Li YH, Song S, Zhu SF, Zhou QL. Carboxyl Group-Directed Iridium-Catalyzed Enantioselective Hydrogenation of Aliphatic γ-Ketoacids. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mao-Lin Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yao Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Bin Pan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Hao Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Song Song
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Fei Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Borowiecki P, Telatycka N, Tataruch M, Żądło‐Dobrowolska A, Reiter T, Schühle K, Heider J, Szaleniec M, Kroutil W. Biocatalytic Asymmetric Reduction of γ‐Keto Esters to Access Optically Active γ‐Aryl‐γ‐butyrolactones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Paweł Borowiecki
- Warsaw University of TechnologyFaculty of ChemistryDepartment of Drugs Technology and Biotechnology Koszykowa 3 00-664 Warsaw Poland
| | - Natalia Telatycka
- Warsaw University of TechnologyFaculty of ChemistryDepartment of Drugs Technology and Biotechnology Koszykowa 3 00-664 Warsaw Poland
| | - Mateusz Tataruch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, PAS Niezapominajek 8 30-239 Krakow Poland
| | - Anna Żądło‐Dobrowolska
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Tamara Reiter
- Institute of ChemistryUniversity of Graz NAWI Graz, BioTechMed Graz, Heinrichstrasse 28 8010 Graz Austria
| | - Karola Schühle
- Laboratory of MicrobiologyLOEWE Center for Synthetic MicrobiologyPhilipps University of Marburg Marburg
| | - Johann Heider
- Laboratory of MicrobiologyLOEWE Center for Synthetic MicrobiologyPhilipps University of Marburg Marburg
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, PAS Niezapominajek 8 30-239 Krakow Poland
| | - Wolfgang Kroutil
- Institute of ChemistryUniversity of Graz NAWI Graz, BioTechMed Graz, Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
14
|
Hua YY, Bin HY, Wei T, Cheng HA, Lin ZP, Fu XF, Li YQ, Xie JH, Yan PC, Zhou QL. Iridium-Catalyzed Asymmetric Hydrogenation of γ- and δ-Ketoacids for Enantioselective Synthesis of γ- and δ-Lactones. Org Lett 2020; 22:818-822. [PMID: 31961159 DOI: 10.1021/acs.orglett.9b04253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A highly efficient asymmetric hydrogenation of γ- and δ-ketoacids was developed by using a chiral spiro iridium catalyst (S)-1a, affording the optically active γ- and δ-hydroxy acids/lactones in high yields with excellent enantioselectivities (up to >99% ee) and turnover numbers (TON up to 100000). This protocol provides an efficient and practical method for enantioselective synthesis of Ezetimibe.
Collapse
Affiliation(s)
- Yun-Yu Hua
- Zhejiang Raybow Pharmaceutical Co., Ltd. , No. 18 Nanyangsan Road , Linhai, Taizhou City , Zhejiang Province 318000 , People's Republic of China
| | - Huai-Yu Bin
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China
| | - Tao Wei
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China
| | - Hou-An Cheng
- Zhejiang Raybow Pharmaceutical Co., Ltd. , No. 18 Nanyangsan Road , Linhai, Taizhou City , Zhejiang Province 318000 , People's Republic of China
| | - Zu-Peng Lin
- Zhejiang Raybow Pharmaceutical Co., Ltd. , No. 18 Nanyangsan Road , Linhai, Taizhou City , Zhejiang Province 318000 , People's Republic of China
| | - Xing-Feng Fu
- Zhejiang Raybow Pharmaceutical Co., Ltd. , No. 18 Nanyangsan Road , Linhai, Taizhou City , Zhejiang Province 318000 , People's Republic of China
| | - Yuan-Qiang Li
- Zhejiang Raybow Pharmaceutical Co., Ltd. , No. 18 Nanyangsan Road , Linhai, Taizhou City , Zhejiang Province 318000 , People's Republic of China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China
| | - Pu-Cha Yan
- Zhejiang Raybow Pharmaceutical Co., Ltd. , No. 18 Nanyangsan Road , Linhai, Taizhou City , Zhejiang Province 318000 , People's Republic of China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China
| |
Collapse
|
15
|
Chen J, Li F, Wang F, Hu Y, Zhang Z, Zhao M, Zhang W. Pd(OAc)2-Catalyzed Asymmetric Hydrogenation of α-Iminoesters. Org Lett 2019; 21:9060-9065. [DOI: 10.1021/acs.orglett.9b03452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | - Feilong Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Fang Wang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | | | | | - Min Zhao
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | | |
Collapse
|
16
|
Li J, Zhu Y, Lu Y, Wang Y, Liu Y, Liu D, Zhang W. RuPHOX-Ru-Catalyzed Selective Asymmetric Hydrogenation of Exocyclic α,β-Unsaturated Pentanones. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Lu Y, Li J, Zhu Y, Shen J, Liu D, Zhang W. Synthesis of chiral γ-lactones via a RuPHOX-Ru catalyzed asymmetric hydrogenation of aroylacrylic acids. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Li J, Lu Y, Zhu Y, Nie Y, Shen J, Liu Y, Liu D, Zhang W. Selective Asymmetric Hydrogenation of Four-Membered Exo-α,β-Unsaturated Cyclobutanones Using RuPHOX-Ru as a Catalyst. Org Lett 2019; 21:4331-4335. [PMID: 31124691 DOI: 10.1021/acs.orglett.9b01514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The selective asymmetric hydrogenation of four-membered exo-α,β-unsaturated cyclobutanones has been achieved for the first time using RuPHOX-Ru as a catalyst, providing four-membered exo-cyclic chiral allylic alcohols in high yields and with up to 99.9% ee. The reaction could be performed on a gram scale with a relatively low catalyst loading (up to 10000 S/C), and the resulting products can be transformed to several biologically active molecules.
Collapse
|