1
|
Presnukhina SI, Baykova SO, Chukanova EA, Metalnikova NM, Baykov SV, Soldatova NS, Postnikov PS, Boyarskiy VP. Copper-catalyzed N-arylation of 1,2,4-oxadiazin-5(6 H)-ones by diaryliodonium salts. Org Biomol Chem 2025; 23:4217-4225. [PMID: 40190216 DOI: 10.1039/d5ob00204d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Herein, we developed a new synthetic approach for the preparation of N-arylated 1,2,4-oxadiazin-5(6H)-ones by direct arylation with diaryliodonium salts. The reaction with symmetrical diaryliodonium salts using CuI as a catalyst proceeded in toluene in the presence of DIPEA at 60 °C with the formation of the desired products in isolated yields of 46 to 97% (20 examples). The use of more readily available unsymmetrical diaryliodonium salts required higher reaction temperatures (up to 100 °C) to achieve similar yields. The only limitation observed in reaction was with an ortho-substituted iodonium salt. In all other cases, the developed approach allowed the preparation of a broad range of N-arylated 1,2,4-oxadiazin-5(6H)-ones under mild conditions utilizing a cheap and readily available catalyst.
Collapse
Affiliation(s)
- Sofia I Presnukhina
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russian Federation.
| | - Svetlana O Baykova
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russian Federation.
| | - Elizaveta A Chukanova
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russian Federation.
| | - Nadezhda M Metalnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Sergey V Baykov
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russian Federation.
| | - Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Vadim P Boyarskiy
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russian Federation.
| |
Collapse
|
2
|
Dohi T, Elboray EE, Kikushima K, Morimoto K, Kita Y. Iodoarene Activation: Take a Leap Forward toward Green and Sustainable Transformations. Chem Rev 2025; 125:3440-3550. [PMID: 40053418 PMCID: PMC11951092 DOI: 10.1021/acs.chemrev.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Constructing chemical bonds under green sustainable conditions has drawn attention from environmental and economic perspectives. The dissociation of (hetero)aryl-halide bonds is a crucial step of most arylations affording (hetero)arene derivatives. Herein, we summarize the (hetero)aryl halides activation enabling the direct (hetero)arylation of trapping reagents and construction of highly functionalized (hetero)arenes under benign conditions. The strategies for the activation of aryl iodides are classified into (a) hypervalent iodoarene activation followed by functionalization under thermal/photochemical conditions, (b) aryl-I bond dissociation in the presence of bases with/without organic catalysts and promoters, (c) photoinduced aryl-I bond dissociation in the presence/absence of organophotocatalysts, (d) electrochemical activation of aryl iodides by direct/indirect electrolysis mediated by organocatalysts and mediators acting as electron shuttles, and (e) electrophotochemical activation of aryl iodides mediated by redox-active organocatalysts. These activation modes result in aryl iodides exhibiting diverse reactivity as formal aryl cations/radicals/anions and aryne precursors. The coupling of these reactive intermediates with trapping reagents leads to the facile and selective formation of C-C and C-heteroatom bonds. These ecofriendly, inexpensive, and functional group-tolerant activation strategies offer green alternatives to transition metal-based catalysis.
Collapse
Affiliation(s)
- Toshifumi Dohi
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Elghareeb E. Elboray
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Department
of Chemistry, Faculty of Science, South
Valley University, Qena 83523, Egypt
| | - Kotaro Kikushima
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Koji Morimoto
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
3
|
Hatton J, Stuart DR. Synthesis of N-Aryl Carbamates from Aryl(TMP)iodonium Salts via C-N Coupling. Org Lett 2025; 27:1130-1135. [PMID: 39856027 DOI: 10.1021/acs.orglett.4c04582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Modular C-N coupling is a desirable way to construct N-aryl carbamates, which are privileged scaffolds in active pharmaceutical ingredients. However, there are no broadly applicable metal-free methods for theN-arylation of carbamates. Herein, we describe a metal-free approach that uses aryl(TMP)iodonium salts as arylation reagents for cyclic carbamates by exploiting the metal-like reactivity of iodine(III). The scope includes 25 examples, including 17 different aryl(TMP)iodonium salts and 9 different carbamates, in yields ranging between 55 and 97% (75% avg).
Collapse
Affiliation(s)
- Joseph Hatton
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - David R Stuart
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
4
|
Miyamoto N, Kikushima K, Sasa H, Katagiri T, Takenaga N, Kita Y, Dohi T. Transition-metal-free dibenzoxazepinone synthesis by hypervalent iodine-mediated chemoselective arylocyclizations of N-functionalized salicylamides. Chem Commun (Camb) 2025; 61:1882-1885. [PMID: 39774484 DOI: 10.1039/d4cc05908e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
We have developed transition-metal-free synthetic methodologies for dibenzoxazepinones utilizing salicylamides as starting materials and employing two distinct types of successive hypervalent iodine-mediated arylocyclizations. This synthetic protocol encompasses selective phenol O-arylation of salicylamides with diaryliodonium salts, followed by electrophilic aromatic amination utilizing chemically or electronically generated hypervalent iodine reagents in the second stage of the process.
Collapse
Affiliation(s)
- Naoki Miyamoto
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| | - Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| | - Hirotaka Sasa
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
| | - Ten Katagiri
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| | - Naoko Takenaga
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| |
Collapse
|
5
|
Mamgain R, Sakthivel K, Singh FV. Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts. Beilstein J Org Chem 2024; 20:2891-2920. [PMID: 39559439 PMCID: PMC11572100 DOI: 10.3762/bjoc.20.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Diaryliodonium salts have become widely recognized as arylating agents in the last two decades. Both, symmetrical and unsymmetrical forms of these salts serve as effective electrophilic arylating reagents in various organic syntheses. The use of diaryliodoniums in C-C and carbon-heteroatom bond formations, particularly under metal-free conditions, has further enhanced the popularity of these reagents. In this review, we concentrate on various arylation reactions involving carbon and other heteroatoms, encompassing rearrangement reactions in the absence of any metal catalyst, and summarize advancements made in the last five years.
Collapse
Affiliation(s)
- Ritu Mamgain
- Department of Chemistry, SAS, Vellore Institute of Technology Chennai, Chennai-600 127, Tamil Nadu, India
| | - Kokila Sakthivel
- Department of Chemistry, SAS, Vellore Institute of Technology Chennai, Chennai-600 127, Tamil Nadu, India
| | - Fateh V Singh
- Department of Chemistry, SAS, Vellore Institute of Technology Chennai, Chennai-600 127, Tamil Nadu, India
| |
Collapse
|
6
|
Kikushima K, Tsuda T, Miyamoto N, Kita Y, Dohi T. Borate-mediated aryl polyfluoroalkoxylation under transition-metal-free conditions. Chem Commun (Camb) 2024; 60:10552-10555. [PMID: 39229779 DOI: 10.1039/d4cc04008b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We describe the transition-metal-free coupling for polyfluoroalkoxy arenes using polyfluoroalkoxy borates, which serve as counterions to diaryliodonium salts and transferring mediators of polyfluoroalkoxy groups. This strategy demonstrates high functional group compatibility owing to the low nucleophilicity of the borate mediator, thus offering a practical approach for synthesizing diverse polyfluoroalkoxy arenes.
Collapse
Affiliation(s)
- Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| | - Tomoka Tsuda
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| | - Naoki Miyamoto
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| |
Collapse
|
7
|
Bugaenko DI, Tikhanova OA, Andreychev VV, Karchava AV. Arylation of Diethyl Acetamidomalonate with Diaryliodonium Salts En Route to α-Arylglycines. J Org Chem 2024; 89:9923-9928. [PMID: 38950106 DOI: 10.1021/acs.joc.4c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Diethyl acetamidomalonate (DEAM) has been widely used for the synthesis of α-amino acids via C-alkylation under basic conditions followed by hydrolysis/decarboxylation. In contrast, the C-arylation of this reagent remains undeveloped. Herein, we report a novel strategy for the synthesis of racemic α-arylglycines based on the selective arylation of DEAM with diaryliodonium salts under mild, transition metal-free conditions. The reaction features good functional group tolerance and easy scalability and is applicable to the chemoselective C-H-modification of arenes including approved drugs, thus enabling a straightforward approach to complex α-arylglycines that would be challenging to make otherwise.
Collapse
Affiliation(s)
- Dmitry I Bugaenko
- Department of Chemistry, Moscow State University, Moscow 119991, Russia
| | - Olga A Tikhanova
- Department of Chemistry, Moscow State University, Moscow 119991, Russia
| | | | | |
Collapse
|
8
|
Kikushima K, Komiyama K, Umekawa N, Yamada K, Kita Y, Dohi T. Silver-Catalyzed Coupling of Unreactive Carboxylates: Synthesis of α-Fluorinated O-Aryl Esters. Org Lett 2024; 26:5347-5352. [PMID: 38885467 DOI: 10.1021/acs.orglett.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
α-Fluorinated aryl esters pose a challenge in synthesis via O-arylation of α-fluorinated carboxylates owing to their low reactivities. This limitation has been addressed by combining a silver catalyst with aryl(trimethoxyphenyl)iodonium tosylates to access α-fluorinated aryl esters. We envision that the catalytic system involves high-valent aryl silver species generated via the oxidation of silver(I) salt. The present method provided a synthetic protocol for various α-fluorinated aryl esters including fluorinated analogs of drug derivatives.
Collapse
Affiliation(s)
- Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Keina Komiyama
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Narumi Umekawa
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Kohei Yamada
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| |
Collapse
|
9
|
Petruncio G, Lee KH, Girgis M, Shellnutt Z, Beaulac Z, Xiang J, Lee SH, Peng X, Burdick M, Noble SM, Shim YM, Paige M. Synthesis and Evaluation of diaryl ether modulators of the leukotriene A 4 hydrolase aminopeptidase activity. Eur J Med Chem 2024; 272:116459. [PMID: 38704942 DOI: 10.1016/j.ejmech.2024.116459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
Activation of the aminopeptidase (AP) activity of leukotriene A4 hydrolase (LTA4H) presents a potential therapeutic strategy for resolving chronic inflammation. Previously, ARM1 and derivatives were found to activate the AP activity using the alanine-p-nitroanilide (Ala-pNA) as a reporter group in an enzyme kinetics assay. As an extension of this previous work, novel ARM1 derivatives were synthesized using a palladium-catalyzed Ullmann coupling reaction and screened using the same assay. Analogue 5, an aminopyrazole (AMP) analogue of ARM1, was found to be a potent AP activator with an AC50 of 0.12 μM. An X-ray crystal structure of LTA4H in complex with AMP was refined at 2.7 Å. Despite its AP activity with Ala-pNA substrate, AMP did not affect hydrolysis of the previously proposed natural ligand of LTA4H, Pro-Gly-Pro (PGP). This result highlights a discrepancy between the hydrolysis of more conveniently monitored chromogenic synthetic peptides typically employed in assays and endogenous peptides. The epoxide hydrolase (EH) activity of AMP was measured in vivo and the compound significantly reduced leukotriene B4 (LTB4) levels in a murine bacterial pneumonia model. However, AMP did not enhance survival in the murine pneumonia model over a 14-day period. A liver microsome stability assay showed metabolic stability of AMP. The results suggested that accelerated Ala-pNA cleavage is not sufficient for predicting therapeutic potential, even when the full mechanism of activation is known.
Collapse
Affiliation(s)
- Greg Petruncio
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States; Center for Molecular Engineering, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States.
| | - Kyung Hyeon Lee
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States; Center for Molecular Engineering, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States; Bacterial Diseases Branch, Wound Infections Department, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, United States
| | - Michael Girgis
- Center for Molecular Engineering, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States; Department of Bioengineering, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States
| | - Zachary Shellnutt
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States
| | - Zach Beaulac
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States
| | - Jiangdong Xiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Soo Hyeon Lee
- Bacterial Diseases Branch, Wound Infections Department, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, United States
| | - Xuejun Peng
- Bruker Scientific LLC., 101 Daggett Drive, San Jose CA, 95134, United States
| | - Marie Burdick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, P.O. Box 800546, Charlottesville, VA, 22908, United States
| | - Schroeder M Noble
- Bacterial Diseases Branch, Wound Infections Department, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, United States.
| | - Yun M Shim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, P.O. Box 800546, Charlottesville, VA, 22908, United States.
| | - Mikell Paige
- Department of Chemistry & Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States; Center for Molecular Engineering, George Mason University, 10920 George Mason Circle, Manassas, VA, 20110, United States.
| |
Collapse
|
10
|
Miyamoto N, Koseki D, Sumida K, Elboray EE, Takenaga N, Kumar R, Dohi T. Auxiliary strategy for the general and practical synthesis of diaryliodonium(III) salts with diverse organocarboxylate counterions. Beilstein J Org Chem 2024; 20:1020-1028. [PMID: 38711591 PMCID: PMC11070968 DOI: 10.3762/bjoc.20.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
Diaryliodonium(III) salts are versatile reagents that exhibit a range of reactions, both in the presence and absence of metal catalysts. In this study, we developed efficient synthetic methods for the preparation of aryl(TMP)iodonium(III) carboxylates, by reaction of (diacetoxyiodo)arenes or iodosoarenes with 1,3,5-trimethoxybenzene in the presence of a diverse range of organocarboxylic acids. These reactions were conducted under mild conditions using the trimethoxyphenyl (TMP) group as an auxiliary, without the need for additives, excess reagents, or counterion exchange in further steps. These protocols are compatible with a wide range of substituents on (hetero)aryl iodine(III) compounds, including electron-rich, electron-poor, sterically congested, and acid-labile groups, as well as a broad range of aliphatic and aromatic carboxylic acids for the synthesis of diverse aryl(TMP)iodonium(III) carboxylates in high yields. This method allows for the hybridization of complex bioactive and fluorescent-labeled carboxylic acids with diaryliodonium(III) salts.
Collapse
Affiliation(s)
- Naoki Miyamoto
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga, 525-8577, Japan
| | - Daichi Koseki
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga, 525-8577, Japan
| | - Kohei Sumida
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga, 525-8577, Japan
| | - Elghareeb E Elboray
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga, 525-8577, Japan
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Naoko Takenaga
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Ravi Kumar
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA Faridabad, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga, 525-8577, Japan
| |
Collapse
|
11
|
Liu X, Wang L, Wang HY, Han J. Diversification of Complex Diaryl Ethers via Diaryliodonium Intramolecular Aryl Rearrangement. J Org Chem 2023; 88:13089-13101. [PMID: 37661693 DOI: 10.1021/acs.joc.3c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In this study, we present an efficient site-selective O-arylation method applicable to a broad range of complex arenes involving intramolecular aryl rearrangement. The reaction was facilitated by diaryliodonium salts bearing vicinal trifluoromethanesulfonate (OTf) groups. The procedure was initiated with selective C-H bond activation of arenes, which were then converted into diaryl ethers through nucleophilic aromatic substitution (SNAr). This synthetic method successfully affords complex diaryl ether derivatives, showcasing its practicality for the diversification of functionalized arenes and pharmaceutical agents.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hao-Yang Wang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
12
|
Radzhabov AD, Soldatova NS, Ivanov DM, Yusubov MS, Kukushkin VY, Postnikov PS. Metal-free and atom-efficient protocol for diarylation of selenocyanate by diaryliodonium salts. Org Biomol Chem 2023; 21:6743-6749. [PMID: 37552120 DOI: 10.1039/d3ob00833a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
We developed an atom- and reaction mass efficient strategy for the preparation of diarylselenides using iodonium salts as reactants. The developed approach allows the obtaining of diarylselenides from the corresponding trimethoxyphenyl-substituted iodonium salts via a two-step one-pot reaction sequence. The proposed metal-free methodology is based on the involvement of both iodonium aryl groups for diarylation.
Collapse
Affiliation(s)
- Amirbek D Radzhabov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
| | - Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
| | - Daniil M Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Mekhman S Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
- Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic
| |
Collapse
|
13
|
Bugaenko DI, Volkov AA, Andreychev VV, Karchava AV. Reaction of Diaryliodonium Salts with Potassium Alkyl Xanthates as an Entry Point to Accessing Organosulfur Compounds. Org Lett 2023; 25:272-276. [PMID: 36594721 DOI: 10.1021/acs.orglett.2c04143] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Preparation of S-aryl xanthates via transition-metal-catalyzed or SNAr reactions is complicated by their further transformations under the utilized conditions. In contrast, S-arylation of potassium O-alkyl xanthates with diaryliodonium salts proceeds under mild conditions, enabling access to substituted S-aryl xanthates. The method exhibits good functional group tolerance and can be applied to the late-stage C-H functionalization of drug molecules. Divergent transformations of the resulting S-aryl xanthates provide rapid access to a range of medicinal chemistry-relevant organosulfur compounds.
Collapse
Affiliation(s)
- Dmitry I Bugaenko
- Department of Chemistry, Moscow State University, Moscow 119991, Russia
| | - Alexey A Volkov
- Department of Chemistry, Moscow State University, Moscow 119991, Russia
| | | | | |
Collapse
|
14
|
Linde E, Knippenberg N, Olofsson B. Synthesis of Cyclic and Acyclic ortho-Aryloxy Diaryliodonium Salts for Chemoselective Functionalizations. Chemistry 2022; 28:e202202453. [PMID: 36083826 PMCID: PMC10092902 DOI: 10.1002/chem.202202453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Two regioselective, high-yielding one-pot routes to oxygen-bridged cyclic diaryliodonium salts and ortho-aryloxy-substituted acyclic diaryliodonium salts are presented. Starting from easily available ortho-iodo diaryl ethers, complete selectivity in formation of either the cyclic or acyclic product could be achieved by varying the reaction conditions. The complimentary reactivities of these novel ortho-oxygenated iodonium salts were demonstrated through a series of chemoselective arylations under metal-catalyzed and metal-free conditions, to deliver a range of novel, ortho-functionalized diaryl ether derivatives.
Collapse
Affiliation(s)
- Erika Linde
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Niels Knippenberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Berit Olofsson
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
15
|
Saikia RA, Dutta A, Sarma B, Thakur AJ. Metal-Free Regioselective N 2-Arylation of 1 H-Tetrazoles with Diaryliodonium Salts. J Org Chem 2022; 87:9782-9796. [PMID: 35849501 DOI: 10.1021/acs.joc.2c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a simple, metal-free regioselective N2-arylation strategy for 5-substituted-1H-tetrazoles with diaryliodonium salts to access 2-aryl-5-substituted-tetrazoles. Diaryliodonium salts with a wide range of both electron-rich and previously challenged electron-deficient aryl groups are applicable in this method. Diversely functionalized tetrazoles are tolerable also. We have devised a one-pot system to synthesize 2,5-diaryl-tetrazoles directly from nitriles. The synthetic utility of this method is furthered extended to late-stage arylation of two biologically active molecules.
Collapse
Affiliation(s)
- Raktim Abha Saikia
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Anurag Dutta
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| |
Collapse
|
16
|
Katagiri K, Kuriyama M, Yamamoto K, Demizu Y, Onomura O. Organocatalytic Synthesis of Phenols from Diaryliodonium Salts with Water under Metal-Free Conditions. Org Lett 2022; 24:5149-5154. [PMID: 35822911 DOI: 10.1021/acs.orglett.2c01989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The metal-free synthesis of phenols from diaryliodonium salts with water was developed by using N-benzylpyridin-2-one as an organocatalyst. In this process, sterically congested, functionalized, and heterocycle-containing iodonium salts were smoothly converted to the desired products, and the clofibrate and mecloqualone derivatives were also synthesized in high yields. In addition, the gram-scale experiment was successfully carried out with 10 mmol of a sterically congested substrate.
Collapse
Affiliation(s)
- Kotone Katagiri
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
17
|
He SD, Guo XQ, Li J, Zhang YC, Chen LM, Kang TR. Base‐Promoted Reaction of Phenols with Spirocylic λ3‐iodanes: Access to both 2‐Iodovinyl Aryl Ethers and Diaryl Ethers. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shun-Dong He
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu CHINA
| | - Xiao-Qiang Guo
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy CHINA
| | - Jun Li
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy CHINA
| | - Yu-Cheng Zhang
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy CHINA
| | - Lian-Mei Chen
- Chengdu University School of Food and Biological Engineering CHINA
| | - Tai-Ran Kang
- Chengdu University School of Food and Biological Engineering No 1, SHIDA ROAD 610106 Chengdu CHINA
| |
Collapse
|
18
|
Catalyst‐Free Visible Light Mediated Synthesis of Unsymmetrical Tertiary Arylphosphines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Saikia RA, Hazarika N, Biswakarma N, Chandra Deka R, Thakur AJ. Metal-free S-arylation of 5-mercaptotetrazoles and 2-mercaptopyridine with unsymmetrical diaryliodonium salts. Org Biomol Chem 2022; 20:3890-3896. [PMID: 35481589 DOI: 10.1039/d2ob00406b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we demonstrate the application of unsymmetrical iodonium salts towards S-arylation of heterocyclic thiols (especially tetrazole-5-thiols and pyridine-2-thiol) under metal-free conditions, affording a diverse range of di(hetero)aryl thioethers in moderate to good yields. A detailed study on the effects of counter-anions and the auxiliary of iodonium salts was conducted. Suitable auxiliary selection of the unsymmetrical iodonium salt offers flexibility for a wide range of aryl moieties and its incorporation into S-arylation. The DFT study supports the experimental observations of chemoselective arylation.
Collapse
Affiliation(s)
- Raktim Abha Saikia
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India.
| | - Nitumoni Hazarika
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati-781039, India
| | - Nishant Biswakarma
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India.
| | - Ramesh Chandra Deka
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India.
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India.
| |
Collapse
|
20
|
Yoshida T, Honda Y, Morofuji T, Kano N. Transition-Metal-Free O-Arylation of Alcohols and Phenols with S-Arylphenothiaziniums. J Org Chem 2022; 87:7565-7573. [PMID: 35578794 DOI: 10.1021/acs.joc.2c00771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the transition-metal-free O-arylation of alcohols and phenols with S-arylphenothiaziniums, which can be easily synthesized from boronic acids. Aryl substituents derived from arylboronic acids were selectively introduced into the hydroxy groups in alcohols and phenols, and a variety of aryl ethers were synthesized. This selectivity is supported by theoretical calculations.
Collapse
Affiliation(s)
- Tatsuki Yoshida
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Yuki Honda
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
21
|
Kikushima K, Miyamoto N, Watanabe K, Koseki D, Kita Y, Dohi T. Ligand- and Counterion-Assisted Phenol O-Arylation with TMP-Iodonium(III) Acetates. Org Lett 2022; 24:1924-1928. [DOI: 10.1021/acs.orglett.2c00294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Naoki Miyamoto
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Kazuma Watanabe
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Daichi Koseki
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
22
|
Kikushima K, Elboray EE, Jimenez-Halla JOC, Solorio-Alvarado CR, Dohi T. Diaryliodonium(III) Salts in One-Pot Double Functionalization of C–IIII and ortho C–H Bonds. Org Biomol Chem 2022; 20:3231-3248. [DOI: 10.1039/d1ob02501e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the 1950s, diaryliodonium(III) salts have been demonstrated to participate in various arylation reactions, forming aryl–heteroatom and aryl–carbon bonds. Incorporating the arylation step into sequential transformations would provide access to...
Collapse
|
23
|
Pou S, Dodean RA, Frueh L, Liebman KM, Gallagher RT, Jin H, Jacobs RT, Nilsen A, Stuart DR, Doggett JS, Riscoe MK, Winter RW. A New Scalable Synthesis of ELQ-300, ELQ-316, and other Antiparasitic Quinolones. Org Process Res Dev 2021; 25:1841-1852. [PMID: 35110959 DOI: 10.1021/acs.oprd.1c00099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Endochin-Like Quinolone (ELQ) compound class may yield effective, safe treatments for a range of important human and animal afflictions. However, to access the public health potential of this compound series, a synthetic route needed to be devised that lowers costs and is amenable to large scale production. In the new synthetic route described here, a substituted β-keto ester, formed by an Ullmann reaction and subsequent acylation, is reacted with an aniline via a Conrad-Limpach reaction to produce 3-substituted 4(1H)-quinolones such as ELQ-300 and ELQ-316. This synthetic route, the first described to be truly amenable to industrial scale production, is relatively short (5 reaction steps), does not require palladium, chromatographic separation or protecting group chemistry, and may be performed without high vacuum distillation.
Collapse
Affiliation(s)
- Sovitj Pou
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Rozalia A Dodean
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Lisa Frueh
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Katherine M Liebman
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Rory T Gallagher
- Department of Chemistry, Portland State University, 1719 SW 10 Avenue, Portland, Oregon 97201, United States
| | - Haihong Jin
- Medicinal Chemistry Core, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Robert T Jacobs
- Medicines for Malaria Venture, ICC, route de Pré-Bois 20, P.O. Box 1826, 1215 Geneva 15, Switzerland
| | - Aaron Nilsen
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States.,Medicinal Chemistry Core, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - David R Stuart
- Department of Chemistry, Portland State University, 1719 SW 10 Avenue, Portland, Oregon 97201, United States
| | - J Stone Doggett
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States.,School of Medicine Division of Infectious Diseases, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Michael K Riscoe
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States.,Department of Microbiology and Molecular Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Rolf W Winter
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| |
Collapse
|
24
|
Affiliation(s)
- Le Liu
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
25
|
Besson T, Fruit C. Recent Advances in Transition-Metal-Free Late-Stage C-H and N-H Arylation of Heteroarenes Using Diaryliodonium Salts. Pharmaceuticals (Basel) 2021; 14:661. [PMID: 34358087 PMCID: PMC8308686 DOI: 10.3390/ph14070661] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Transition-metal-free direct arylation of C-H or N-H bonds is one of the key emerging methodologies that is currently attracting tremendous attention. Diaryliodonium salts serve as a stepping stone on the way to alternative environmentally friendly and straightforward pathways for the construction of C-C and C-heteroatom bonds. In this review, we emphasize the recent synthetic advances of late-stage C(sp2)-N and C(sp2)-C(sp2) bond-forming reactions under metal-free conditions using diaryliodonium salts as arylating reagent and its applications to the synthesis of new arylated bioactive heterocyclic compounds.
Collapse
Affiliation(s)
| | - Corinne Fruit
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, F-76000 Rouen, France;
| |
Collapse
|
26
|
Nilova A, Metze B, Stuart DR. Aryl(TMP)iodonium Tosylate Reagents as a Strategic Entry Point to Diverse Aryl Intermediates: Selective Access to Arynes. Org Lett 2021; 23:4813-4817. [PMID: 34032454 DOI: 10.1021/acs.orglett.1c01534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arenes are broadly found motifs in societally important molecules. Access to diverse arene chemical space is critically important, and the ability to do so from common reagents is highly desirable. Aryl(TMP)iodonium tosylates provide one such access point to arene chemical space via diverse aryl intermediates. Here we demonstrate that controlling reaction pathways selectively leads to arynes with a broad scope of arenes and arynophiles (24 examples, 70% average yield) and efficient access to biologically active compounds.
Collapse
Affiliation(s)
- Aleksandra Nilova
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Bryan Metze
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - David R Stuart
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
27
|
Noorpoor Z, Tavangar S. Preparation and characterization of Cu based on 5,5'-bistetrazole as a recyclable metal-organic framework and application in synthesis of diaryl ether by the Ullmann coupling reaction. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1914333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zeinab Noorpoor
- Chemical Engineering, Malek-Ashtar University of Technology, Tehran, Iran
| | - Saeed Tavangar
- Chemical Engineering, Malek-Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
28
|
Takenaga N, Kumar R, Dohi T. Heteroaryliodonium(III) Salts as Highly Reactive Electrophiles. Front Chem 2020; 8:599026. [PMID: 33330391 PMCID: PMC7714995 DOI: 10.3389/fchem.2020.599026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/16/2020] [Indexed: 11/20/2022] Open
Abstract
In recent years, the chemistry of heteroaryliodonium(III) salts has undergone significant developments. Heteroaryliodonium(III) salts have been found to be useful synthetic tools for the transfer of heteroaryl groups under metal-catalyzed and metal-free conditions for the preparation of functionalized heteroarene-containing compounds. Synthetic transformations mediated by these heteroaryliodonium(III) salts are classified into two categories: (1) reactions utilizing the high reactivity of the hypervalent iodine(III) species, and (2) reactions based on unique and new reactivities not observed in other types of conventional diaryliodonium salts. The latter feature is of particular interest and so has been intensively investigated in recent decades. This mini-review therefore aims to summarize the recent synthetic applications of heteroaryliodonium(III) salts as highly reactive electrophiles.
Collapse
Affiliation(s)
| | - Ravi Kumar
- J.C. Bose University of Science & Technology, YMCA, Faridabad, India
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
29
|
Diaryliodoniums Salts as Coupling Partners for Transition-Metal Catalyzed C- and N-Arylation of Heteroarenes. Catalysts 2020. [DOI: 10.3390/catal10050483] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Owing to the pioneering works performed on the metal-catalyzed sp2 C–H arylation of indole and pyrrole by Sanford and Gaunt, N– and C-arylation involving diaryliodonium salts offers an attractive complementary strategy for the late-stage diversification of heteroarenes. The main feature of this expanding methodology is the selective incorporation of structural diversity into complex molecules which usually have several C–H bonds and/or N–H bonds with high tolerance to functional groups and under mild conditions. This review summarizes the main recent achievements reported in transition-metal-catalyzed N– and/or C–H arylation of heteroarenes using acyclic diaryliodonium salts as coupling partners.
Collapse
|