1
|
Zhou K, Xiao Y, Huang Z, Zhao Y. Photocatalyzed Aryl C-H Fluorocarbonylation with CF 2Br 2. Angew Chem Int Ed Engl 2025; 64:e202414933. [PMID: 39269673 DOI: 10.1002/anie.202414933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
The use of abundant and inexpensive fluorine feedstocks to synthesize fluorinated compounds is a promising strategy that has not been extensively investigated. Dibromodifluoromethane (CF2Br2) is an inexpensive fluorine source that has rarely been used for C-H fluoroalkylation. This study reveals an iridium-catalyzed, tunable strategy for synthesizing acyl fluorides and difluorobromomethylated products using CF2Br2. To achieve the desired products, this process only requires the change of solvent (from DMSO to 1,4-dioxane) under blue LED illumination. A variety of arenes and heteroarenes with electron-donating substituents were successfully used, yielding the corresponding products in moderate to good yields. Mechanistic experiments revealed that DMSO served a dual role, functioning as both solvent and nucleophilic reagent in C-H fluorocarbonylation.
Collapse
Affiliation(s)
- Kehan Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yuheng Xiao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, P. R. China
| |
Collapse
|
2
|
Prinčič G, Omahen B, Jelen J, Gruden E, Tavčar G, Iskra J. Chloroimidazolium Deoxyfluorination Reagent with H 2F 3- Anion as a Sole Fluoride Source. J Org Chem 2024; 89:10557-10561. [PMID: 39008626 DOI: 10.1021/acs.joc.4c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
In the study, we introduce an air-stable NHC-based deoxyfluorination reagent ImCl[H2F3], offering a promising avenue for deoxyfluorination across various substrates. Reagent efficiently fluorinates benzyl alcohols, carboxylic acids, and P(V) compounds without external fluoride sources. A mechanistic study reveals a two-step process involving benzyl chloride as an intermediate, shedding light on the two-step reaction pathway. The Hammet plot provides insights into reaction mechanisms with different substrates, enhancing our understanding of this versatile deoxyfluorination method.
Collapse
Affiliation(s)
- Griša Prinčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Blaž Omahen
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jan Jelen
- Department of Inorganic Chemistry and Technology, "Jožef Stefan" Institute, Jamova cesta 39, 1000Ljubljana, Slovenia
| | - Evelin Gruden
- Department of Inorganic Chemistry and Technology, "Jožef Stefan" Institute, Jamova cesta 39, 1000Ljubljana, Slovenia
| | - Gašper Tavčar
- Department of Inorganic Chemistry and Technology, "Jožef Stefan" Institute, Jamova cesta 39, 1000Ljubljana, Slovenia
| | - Jernej Iskra
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Kwok CHT, Harding EK, Burma NE, Markovic T, Massaly N, van den Hoogen NJ, Stokes-Heck S, Gambeta E, Komarek K, Yoon HJ, Navis KE, McAllister BB, Canet-Pons J, Fan C, Dalgarno R, Gorobets E, Papatzimas JW, Zhang Z, Kohro Y, Anderson CL, Thompson RJ, Derksen DJ, Morón JA, Zamponi GW, Trang T. Pannexin-1 channel inhibition alleviates opioid withdrawal in rodents by modulating locus coeruleus to spinal cord circuitry. Nat Commun 2024; 15:6264. [PMID: 39048565 PMCID: PMC11269731 DOI: 10.1038/s41467-024-50657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Opioid withdrawal is a liability of chronic opioid use and misuse, impacting people who use prescription or illicit opioids. Hyperactive autonomic output underlies many of the aversive withdrawal symptoms that make it difficult to discontinue chronic opioid use. The locus coeruleus (LC) is an important autonomic centre within the brain with a poorly defined role in opioid withdrawal. We show here that pannexin-1 (Panx1) channels expressed on microglia critically modulate LC activity during opioid withdrawal. Within the LC, we found that spinally projecting tyrosine hydroxylase (TH)-positive neurons (LCspinal) are hyperexcitable during morphine withdrawal, elevating cerebrospinal fluid (CSF) levels of norepinephrine. Pharmacological and chemogenetic silencing of LCspinal neurons or genetic ablation of Panx1 in microglia blunted CSF NE release, reduced LC neuron hyperexcitability, and concomitantly decreased opioid withdrawal behaviours in mice. Using probenecid as an initial lead compound, we designed a compound (EG-2184) with greater potency in blocking Panx1. Treatment with EG-2184 significantly reduced both the physical signs and conditioned place aversion caused by opioid withdrawal in mice, as well as suppressed cue-induced reinstatement of opioid seeking in rats. Together, these findings demonstrate that microglial Panx1 channels modulate LC noradrenergic circuitry during opioid withdrawal and reinstatement. Blocking Panx1 to dampen LC hyperexcitability may therefore provide a therapeutic strategy for alleviating the physical and aversive components of opioid withdrawal.
Collapse
Affiliation(s)
- Charlie H T Kwok
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Erika K Harding
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Nicole E Burma
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tamara Markovic
- Department of Anesthesiology, Washington University School of Medicine, Washington University Pain Center, St. Louis, MO, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University School of Medicine, Washington University Pain Center, St. Louis, MO, USA
- Department of Anesthesiology & Perioperative Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nynke J van den Hoogen
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sierra Stokes-Heck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Eder Gambeta
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kristina Komarek
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Hye Jean Yoon
- Department of Anesthesiology, Washington University School of Medicine, Washington University Pain Center, St. Louis, MO, USA
| | - Kathleen E Navis
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - Brendan B McAllister
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Julia Canet-Pons
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Churmy Fan
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Rebecca Dalgarno
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Evgueni Gorobets
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | | | - Zizhen Zhang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Yuta Kohro
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Connor L Anderson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Darren J Derksen
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - Jose A Morón
- Department of Anesthesiology, Washington University School of Medicine, Washington University Pain Center, St. Louis, MO, USA
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tuan Trang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Lisboa AVRD, Duran-Camacho G, Ehrlacher AK, Lasky MR, Sanford MS. Deoxyfluorination of Carboxylic Acids via an In Situ Generated Trifluoromethoxide Salt. Org Lett 2023; 25:9025-9029. [PMID: 38064366 PMCID: PMC10774922 DOI: 10.1021/acs.orglett.3c03706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
An in situ generated pyridinium trifluoromethoxide salt (PyOCF3) is a highly effective deoxyfluorination reagent for the synthesis of acid fluorides. PyOCF3 is formed at room temperature from the reaction of 2,4-dinitro(trifluoromethoxy)benzene with 4-dimethylaminopyridine. PyOCF3 undergoes slow release of fluorophosgene and fluoride, which serve as the electrophile and nucleophile, respectively, for deoxyfluorination. A wide substrate scope and high functional group tolerance are demonstrated. Furthermore, the acid fluorides can be purified by filtration and telescoped to various known reactions.
Collapse
Affiliation(s)
- Al Vicente Riano D. Lisboa
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Geraldo Duran-Camacho
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Annika K. Ehrlacher
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Matthew R. Lasky
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Cen M, Yang X, Zhang S, Gan L, Liu L, Chen T. Synthesis of acyl fluorides through deoxyfluorination of carboxylic acids. Org Biomol Chem 2023; 21:9372-9378. [PMID: 37975303 DOI: 10.1039/d3ob01557b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A direct deoxyfluorination of carboxylic acids by utilizing inorganic potassium fluoride (KF) as a safe and inexpensive fluoride source has been developed. Both aryl carboxylic acids and cinnamyl carboxylic acids could be efficiently transformed into valuable acyl fluorides in moderate to high yields with good functional group tolerance. A scale-up reaction could be carried out smoothly under solvent-free conditions, which further demonstrated the practicality of this reaction in organic synthesis.
Collapse
Affiliation(s)
- Mengjie Cen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Xi Yang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Shanshan Zhang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Liguang Gan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
6
|
Zhao M, Chen M, Wang T, Yang S, Peng Q, Tang P. Fluorocarbonylation via palladium/phosphine synergistic catalysis. Nat Commun 2023; 14:4583. [PMID: 37524725 PMCID: PMC10390470 DOI: 10.1038/s41467-023-40180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Despite the growing importance of fluorinated organic compounds in pharmaceuticals, agrochemicals, and materials science, the introduction of fluorine into organic molecules is still a challenge, and no catalytic fluorocarbonylation of aryl/alkyl boron compounds has been reported to date. Herein, we present the development of palladium and phosphine synergistic redox catalysis of fluorocarbonylation of potassium aryl/alkyl trifluoroborate. Trifluoromethyl arylsulfonate (TFMS), which was used as a trifluoromethoxylation reagent, an easily handled and bench-scale reagent, has been employed as an efficient source of COF2. The reaction operates under mild conditions with good to excellent yields and tolerates diverse complex scaffolds, which allows efficient late-stage fluorocarbonylation of marked small-molecule drugs. Mechanistically, the key intermediates of labile Brettphos-Pd(II)-OCF3 complex and difluoro-Brettphos were synthesized and spectroscopically characterized, including X-ray crystallography. A detailed reaction mechanism involving the synergistic redox catalytic cycles Pd(II)/(0) and P(III)/(V) was proposed, and multifunction of phosphine ligand was identified based on 19F NMR, isotope tracing, synthetic, and computational studies.
Collapse
Affiliation(s)
- Mingxin Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Miao Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Tian Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Shuhan Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
| | - Pingping Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
| |
Collapse
|
7
|
Chen Q, You J, Tian T, Li Z, Kashihara M, Mori H, Nishihara Y. Nickel-Catalyzed Decarbonylative Reductive Alkylation of Aroyl Fluorides with Alkyl Bromides. Org Lett 2022; 24:9259-9263. [PMID: 36516299 DOI: 10.1021/acs.orglett.2c03823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper describes the nickel-catalyzed reductive alkylation of aroyl fluorides with alkyl bromides in a decarbonylative manner. In this reaction, various functional groups are well tolerated and the C(sp2)-C(sp3) bond can be constructed directly without the use of organometallic reagents. The present reaction is a cross-electrophile coupling via the radical pathway, affording the corresponding alkylarenes in moderate to good yields.
Collapse
Affiliation(s)
- Qiang Chen
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Jingwen You
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Tian Tian
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Zhenyao Li
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Myuto Kashihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Mori
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
8
|
Lalloo N, Brigham CE, Sanford MS. Mechanism-Driven Development of Group 10 Metal-Catalyzed Decarbonylative Coupling Reactions. Acc Chem Res 2022; 55:3430-3444. [PMID: 36382937 PMCID: PMC9764028 DOI: 10.1021/acs.accounts.2c00496] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transition-metal-catalyzed cross-coupling reactions are widely used in both academia and industry for the construction of carbon-carbon and carbon-heteroatom bonds. The vast majority of cross-coupling reactions utilize aryl (pseudo)halides as the electrophilic coupling partner. Carboxylic acid derivatives (RC(O)X) represent a complementary class of electrophiles that can engage in decarbonylative couplings to produce analogous products. This decarbonylative approach offers the advantage that RC(O)X are abundant and inexpensive. In addition, decarbonylative coupling enables both intramolecular (between R and X of the carboxylic acid derivative) as well as intermolecular bond-forming reactions (in which an exogeneous nucleophile is coupled with the R group derived from RC(O)X). In these intermolecular reactions, the X-substituent on the carboxylic acid can be tuned to facilitate both oxidative addition and transmetalation, thus eliminating the need for an exogeneous base. This Account details our group's development of a diverse variety of base-free decarbonylative coupling reactions catalyzed by group 10 metals. Furthermore, it highlights how catalyst design can be guided by stoichiometric organometallic studies of these systems.Our early studies focused on intramolecular decarbonylative couplings that transform RC(O)X to the corresponding R-X with extrusion of CO. We first identified Pd and Ni monodentate phosphine catalysts that convert aryl thioesters (ArC(O)SR) to the corresponding thioethers (ArSR). We next expanded this reactivity to fluoroalkyl thioesters, using readily available fluoroalkyl carboxylic acids as the fluoroalkyl (RF) source. A Ni-phosphinoferrocene catalyst proved optimal, and the large bite angle bidentate ligand was necessary to promote the challenging RF-S bond-forming reductive elimination step.We next pursued intramolecular decarbonylative couplings of aroyl halides. Palladium-based catalysts bearing dialkylbiaryl ligands (e.g., BrettPhos) were identified as optimal for converting aroyl chlorides (ArC(O)Cl) to aryl chlorides (ArCl). These ligands were selected based on their ability to facilitate the key C-Cl bond-forming reductive elimination step of the catalytic cycle. In contrast, all attempts to convert aroyl fluorides [ArC(O)F)] to aryl fluorides (ArF) were unsuccessful with either Pd- or Ni-based catalysts. Organometallic studies of the Ni-system show that C(O)-F oxidative addition and CO deinsertion proceed smoothly, but the resulting nickel(II) aryl fluoride intermediate fails to undergo C-F bond-forming reductive elimination.In contrast to its inertness to reductive elimination, this nickel(II) aryl fluoride proved highly reactive toward transmetalation. The fluoride ligand serves as an internal base, such that no additional base is required. We leveraged this "transmetalation active" intermediate to achieve base-free Ni-catalyzed intermolecular decarbonylative coupling reactions between aroyl fluorides and boron reagents to access both biaryl and aryl-boronate ester products. By tuning the electrophile, transmetalating reagent, and catalyst, this same approach also proved applicable to base-free intermolecular decarbonylative fluoroalkylation (between difluoromethylacetyl fluoride and arylboronate esters) and aryl amination (between phenol esters and silyl amines).Moving forward, a key goal is to identify catalyst systems that enable more challenging bond constructions via this manifold. In addition, CO inhibition remains a major issue leading to the requirement for high temperatures and high catalyst loadings. Identifying catalysts that are resistant to CO binding and/or approaches to remove CO under mild conditions will be critical for making these reactions more practical and scalable.
Collapse
Affiliation(s)
- Naish Lalloo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Conor E. Brigham
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Nishihara Y, Tian T, Chen Q, Li Z. Recent Advances in C–F Bond Activation of Acyl Fluorides Directed toward Catalytic Transformation by Transition Metals, N-Heterocyclic Carbenes, or Phosphines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1845-3810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractNumerous studies on the activation of carbon–fluorine bonds have been reported in recent years. For example, acyl fluorides have been utilized as versatile reagents for acylation, arylation, and even fluorination. In this review, we focus on acyl fluorides as compounds with carbon–fluorine bonds, and highlight recent advances in strategies for the activation of their C–F bonds via transition-metal catalysis, N-heterocyclic carbene (NHCs) catalysis, organophosphine catalysis, and classical nucleophilic substitution reactions.1 Introduction2 Transition-Metal-Mediated C–F Bond Activation2.1 Acylation (Carbonyl-Retentive) Coupling Reactions2.2 Decarbonylative Reactions2.3 C–F Bond Activation by Other Transition Metals3 C–F Bond Activation by N-Heterocyclic Carbenes (NHCs)3.1 NHC-Catalyzed Cycloaddition of Acyl Fluorides3.2 NHC-Catalyzed Radical Functionalization of Acyl Fluorides3.3 NHC-Catalyzed Nucleophilic Fluorination of (Hetero)aromatics4 C–F Bond Activation by Phosphines4.1 Phosphine-Catalyzed Direct Activation of the C–F Bond of Acyl Fluorides4.2 Phosphine-Catalyzed Indirect Activation of the C–F Bond of Acyl Fluorides5 C–F Bond Activation by Classical Nucleophilic Substitution6 Miscellaneous Examples7 Summary and Perspective
Collapse
Affiliation(s)
- Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University
| | - Tian Tian
- Graduate School of Natural Science and Technology, Okayama University
| | - Qiang Chen
- Graduate School of Natural Science and Technology, Okayama University
| | - Zhiping Li
- Department of Chemistry, Renmin University of China
| |
Collapse
|
10
|
Hattori H, Ogiwara Y, Sakai N. Formation, Characterization, and Reactivity of Acyl Palladium Complexes in Pd(OAc) 2/PCy 3-Catalyzed Transformation of Acyl Fluorides. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroyuki Hattori
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yohei Ogiwara
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Norio Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
11
|
Morgan P, Saunders GC, Macgregor SA, Marr AC, Licence P. Nucleophilic Fluorination Catalyzed by a Cyclometallated Rhodium Complex. Organometallics 2022; 41:883-891. [PMID: 35571260 PMCID: PMC9098193 DOI: 10.1021/acs.organomet.2c00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 11/30/2022]
Abstract
Quantitative catalytic nucleophilic fluorination of a range of acyl chlorides to acyl fluorides was promoted by a cyclometallated rhodium complex [(η5,κ2C-C5Me4CH2C6F5CH2NC3H2NMe)- RhCl] (1). 1 can be prepared in high yields from commercially available starting materials using a one-pot method. The catalyst could be separated, regenerated, and reused. Rapid quantitative fluorination generated the fluoride analogue of the active pharmaceutical ingredient probenecid. Infrared in situ monitoring verified the clean conversion of the substrates to products. VTNA graphical kinetic analysis and DFT calculations lead to a postulated reaction mechanism involving a nucleophilic Rh-F bond.
Collapse
Affiliation(s)
- Patrick
J. Morgan
- GSK
Carbon Neutral Laboratory, School of Chemistry, University of Nottingham, Nottingham NG7 2TU, U.K.
| | | | - Stuart A. Macgregor
- School
of Engineering and Physical Sciences, Heriot-Watt
University, William H. Perkin Building, Edinburgh EH14 4AS, U.K.
| | - Andrew C. Marr
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, David Keir Building, Belfast BT9 5AG, U.K.
| | - Peter Licence
- GSK
Carbon Neutral Laboratory, School of Chemistry, University of Nottingham, Nottingham NG7 2TU, U.K.
| |
Collapse
|
12
|
Yue G, Wei J, Qiu D, Mo F. Recent Advances in the Synthesis of Arylstannanes. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Chen Q, Li Z, Nishihara Y. Palladium/Copper-Cocatalyzed Arylsilylation of Internal Alkynes with Acyl Fluorides and Silylboranes: Synthesis of Tetrasubstituted Alkenylsilanes by Three-Component Coupling Reaction. Org Lett 2021; 24:385-389. [PMID: 34936358 DOI: 10.1021/acs.orglett.1c04060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this Letter, the palladium/copper-cocatalyzed arylsilylation of internal alkynes with acyl fluorides and silylboranes is described. This is the first example in which acyl fluorides have been utilized for the three-component coupling reaction via decarbonylation, yielding a variety of tetrasubstituted alkenylsilanes in moderate to good yields.
Collapse
Affiliation(s)
- Qiang Chen
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Zhenyao Li
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
14
|
Lalloo N, Malapit CA, Taimoory SM, Brigham CE, Sanford MS. Decarbonylative Fluoroalkylation at Palladium(II): From Fundamental Organometallic Studies to Catalysis. J Am Chem Soc 2021; 143:18617-18625. [PMID: 34709804 DOI: 10.1021/jacs.1c08551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This Article describes the development of a decarbonylative Pd-catalyzed aryl-fluoroalkyl bond-forming reaction that couples fluoroalkylcarboxylic acid-derived electrophiles [RFC(O)X] with aryl organometallics (Ar-M'). This reaction was optimized by interrogating the individual steps of the catalytic cycle (oxidative addition, carbonyl de-insertion, transmetalation, and reductive elimination) to identify a compatible pair of coupling partners and an appropriate Pd catalyst. These stoichiometric organometallic studies revealed several critical elements for reaction design. First, uncatalyzed background reactions between RFC(O)X and Ar-M' can be avoided by using M' = boronate ester. Second, carbonyl de-insertion and Ar-RF reductive elimination are the two slowest steps of the catalytic cycle when RF = CF3. Both steps are dramatically accelerated upon changing to RF = CHF2. Computational studies reveal that a favorable F2C-H---X interaction contributes to accelerating carbonyl de-insertion in this system. Finally, transmetalation is slow with X = difluoroacetate but fast with X = F. Ultimately, these studies enabled the development of an (SPhos)Pd-catalyzed decarbonylative difluoromethylation of aryl neopentylglycol boronate esters with difluoroacetyl fluoride.
Collapse
Affiliation(s)
- Naish Lalloo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Christian A Malapit
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - S Maryamdokht Taimoory
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Conor E Brigham
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Karbakhshzadeh A, Heravi MRP, Rahmani Z, Ebadi AG, Vessally E. Aroyl fluorides: Novel and promising arylating agents. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109806] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Sakurai Y, Ikai K, Hayakawa K, Ogiwara Y, Sakai N. Palladium-Catalyzed Intramolecular Aromatic C–H Acylation of 2-Arylbenzoyl Fluorides. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuka Sakurai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kana Ikai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kazuki Hayakawa
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yohei Ogiwara
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Norio Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
17
|
Wang X, Wang F, Huang F, Ni C, Hu J. Deoxyfluorination of Carboxylic Acids with CpFluor: Access to Acyl Fluorides and Amides. Org Lett 2021; 23:1764-1768. [PMID: 33586447 DOI: 10.1021/acs.orglett.1c00190] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3,3-Difluoro-1,2-diphenylcyclopropene (CpFluor), a bench-stable fluorination reagent, has been developed in the deoxyfluorination of carboxylic acids to afford various acyl fluorides. This all-carbon-based fluorination reagent enabled the efficient transformation of (hetero)aryl, alkyl, alkenyl, and alkynyl carboxylic acids to the corresponding acyl fluorides under the neutral conditions. This deoxyfluorination method was featured by the synthesis of acyl fluorides with in-situ formed CpFluor, as well as the one-pot amidation reaction of carboxylic acids via in-situ formed acyl fluorides.
Collapse
Affiliation(s)
- Xiu Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Fei Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Fengfeng Huang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
18
|
Liang Y, Zhao Z, Taya A, Shibata N. Acyl Fluorides from Carboxylic Acids, Aldehydes, or Alcohols under Oxidative Fluorination. Org Lett 2021; 23:847-852. [PMID: 33464095 DOI: 10.1021/acs.orglett.0c04087] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We describe a novel reagent system to obtain acyl fluorides directly from three different functional group precursors: carboxylic acids, aldehydes, or alcohols. The transformation is achieved via a combination of trichloroisocyanuric acid and cesium fluoride, which facilitates the synthesis of various acyl fluorides in high yield (up to 99%). It can be applied to the late-stage functionalization of natural products and drug molecules that contain a carboxylic acid, an aldehyde, or an alcohol group.
Collapse
Affiliation(s)
- Yumeng Liang
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Zhengyu Zhao
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Akihito Taya
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.,Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua 321004, China
| |
Collapse
|
19
|
Sakurai S, Tobisu M. Palladium-catalyzed Decarbonylative Cyanation of Acyl Fluorides and Chlorides. CHEM LETT 2021. [DOI: 10.1246/cl.200750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shun Sakurai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Idris MA, Lee S. Palladium-Catalyzed Amide N–C Hiyama Cross-Coupling: Synthesis of Ketones. Org Lett 2020; 22:9190-9195. [DOI: 10.1021/acs.orglett.0c03260] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Muhammad Aliyu Idris
- Department of Chemistry Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
21
|
Sakurai Y, Ogiwara Y, Sakai N. Palladium‐Catalyzed Annulation of Acyl Fluorides with Norbornene via Decarbonylation and CO Reinsertion. Chemistry 2020; 26:12972-12977. [DOI: 10.1002/chem.202001374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/19/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Yuka Sakurai
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science Noda Chiba 278-8510 Japan
| | - Yohei Ogiwara
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science Noda Chiba 278-8510 Japan
| | - Norio Sakai
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science Noda Chiba 278-8510 Japan
| |
Collapse
|
22
|
Fu L, Chen Q, Nishihara Y. Decarboxylative Cross-Coupling of Acyl Fluorides with Potassium Perfluorobenzoates. Org Lett 2020; 22:6388-6393. [PMID: 32806213 DOI: 10.1021/acs.orglett.0c02215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the transition metal-free decarboxylative cross-coupling reactions of acyl fluorides with potassium perfluorobenzoates. Compared with traditional transition metal-catalyzed cross-couplings, this protocol presents an extremely environmentally benign pathway to afford unsymmetrical diaryl ketones. To install perfluorophenyl groups, this method highlights highly selective, inexpensive, and nontoxic conditions. The reaction system tolerates various functional groups in acyl fluorides. Remarkably, all of the starting materials can be prepared from abundant carboxylic acids and the reaction proceeds without any catalysts and additives.
Collapse
Affiliation(s)
- Liyan Fu
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Qiang Chen
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
23
|
Affiliation(s)
| | - Yohei Ogiwara
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Norio Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| |
Collapse
|
24
|
Fu L, Chen Q, Wang Z, Nishihara Y. Palladium-Catalyzed Decarbonylative Alkylation of Acyl Fluorides. Org Lett 2020; 22:2350-2353. [DOI: 10.1021/acs.orglett.0c00542] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liyan Fu
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Qiang Chen
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Zhenhua Wang
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
25
|
Ogiwara Y, Hosaka S, Sakai N. Benzoyl Fluorides as Fluorination Reagents: Reconstruction of Acyl Fluorides via Reversible Acyl C–F Bond Cleavage/Formation in Palladium Catalysis. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00028] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yohei Ogiwara
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Shintaro Hosaka
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Norio Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|