1
|
Yan SS, Jackstell R, Beller M. Copper-Catalyzed Selective Amino-alkoxycarbonylation of Unactivated Alkenes with CO. J Am Chem Soc 2025; 147:6464-6471. [PMID: 39961097 PMCID: PMC11869293 DOI: 10.1021/jacs.4c13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
1,2-Amino-difunctionalization reactions of alkenes allow the efficient introduction of different functional groups and the rapid construction of valuable functionalized amines. In this respect, we report a copper-catalyzed 1,2-amino-alkoxycarbonylation of unactivated alkenes with CO and alkylamine precursors in the presence of a Lewis acid additive. The novel protocol allows direct access to valuable β-amino acid derivatives from easily available starting materials. The presented methods feature high chemo- and regioselectivities, good functional group tolerance, and substrate scope including diverse bioactive compounds and drug-like molecules. Mechanistic studies indicate that the Lewis acid additive is the key to realizing the efficient umpolung addition of nucleophilic aminyl radicals to electron-rich alkenes, which represents an elegant activation strategy for aminyl radicals.
Collapse
Affiliation(s)
- Si-Shun Yan
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Ralf Jackstell
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut
für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
2
|
Islam B, Kreusel KE, Sulochana SP, Nguyen AL, Sowaileh MF, Khatri HR, Griffin MH, Leara DA, Colby DA. Stability studies of β-Amino- and β-Hydroxy difluoromethyl ketones in rat serum and rat liver microsomes. Bioorg Med Chem Lett 2024; 113:129964. [PMID: 39284455 PMCID: PMC11490360 DOI: 10.1016/j.bmcl.2024.129964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024]
Abstract
Although difluoromethyl ketones are used as tools in chemical biology and leads in drug discovery, the metabolic stability of these compounds is generally uncharacterized and must be inferred from in vivo pharmacological assays. In order to address this gap which impedes their wider use, we have synthesized and performed metabolic stability studies for thirty-nine β-amino and β-hydroxy difluoromethyl ketones. These investigations provide structure-stability relationships of the difluoromethyl ketones following incubation with rodent serum and liver microsomes.
Collapse
Affiliation(s)
- Baharul Islam
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, USA
| | - Katherine E Kreusel
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, USA
| | - Suresh P Sulochana
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Alex L Nguyen
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, USA
| | - Munia F Sowaileh
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, USA
| | - Hari R Khatri
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, USA
| | - Madeline H Griffin
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, USA
| | - Demetra A Leara
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, USA
| | - David A Colby
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
3
|
Luo Y, Ma Y, Li G, Huo X, Zhang W. Desymmetrization of Geminal Difluoromethylenes using a Palladium/Copper/Lithium Ternary System for the Stereodivergent Synthesis of Fluorinated Amino Acids. Angew Chem Int Ed Engl 2023; 62:e202313838. [PMID: 37815160 DOI: 10.1002/anie.202313838] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Fluorinated amino acids and related peptides/proteins have been found widespread applications in pharmaceutical and agricultural compounds. However, strategies for introducing a C-F bond into amino acids in an enantioselective manner are still limited and no such asymmetric catalysis strategy has been reported. Herein, we have successfully developed a Pd/Cu/Li ternary system for stereodivergent synthesis of chiral fluorinated amino acids. This method involves a sequential desymmetrization of geminal difluoromethylenes and allylic substitution with amino acid Schiff bases via Pd/Li and Pd/Cu dual activation, respectively. A series of non-natural amino acids bearing a chiral allylic/benzylic fluorine motif are easily synthesized in high yields with excellent regio-, diastereo-, and enantioselectivities (up to >20 : 1 dr and >99 % ee). A density functional theory (DFT) study revealed the F-Cu interaction of the allylic substrate and the Cu catalyst significantly influence the stereoselectivity.
Collapse
Affiliation(s)
- Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuqi Ma
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guanlin Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
4
|
Gregorc J, Lensen N, Chaume G, Iskra J, Brigaud T. Trifluoromethylthiolation of Tryptophan and Tyrosine Derivatives: A Tool for Enhancing the Local Hydrophobicity of Peptides. J Org Chem 2023; 88:13169-13177. [PMID: 37672679 PMCID: PMC10507666 DOI: 10.1021/acs.joc.3c01373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 09/08/2023]
Abstract
The incorporation of fluorinated groups into peptides significantly affects their biophysical properties. We report herein the synthesis of Fmoc-protected trifluoromethylthiolated tyrosine (CF3S-Tyr) and tryptophan (CF3S-Trp) analogues on a gram scale (77-93% yield) and demonstrate their use as highly hydrophobic fluorinated building blocks for peptide chemistry. The developed methodology was successfully applied to the late-stage regioselective trifluoromethylthiolation of Trp residues in short peptides (66-80% yield) and the synthesis of various CF3S-analogues of biologically active monoamines. To prove the concept, Fmoc-(CF3S)Tyr and -Trp were incorporated into the endomorphin-1 chain (EM-1) and into model tripeptides by solid-phase peptide synthesis. A remarkable enhancement of the local hydrophobicity of the trifluoromethylthiolated peptides was quantified by the chromatographic hydrophobicity index determination method, demonstrating the high potential of CF3S-containing amino acids for the rational design of bioactive peptides.
Collapse
Affiliation(s)
- Jure Gregorc
- Chair
of Organic Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
- CY
Cergy Paris Université, CNRS, BioCIS, Cergy Pontoise 95000, France
- Université
Paris-Saclay, CNRS, BioCIS, Orsay 91400, France
| | - Nathalie Lensen
- CY
Cergy Paris Université, CNRS, BioCIS, Cergy Pontoise 95000, France
- Université
Paris-Saclay, CNRS, BioCIS, Orsay 91400, France
| | - Grégory Chaume
- CY
Cergy Paris Université, CNRS, BioCIS, Cergy Pontoise 95000, France
- Université
Paris-Saclay, CNRS, BioCIS, Orsay 91400, France
| | - Jernej Iskra
- Chair
of Organic Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
| | - Thierry Brigaud
- CY
Cergy Paris Université, CNRS, BioCIS, Cergy Pontoise 95000, France
- Université
Paris-Saclay, CNRS, BioCIS, Orsay 91400, France
| |
Collapse
|
5
|
Miles SA, Nillama JA, Hunter L. Tinker, Tailor, Soldier, Spy: The Diverse Roles That Fluorine Can Play within Amino Acid Side Chains. Molecules 2023; 28:6192. [PMID: 37687021 PMCID: PMC10489206 DOI: 10.3390/molecules28176192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Side chain-fluorinated amino acids are useful tools in medicinal chemistry and protein science. In this review, we outline some general strategies for incorporating fluorine atom(s) into amino acid side chains and for elaborating such building blocks into more complex fluorinated peptides and proteins. We then describe the diverse benefits that fluorine can offer when located within amino acid side chains, including enabling 19F NMR and 18F PET imaging applications, enhancing pharmacokinetic properties, controlling molecular conformation, and optimizing target-binding.
Collapse
Affiliation(s)
| | | | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| |
Collapse
|
6
|
Wei J, Ning LW, Li Y. Diastereoselective addition of 2-alkoxy-2-fluoroacetate to N-(tert‑butylsulfinyl)imines: Synthesis of α-alkoxy-α-fluoro-β-amino acids. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Wegner U, Matthes F, von Wirén N, Hajirezaei MR, Bode R, Kunze G, Rauter M. A transaminase with β-activity from Variovorax boronicumulans for the production of enantiopure β-amino acids. Heliyon 2022; 9:e12729. [PMID: 36685366 PMCID: PMC9850050 DOI: 10.1016/j.heliyon.2022.e12729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/11/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
Enantioselective transamination of amino acids is a great challenge in biotechnology as suitable enzymes with wide substrate spectrum are rare. Here, we present a new transaminase from Variovorax boronicumulans (VboTA, Variovorax boronicumulansω-transaminase) which is specific for β-amino acids. The amino acid sequence of VboTA is similar to an ω-transaminase from Variovorax paradoxus, for which a crystal-structure is available. This similarity is allowing us to classify VboTA as a fold type 1 ω-transaminase (ω-TA). Although both enzymes have a high sequence similarity (86% identities, 92% positives), there are differences in the active center, which allow VboTA to accept a broader substrate spectrum. Both enzymes have also a different temperature stability and temperature optimum. VboTA deaminates the D-form of aromatic β-amino acids, such as β-homophenylalanine and β-phenylalanine as well as aliphatic β-amino acids, such as β-homoalanine and β-leucine. The optimal reaction conditions turned out to be 32 °C and pH 9. Kinetic resolution lead to high enantiomeric excess of 86.6% to >99.9%, depending on the amino donor/acceptor pair. In contrast to many other ω-TAs, VboTA has a broad substrate spectrum and uses both aromatic or aliphatic amino acids. With γ-amino acids as substrates, VboTA showed no activity at all.
Collapse
Affiliation(s)
- Uwe Wegner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Falko Matthes
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Rüdiger Bode
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, D-17489 Greifswald, Germany
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany,Corresponding author.
| | - Marion Rauter
- Orgentis Chemicals GmbH, Bahnhofstr. 3-5, OT Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
8
|
Tokuhiro Y, Yoshikawa K, Murayama S, Nanjo T, Takemoto Y. Highly Stereoselective, Organocatalytic Mannich-type Addition of Glyoxylate Cyanohydrin: A Versatile Building Block for the Asymmetric Synthesis of β-Amino-α-ketoacids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yusuke Tokuhiro
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Kosuke Yoshikawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Sei Murayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Gupta E, Vaishanv NK, Kumar S, Purshottam RK, Kant R, Mohanan K. Organocatalytic asymmetric nitroso aldol reaction of α-substituted malonamates. Beilstein J Org Chem 2022; 18:217-224. [PMID: 35280951 PMCID: PMC8895028 DOI: 10.3762/bjoc.18.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
A practical enantioselective N-selective nitroso aldol reaction of α-methylmalonamates with a nitrosoarene is reported. The reaction employs the Takemoto thiourea catalyst for the induction of enantioselectivity, and the corresponding optically active oxyaminated malonamates were obtained in reasonably good yields.
Collapse
Affiliation(s)
- Ekta Gupta
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Narendra Kumar Vaishanv
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Sandeep Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Raja Krishnan Purshottam
- Sophisticated Analytical Instrument Facility CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Kishor Mohanan
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
10
|
Duan P, Zhao H, Yang J, Cao L, Jiang H, Zhang M. Construction of Fluorinated Amino Acid Derivatives via Cobalt-Catalyzed Oxidative Difunctionalization of Cyclic Ethers. Org Lett 2022; 24:608-612. [PMID: 34989577 DOI: 10.1021/acs.orglett.1c04048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Via difunctionalization of the α- and β-sites of cyclic ethers, we herein demonstrate a new synthetic method for the efficient construction of novel fluorinated γ-amino acid esters by employing a CoBr2/m-CPBA catalyst system. Several cyclic ethers were transformed in combination with a vast range of amines and ethyl trifluoropyruvate into the desired products under mild conditions, making this method a practical platform to enrich the library of fluorinated amino acid derivatives from cost-effective and readily available feedstocks.
Collapse
Affiliation(s)
- Peng Duan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Jian Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Liang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| |
Collapse
|
11
|
Zehra ST, Lan S, Zhang H, Liu J, Yang S, Fang X. Access to enantioenriched molecules with diverse fluorinated tetrasubstituted stereocenters using hydroxy as a kinetic resolution auxiliary group. Org Chem Front 2022. [DOI: 10.1039/d1qo01493e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe in this paper that using secondary OH as the kinetic resolution auxiliary group, a series of previously unavailable fluorinated fully-substituted carbon molecules can be obtained with excellent level of enantioselectivities.
Collapse
Affiliation(s)
- Syeda Tazeen Zehra
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Hao Zhang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
12
|
Niu R, He Y, Lin JB. Catalytic asymmetric synthesis of α-stereogenic carboxylic acids: recent advances. Org Biomol Chem 2021; 20:37-54. [PMID: 34854454 DOI: 10.1039/d1ob02038b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chiral carboxylic acids bearing an α-stereogenic center constitute the backbone of many natural products and therapeutic reagents as well as privileged chiral ligands and catalysts. Hence, it is not surprising that a large number of elegant catalytic asymmetric strategies have been developed toward the efficient synthesis of α-chiral carboxylic acids, such as α-hydroxy acids and α-amino acids. In this review, the recent advances in asymmetric synthesis of α-stereogenic free carboxylic acids via organocatalysis and transition metal catalysis are summarized (mainly from 2010 to 2020). The content is organized by the reaction type of the carboxyl source involved, including asymmetric functionalization of substituted carboxylic acids, cyclic anhydrides, α-keto acids, substituted α,β-unsaturated acids and so on. We hope that this review will motivate further interest in catalytic asymmetric synthesis of chiral α-substituted carboxylic acids.
Collapse
Affiliation(s)
- Rui Niu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Yi He
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Jun-Bing Lin
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
13
|
Wannenmacher N, Pfeffer C, Frey W, Peters R. Enantioenriched γ-Aminoalcohols, β-Amino Acids, β-Lactams, and Azetidines Featuring Tetrasubstituted Fluorinated Stereocenters via Palladacycle-Catalyzed Asymmetric Fluorination of Isoxazolinones. J Org Chem 2021; 87:670-682. [PMID: 34890190 DOI: 10.1021/acs.joc.1c02640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enantiopure fluorine containing β-amino acids are of large biological and pharmaceutical interest. Strategies to prepare β-amino acid derivatives possessing a F-containing tetrasubstituted stereocenter at the α-C atom in a catalytic asymmetric sense are rare, in particular using an enantioselective electrophilic C-F bond formation. In the present study, a highly enantioselective palladacycle-catalyzed fluorination of isoxazolinones was developed. It is demonstrated that isoxazolinones are useful precursors toward enantiopure β-amino acid derivatives by diastereo- and chemoselective reduction. The formed γ-aminoalcohols served as valuable precursors toward β-amino acids, β-amino acid esters, and β-lactams, all featuring tetrasubstituted fluorinated stereocenters. In addition, by this work, enantioenriched fluorinated azetidines were accessible for the first time.
Collapse
Affiliation(s)
- Nick Wannenmacher
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Camilla Pfeffer
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Wolfgang Frey
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - René Peters
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
14
|
Cheng X, Ma L. Enzymatic synthesis of fluorinated compounds. Appl Microbiol Biotechnol 2021; 105:8033-8058. [PMID: 34625820 PMCID: PMC8500828 DOI: 10.1007/s00253-021-11608-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/31/2022]
Abstract
Fluorinated compounds are widely used in the fields of molecular imaging, pharmaceuticals, and materials. Fluorinated natural products in nature are rare, and the introduction of fluorine atoms into organic compound molecules can give these compounds new functions and make them have better performance. Therefore, the synthesis of fluorides has attracted more and more attention from biologists and chemists. Even so, achieving selective fluorination is still a huge challenge under mild conditions. In this review, the research progress of enzymatic synthesis of fluorinated compounds is summarized since 2015, including cytochrome P450 enzymes, aldolases, fluoroacetyl coenzyme A thioesterases, lipases, transaminases, reductive aminases, purine nucleoside phosphorylases, polyketide synthases, fluoroacetate dehalogenases, tyrosine phenol-lyases, glycosidases, fluorinases, and multienzyme system. Of all enzyme-catalyzed synthesis methods, the direct formation of the C-F bond by fluorinase is the most effective and promising method. The structure and catalytic mechanism of fluorinase are introduced to understand fluorobiochemistry. Furthermore, the distribution, applications, and future development trends of fluorinated compounds are also outlined. Hopefully, this review will help researchers to understand the significance of enzymatic methods for the synthesis of fluorinated compounds and find or create excellent fluoride synthase in future research.Key points• Fluorinated compounds are distributed in plants and microorganisms, and are used in imaging, medicine, materials science.• Enzyme catalysis is essential for the synthesis of fluorinated compounds.• The loop structure of fluorinase is the key to forming the C-F bond.
Collapse
Affiliation(s)
- Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China.
| |
Collapse
|
15
|
Liu A, Han J, Nakano A, Konno H, Moriwaki H, Abe H, Izawa K, Soloshonok VA. New pharmaceuticals approved by FDA in 2020: Small-molecule drugs derived from amino acids and related compounds. Chirality 2021; 34:86-103. [PMID: 34713503 DOI: 10.1002/chir.23376] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
Amino acids (AAs) play an important role in the modern health industry as key synthetic precursors for pharmaceuticals, biomaterials, biosensors, and drug delivery systems. Currently, over 30% of small-molecule drugs contain residues of tailor-made AAs or derived from them amino-alcohols and di-amines. In this review article, we profile 12 AA-derived new pharmaceuticals approved by the FDA in 2020. These newly introduced drugs include Tazverik (epithelioid sarcoma), Gemtesa (overactive bladder), Zeposia (multiple sclerosis), Byfavo (induction and maintenance of procedural sedation), Cu 64 dotatate, and Gallium 68 PSMA-11 (both PET imaging), Rimegepant (acute migraine), Zepzelca (lung cancer), Remdesivir (COVID-19), Amisulpride (nausea and vomiting), Setmelanotide (obesity), and Lonafarnib (progeria syndrome). For each compound, we describe the spectrum of biological activity, medicinal chemistry discovery, and synthetic preparation.
Collapse
Affiliation(s)
- Aiyao Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Arina Nakano
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | | | | | | | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
16
|
Peng Q, Yan B, Li F, Lang M, Zhang B, Guo D, Bierer D, Wang J. Biomimetic enantioselective synthesis of β,β-difluoro-α-amino acid derivatives. Commun Chem 2021; 4:148. [PMID: 36697625 PMCID: PMC9814941 DOI: 10.1038/s42004-021-00586-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/06/2021] [Indexed: 01/28/2023] Open
Abstract
Although utilization of fluorine compounds has a long history, synthesis of chiral fluorinated amino acid derivatives with structural diversity and high stereoselectivity is still very appealing and challenging. Here, we report a biomimetic study of enantioselective [1,3]-proton shift of β,β-difluoro-α-imine amides catalyzed by chiral quinine derivatives. A wide range of corresponding β,β-difluoro-α-amino amides were achieved in good yields with high enantioselectivities. The optically pure β,β-difluoro-α-amino acid derivatives were further obtained, which have high application values in the synthesis of fluoro peptides, fluoro amino alcohols and other valuable fluorine-containing molecules.
Collapse
Affiliation(s)
- Qiupeng Peng
- School of Pharmaceutical Sciences, Department of Chemistry, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, 100084, Beijing, China
| | - Bingjia Yan
- School of Pharmaceutical Sciences, Department of Chemistry, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, 100084, Beijing, China
- Leibniz-Forchungsinstituts für Molekulare Pharmakologies (FMP), 13125, Berlin, Germany
| | - Fangyi Li
- School of Pharmaceutical Sciences, Department of Chemistry, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, 100084, Beijing, China
| | - Ming Lang
- School of Pharmaceutical Sciences, Department of Chemistry, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, 100084, Beijing, China
| | - Bei Zhang
- School of Pharmaceutical Sciences, Department of Chemistry, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, 100084, Beijing, China
| | - Donghui Guo
- School of Pharmaceutical Sciences, Department of Chemistry, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, 100084, Beijing, China
| | - Donald Bierer
- Department of Medicinal Chemistry, Bayer AG, Aprather Weg 18A, 42096, Wuppertal, Germany.
| | - Jian Wang
- School of Pharmaceutical Sciences, Department of Chemistry, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
17
|
Duan H, Lin Y, Zhao Z, Wang J, Wei Z, Cao J, Liang D. Asymmetric Synthesis of 3-Phenyl-2,3-dihydro-1H-pyrrolo[3,2-b]pyridine-3-carbonitriles Catalyzed by Phase-Transfer Catalyst Derived from tert-Leucine. Synlett 2021. [DOI: 10.1055/a-1581-2345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractChiral phase-transfer catalysts derived from tert-leucine were synthesized and used in the asymmetric synthesis of 4-azaindoline derivatives. By this method, both enantiomers of the corresponding products were obtained in excellent yield (up to 99%) with high enantioselectivities (up to 91% ee) and diastereoselectivities (up to >99: 1 dr).
Collapse
|
18
|
García‐Ramos M, Cuetos A, Kroutil W, Grogan G, Lavandera I. The Reactivity of α‐Fluoroketones with PLP Dependent Enzymes: Transaminases as Hydrodefluorinases. ChemCatChem 2021. [DOI: 10.1002/cctc.202100901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marina García‐Ramos
- Organic and Inorganic Chemistry Department University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Aníbal Cuetos
- York Structural Biology Laboratory Department of Chemistry University of York Heslington York YO10 5DD UK
- ENANTIA C/ Baldiri Reixac, 10 08028 Barcelona Spain
| | - Wolfgang Kroutil
- Institute of Chemistry NAWI Graz Field of Excellence BioHealth University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Gideon Grogan
- York Structural Biology Laboratory Department of Chemistry University of York Heslington York YO10 5DD UK
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
19
|
Han ZZ, Dong T, Ming XX, Kuang F, Zhang CP. Synthesis and Biological Evaluation of CF 3 Se-Substituted α-Amino Acid Derivatives. ChemMedChem 2021; 16:3177-3180. [PMID: 34268896 DOI: 10.1002/cmdc.202100451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Indexed: 11/07/2022]
Abstract
Several CF3 Se-substituted α-amino acid derivatives, such as (R)-2-amino-3-((trifluoromethyl)selanyl)propanoates (5 a/6 a), (S)-2-amino-4-((trifluoromethyl)selanyl)butanoates (5 b/6 b), (2R,3R)-2-amino-3-((trifluoromethyl)selanyl)butanoates (5 c/6 c), (R)-2-((S)-2-amino-3-phenylpropanamido)-3-((trifluoromethyl)selanyl)propanoates (11 a/12 a), and (R)-2-(2-aminoacetamido)-3-((trifluoromethyl)selanyl)propanoates (11 b/12 b), were readily synthesized from natural amino acids and [Me4 N][SeCF3 ]. The primary in vitro cytotoxicity assays revealed that compounds 6 a, 11 a and 12 a were more effective cell growth inhibitors than the other tested CF3 Se-substituted derivatives towards MCF-7, HCT116, and SK-OV-3 cells, with their IC50 values being less than 10 μM for MCF-7 and HCT116 cells. This study indicated the potentials of CF3 Se moiety as a pharmaceutically relevant group in the design and synthesis of novel biologically active molecules.
Collapse
Affiliation(s)
- Zhou-Zhou Han
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| | - Tao Dong
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| | - Xiao-Xia Ming
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| | - Fu Kuang
- Department of phase I clinical trial center, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 40010, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
20
|
Peng L, Wang H, Guo C. Copper-Catalyzed Enantioselective Difluoromethylation of Amino Acids via Difluorocarbene. J Am Chem Soc 2021; 143:6376-6381. [PMID: 33900748 DOI: 10.1021/jacs.1c02697] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Difluoromethyl amino acids (DFAA) exhibit intriguing biological properties, making them highly desirable motifs in agrochemical and pharmaceutical science. However, stereochemical control of direct difluoromethyl transformation via the difluorocarbene species has not been demonstrated. Here we describe an efficient copper-catalyzed asymmetric difluoromethylation reaction that systematically delivers chiral DFAA as rationally designed mechanism-based inhibitors of PLP-dependent amino acid decarboxylases. The reaction employs difluoromonochloromethane, an abundant raw material, as the direct precursor of difluorocarbene species, enabling the unprecedentedly direct conversion of amino esters into corresponding valuable DFAA products in good yields with excellent enantioselectivities. This de novo synthesis creates opportunities to integrate an asymmetric catalytic platform for the preparation of diverse libraries of biologically important DFAA derivatives and will support efforts in both drug discovery and development.
Collapse
Affiliation(s)
- Lingzi Peng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hongyi Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chang Guo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
21
|
Han J, Konno H, Sato T, Soloshonok VA, Izawa K. Tailor-made amino acids in the design of small-molecule blockbuster drugs. Eur J Med Chem 2021; 220:113448. [PMID: 33906050 DOI: 10.1016/j.ejmech.2021.113448] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
The role of amino acids (AAs) in modern health industry is well-appreciated. Residues of individual AAs, or their chemical modifications, such as diamines and amino alcohols, are frequently found in the structures of modern pharmaceuticals. The goal of this review article, is to emphasize that, currently, tailor-made AAs serve as key structural features in many most successful pharmaceuticals, so-called blockbuster drugs. In the present article, we profile 14 small-molecule drugs, underscoring the breadth of structural variety of AAs applications in numerous therapeutic areas. For each compound, we provide spectrum of biological activity, medicinal chemistry discovery, and synthetic approaches.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain.
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan.
| |
Collapse
|
22
|
Wang N, Xu J, Mei H, Moriwaki H, Izawa K, Soloshonok VA, Han J. Electrochemical Approaches for Preparation of Tailor-Made Amino Acids. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Shahmohammadi S, Fülöp F, Forró E. Efficient Synthesis of New Fluorinated β-Amino Acid Enantiomers through Lipase-Catalyzed Hydrolysis. Molecules 2020; 25:molecules25245990. [PMID: 33348842 PMCID: PMC7766834 DOI: 10.3390/molecules25245990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022] Open
Abstract
An efficient and novel enzymatic method has been developed for the synthesis of β-fluorophenyl-substituted β-amino acid enantiomers through lipase PSIM (Burkholderia cepasia) catalyzed hydrolysis of racemic β-amino carboxylic ester hydrochloride salts 3a–e in iPr2O at 45 °C in the presence of Et3N and H2O. Adequate analytical methods were developed for the enantio-separation of racemic β-amino carboxylic ester hydrochlorides 3a–e and β-amino acids 2a–e. Preparative-scale resolutions furnished unreacted amino esters (R)-4a–e and product amino acids (S)-5a–e with excellent ee values (≥99%) and good chemical yields (>48%).
Collapse
Affiliation(s)
- Sayeh Shahmohammadi
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (S.S.); (F.F.)
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (S.S.); (F.F.)
- Stereochemistry Research Group of the Hungarian Academy of Sciences, University of Szeged, H-6720 Szeged, Hungary
| | - Enikő Forró
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (S.S.); (F.F.)
- Stereochemistry Research Group of the Hungarian Academy of Sciences, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-544964; Fax: +36-62-545705
| |
Collapse
|
24
|
Stoletova NV, Moshchenkov AD, Smol'yakov AF, Gugkaeva ZT, Maleev VI, Katayev D, Larionov VA. Asymmetric Synthesis of Perfluoroalkylated α‐Amino Acids through Generated Radicals Using a Chiral Ni(II) Complex. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nadezhda V. Stoletova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Vavilov Str. 28 RU-119991 Moscow Russian Federation
| | - Andrey D. Moshchenkov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Vavilov Str. 28 RU-119991 Moscow Russian Federation
- Higher Chemical College of the Russian Academy of Sciences Dmitry Mendeleev University of Chemical Technology of Russia Miusskaya sq. 9 RU-125047 Moscow Russian Federation
| | - Alexander F. Smol'yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Vavilov Str. 28 RU-119991 Moscow Russian Federation
| | - Zalina T. Gugkaeva
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Vavilov Str. 28 RU-119991 Moscow Russian Federation
| | - Victor I. Maleev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Vavilov Str. 28 RU-119991 Moscow Russian Federation
| | - Dmitry Katayev
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology ETH Zürich Vladimir-Prelog-Weg 2 CH-8093 Zürich Switzerland
| | - Vladimir A. Larionov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Vavilov Str. 28 RU-119991 Moscow Russian Federation
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Str. 6 RU-117198 Moscow Russian Federation
| |
Collapse
|