1
|
Xu P, Hu XW, He ZY, Wu LT, Chen SQ, Li P, Zhang Z, Xu H. Dibromomethane-Triggered Electrochemical Cyclization of Enaminones with Amidines for the Synthesis of 5-Acylimidazoles. J Org Chem 2024; 89:18565-18570. [PMID: 39611373 DOI: 10.1021/acs.joc.4c02507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
An electrochemical tandem cyclization of enaminones with amidines has been reported for the first time using dibromomethane as an initiating agent in an undivided cell. Following this protocol, a vast variety of polysubstituted 5-acylimidazoles were obtained in moderate to good yields without the use of external oxidants. Mechanistic studies indicate that the bromide anion, electroreductively generated from dibromomethane, acts as a redox mediator to complete the catalytic cycle.
Collapse
Affiliation(s)
- Peng Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Xing-Wang Hu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Zeng-Yang He
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
- Technology Center, China Tobacco Anhui Industrial Co., Ltd, 9 Tianda Road, Hefei 230088, PR China
| | - Luan-Ting Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Si-Qi Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Pinhua Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Ze Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hui Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| |
Collapse
|
2
|
Mironov ME, Rybalova TV, Pokrovskii MA, Emaminia F, Gandalipov ER, Pokrovskii AG, Shults EE. Synthesis of fully functionalized spirostanic 1,2,3-triazoles by the three component reaction of diosgenin azides with acetophenones and aryl aldehydes and their biological evaluation as antiproliferative agents. Steroids 2023; 190:109133. [PMID: 36328088 DOI: 10.1016/j.steroids.2022.109133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
Abstract
Diosgenin is of significant interest due to its biological activity and synthetic application. In this study, we report the synthesis of a series of spirostanic 1,4,5-trisubstituted 1,2,3-triazoles by the three component reaction of (25R)-6-azidospirostan-3,5-diols with acetophenones and aryl aldehydes. The one-pot two step synthesis proceeds through the in situ formation of (E)-chalcones and copper catalyzed reaction with organic azides in DMF medium. Structural diversity was achieved by varying the aldehyde and acetophenone nature as well as the spirostanic azide stereochemistry. The results of in vitro biological assays showed that fully decorated spirostanic 1,2,3-triazoles exerted significant and selective antiproliferative activity against MCF-7, glioblastoma (SNB-19, T98G, A-172) and neuroblastoma (IMR-32, SH-SYSY) (HCT116) cell lines (GI50 in the single-digit micromolar range). The data revealed that benzoyl and aryl substitutions in the triazole ring introduced at the 6β-position significantly improved the anti-tumor activity of (25R)-6-azidospirostan-3β,5α-diols. This position on the spirostan core may be the favourable to synthesize of potent anticancer leads from diosgenin.
Collapse
Affiliation(s)
- Maksim E Mironov
- Laboratory of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Tatyana V Rybalova
- Laboratory of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, Novosibirsk 630090, Russian Federation
| | - Mikhail A Pokrovskii
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Fatemeh Emaminia
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Erik R Gandalipov
- International Institute of Solution Chemistry and Advanced Materials Technologies, ITMO University, 9 Lomonosov Street, 191002, Saint-Petersburg, Russian Federation
| | - Andrey G Pokrovskii
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Elvira E Shults
- Laboratory of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, Novosibirsk 630090, Russian Federation.
| |
Collapse
|
3
|
Xu H, Chen H, Hu X, Xuan G, Li P, Zhang Z. Synthesis of Fully Substituted 5-( o-Hydroxybenzoyl)imidazoles via Iodine-Promoted Domino Reaction of Aurones with Amidines. J Org Chem 2022; 87:16204-16212. [PMID: 36414000 DOI: 10.1021/acs.joc.2c01680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An iodine-promoted domino reaction of aurones with amidines has been successfully explored. The reaction proceeds in a consecutive manner containing Michael addition, iodination, cyclization from intramolecular nucleophilic substitution, and dehydrogenative aromatization from spiro ring opening. Following this novel strategy, a variety of 1,2,4-trisubstituted 5-(o-hydroxybenzoyl)imidazoles were efficiently synthesized in moderate to good yields from readily available starting materials. A plausible mechanism has been proposed.
Collapse
Affiliation(s)
- Hui Xu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Hong Chen
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Xiao Hu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Guang Xuan
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Pinhua Li
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Ze Zhang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
4
|
Begum AF, Balasubramanian KK, Bhagavathy S. 3‐Arylidene‐4‐Chromanones and 3‐arylidene‐4‐thiochromanones: Versatile Synthons towards the Synthesis of Complex Heterocycles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ayisha F Begum
- B S Abdur Rahman Crescent Institute of Science & Technology Chemistry 600048 Chennai INDIA
| | | | - Shanmugasundaram Bhagavathy
- B S Abdur Rahman Crescent Institute of Science & Technology Chemistry Seethakathi EstateVandalur 600048 Chennai INDIA
| |
Collapse
|
5
|
Kamal R, Omkar, Kumar V, Kumar R. Hydroxy(tosyloxy)iodobenzene (HTIB): A Convenient Oxidizing Agent for the Synthesis of Heterocycles. ChemistrySelect 2022. [DOI: 10.1002/slct.202103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Raj Kamal
- Department of Chemistry Kurukshetra University, Kurukshetra- 136119 Haryana India
| | - Omkar
- Department of Chemistry Kurukshetra University, Kurukshetra- 136119 Haryana India
| | - Vipan Kumar
- Department of Chemistry Kurukshetra University, Kurukshetra- 136119 Haryana India
| | - Rajesh Kumar
- Department of Chemistry Mukand Lal National College Yamunanagar Haryana 135001 India
| |
Collapse
|
6
|
Ashitha KT, Krishna A, Basavaraja D, Sasidhar BS. Recent Advances in the Transition Metal-Free Synthesis of Heterocycles from α, β-Unsaturated Ketones. Org Chem Front 2022. [DOI: 10.1039/d2qo00278g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterocyclic compounds are an inevitable part of our life. These important classes of molecules have a wide range of applications starting from life-sustaining drugs to agrochemicals. Numerous methods, including metal...
Collapse
|
7
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
8
|
|