1
|
Li PT, Mou Q, Yu W. Regioselective 1,4-Hydroamination of 1,3-Dienes by Photoredox/Cobalt Dual Catalysis. Org Lett 2025; 27:1973-1978. [PMID: 39951708 DOI: 10.1021/acs.orglett.5c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Herein, we report a visible-light-driven and cobalt-mediated 1,4-hydroamination reaction of 1,3-dienes with arylmines as the nucleophiles. The reaction involves regioselective addition of [CoIII]-H to 1,3-diene, followed by oxidation and nucleophilic substitution by amines. Using Ir(ppy)3 as the photocatalyst enables the cobalt redox cycle to be implemented without using an external oxidant and hydride regent. This protocol can be applied as well to forge the carbon-oxygen and carbon-sulfur bonds in an analogous way.
Collapse
Affiliation(s)
- Pei-Ting Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Quansheng Mou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| |
Collapse
|
2
|
Wang S, Wang L, Cui J, Zhang L, Zhang Q, Ke C, Huang S. Recent progress in C-S bond formation via electron donor-acceptor photoactivation. Org Biomol Chem 2025; 23:1794-1808. [PMID: 39831472 DOI: 10.1039/d4ob01951b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Recent advancements in C-S bond formation via electron donor-acceptor (EDA) complex photoactivation have been remarkable. EDA complexes, which are composed of electron donors and acceptors, facilitate C-S bond construction under mild conditions through single-electron transfer events upon visible light irradiation. This review highlights the utilization of various sulfur-containing substrates, including diacetoxybenzenesulfonyl (DABSO), sulfonic acids, sodium sulfinates, sulfonyl chlorides, and thiophenols, in EDA-promoted sulfonylation and thiolation reactions, covering the works published since 2017 to date. These reactions offer novel, environmentally friendly pathways for the synthesis of sulfur-containing compounds.
Collapse
Affiliation(s)
- Sichang Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Liting Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Jin Cui
- Low Permeability Oil and Gas Field Exploration and Development of the National Engineering Laboratory, Xi'an Changqing Chemical Group Co. Ltd of Changqing Oilfield Company, Xi'An, Shaanxi, 710021, China
| | - Liying Zhang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Qunzheng Zhang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Congyu Ke
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Sahoo T, Prasanna DV, Sridhar B, Subba Reddy BV. Novel electron donor-acceptor (EDA) complex promoted arylation of 2-oxo-2 H-chromene-3-carbonitriles under visible light irradiation. Org Biomol Chem 2024; 22:9408-9412. [PMID: 39498500 DOI: 10.1039/d4ob01493f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
An efficient and operationally simple photochemical method has been demonstrated under transition metal-free, photocatalyst-free, and oxidant-free conditions. In recent times, diaryliodonium salts have become one of the most popular arylating sources under photoinduced conditions. Herein, we developed a visible light induced arylation of heterocycles using an EDA complex that is formed in situ from 2,6-lutidine and diaryliodonium triflate. Under light irradiation, the EDA complex generates the aryl radical that undergoes addition with 2-oxo-2H-chromene-3-carbonitriles via an SET process. This method serves as an effective tool to access biologically active and pharmaceutically relevant coumarin scaffolds.
Collapse
Affiliation(s)
- Tanmoy Sahoo
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - B Sridhar
- Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - B V Subba Reddy
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Singh S, Chakrabortty G, Tiwari K, Dagar N, Raha Roy S. Shining light for organophotocatalysed site-selective sulfonylation of anilides. Org Biomol Chem 2024; 22:7690-7695. [PMID: 39222056 DOI: 10.1039/d4ob01169d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The site-selective sulfonylation of C(sp2)-H bonds of anilide and quinoline amide derivatives has been developed using organophotocatalysis. This mild and sustainable protocol, which operates at room temperature, precludes the requirement for any metal-based catalyst or photocatalyst and oxidant, which are the challenges associated with existing methodologies. Furthermore, the generation of aryl sulfonyl radicals from commercially available aryl sulfonyl chlorides has been achieved through the use of Rose Bengal as an organophotocatalyst, an approach that was previously unexplored. The detailed mechanistic investigation unveiled the underlying mechanism for site-selective sulfonylation at both the proximal and distal positions, thereby establishing a straightforward approach for building valuable aryl sulfone scaffolds.
Collapse
Affiliation(s)
- Swati Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Gopal Chakrabortty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Kajal Tiwari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
5
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
6
|
Prakash R, Sen PP, Pathania V, Raha Roy S. Photocatalytic Proficiency of Cinnoline Moiety for Cross-Coupling Reactions: A Two in One Photocatalyst. Org Lett 2024; 26:5923-5927. [PMID: 38959051 DOI: 10.1021/acs.orglett.4c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Herein, we have developed a new class of organic photocatalysts that can mimic transition metals for several oxidative and reductive organic cross-coupling transformations. Due to its wide potential window in both the oxidation and reduction ranges, cinnoline exhibits dual catalytic activity under visible light illumination, acting as both a photoreductant and photooxidant.
Collapse
Affiliation(s)
- Rashmi Prakash
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Partha Pratim Sen
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vishali Pathania
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
7
|
He J, Han B, Xian C, Hu Z, Fang T, Zhang Z. Hydrogen-Bond-Mediated Formation of C-N or C=N Bond during Photocatalytic Reductive Coupling Reaction over CdS Nanosheets. Angew Chem Int Ed Engl 2024; 63:e202404515. [PMID: 38637293 DOI: 10.1002/anie.202404515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Reductive amination of carbonyl compounds and nitro compounds represents a straightforward way to attain imines or secondary amines, but it is difficult to control the product selectivity. Herein, we report the selective formation of C-N or C=N bond readily manipulated through a solvent-induced hydrogen bond bridge, facilitating the swift photocatalytic reductive coupling process. The reductive-coupling of nitro compounds with carbonyl compounds using formic acid and sodium formate as the hydrogen donors over CdS nanosheets selectively generates imines with C=N bonds in acetonitrile solvent; while taking methanol as solvent, the C=N bonds are readily hydrogenated to the C-N bonds via hydrogen-bonding activation. Experimental and theoretical study reveals that the building of the hydrogen-bond bridge between the hydroxyl groups in methanol and the N atoms of the C=N motifs in imines facilitates the transfer of hydrogen atoms from CdS surface to the N atoms in imines upon illumination, resulting in the rapid hydrogenation of the C=N bonds to give rise to the secondary amines with C-N bonds. Our method provides a simple way to control product selectivity by altering the solvents in photocatalytic organic transformations.
Collapse
Affiliation(s)
- Jie He
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Bo Han
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Chensheng Xian
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Zhao Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Tingfeng Fang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, P. R. China
| |
Collapse
|
8
|
Zhang J, Huan XD, Wang X, Li GQ, Xiao WJ, Chen JR. Recent advances in C(sp 3)-N bond formation via metallaphoto-redox catalysis. Chem Commun (Camb) 2024; 60:6340-6361. [PMID: 38832416 DOI: 10.1039/d4cc01969e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The C(sp3)-N bond is ubiquitous in natural products, pharmaceuticals, biologically active molecules and functional materials. Consequently, the development of practical and efficient methods for C(sp3)-N bond formation has attracted more and more attention. Compared to the conventional ionic pathway-based thermal methods, photochemical processes that proceed through radical mechanisms by merging photoredox and transition-metal catalyses have emerged as powerful and alternative tools for C(sp3)-N bond formation. In this review, recent advances in the burgeoning field of C(sp3)-N bond formation via metallaphotoredox catalysis have been highlighted. The contents of this review are categorized according to the transition metals used (copper, nickel, cobalt, palladium, and iron) together with photocatalysis. Emphasis is placed on methodology achievements and mechanistic insight, aiming to inspire chemists to invent more efficient radical-involved C(sp3)-N bond-forming reactions.
Collapse
Affiliation(s)
- Juan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xiao-Die Huan
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Xin Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Guo-Qing Li
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Wen-Jing Xiao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Jia-Rong Chen
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| |
Collapse
|
9
|
Das A, Justin Thomas KR. Generation and Application of Aryl Radicals Under Photoinduced Conditions. Chemistry 2024; 30:e202400193. [PMID: 38546345 DOI: 10.1002/chem.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Indexed: 04/26/2024]
Abstract
Photoinduced aryl radical generation is a powerful strategy in organic synthesis that facilitates the formation of diverse carbon-carbon and carbon-heteroatom bonds. The synthetic applications of photoinduced aryl radical formation in the synthesis of complex organic compounds, including natural products, physiologically significant molecules, and functional materials, have received immense attention. An overview of current developments in photoinduced aryl radical production methods and their uses in organic synthesis is given in this article. A generalized idea of how to choose the reagents and approach for the generation of aryl radicals is described, along with photoinduced techniques and associated mechanistic insights. Overall, this article offers a critical assessment of the mechanistic results as well as the selection of reaction parameters for specific reagents in the context of radical cascades, cross-coupling reactions, aryl radical functionalization, and selective C-H functionalization of aryl substrates.
Collapse
Affiliation(s)
- Anupam Das
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - K R Justin Thomas
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
10
|
Okuda Y, Sato T, Takebe S, Mori M, Fujimoto M, Masuda K, Sabato T, Wakamatsu K, Akashi H, Orita A. Chemodivergent Synthesis of Polycyclic Aromatic Diarylamines and Carbazoles by Thermal/Photochemical Process-Controlled Dephosphinylative Functionalizations of Amino(phosphinyl)arenes. J Org Chem 2024. [PMID: 38770947 DOI: 10.1021/acs.joc.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
A chemodivergent synthesis of polycyclic aromatic diarylamines and carbazoles was established by employing thermally or photochemically controlled processes using KOtBu/1,10-phenanthroline. The synthetic processes involved the dephosphinylation of 9-amino-10-(phosphinyl)phenanthrenes, which were obtained through a regioselective palladium-catalyzed direct [4 + 2] benzannulation of phosphinyl ynamines with 2-iodobiphenyls. When the dephosphinylation was conducted under heating conditions (∼100 °C), it proceeded to yield 9-aminophenanthrene. However, when the reaction was performed under the illumination of purple light (LEDs, λmax = ca. 390 nm), KOtBu/1,10-phenanthroline promoted single-electron-transfer-triggered dephosphinylation followed by cyclization, producing the corresponding π-expanded carbazoles. We successfully synthesized a highly π-expanded dicarbazole through a dual dephosphinylative cyclization. Additionally, we present the optical properties of a series of amino compounds produced through the dephosphinylative processes.
Collapse
Affiliation(s)
- Yasuhiro Okuda
- Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Takuma Sato
- Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Sou Takebe
- Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Matsuri Mori
- Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Mayo Fujimoto
- Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Kazunori Masuda
- Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Taisei Sabato
- Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Haruo Akashi
- Institute of Frontier Science and Technology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Akihiro Orita
- Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
11
|
Roy VJ, Chakraborty J, Raha Roy S. Catalytic π-π Interactions Triggered Photoinduced Synthesis of Biaryls. Org Lett 2024; 26:183-187. [PMID: 38169322 DOI: 10.1021/acs.orglett.3c03806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A highly regioselective photocatalytic method to access a variety of biaryl motifs under metal-free conditions has been developed. The organophotocatalyst is involved in π-π stacking interactions with the alkyne species, which promotes this photocatalytic process with thiophene. Mechanistic studies have shed light on these interactions and the overall process. Along with a broad functional-group tolerance and excellent regioselectivity, this protocol has been utilized in the late-stage functionalization of pharmaceuticals and other natural products.
Collapse
Affiliation(s)
- Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Janardan Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
12
|
Li J, Liu T, Singh N, Huang Z, Ding Y, Huang J, Sudarsanam P, Li H. Photocatalytic C-N bond construction toward high-value nitrogenous chemicals. Chem Commun (Camb) 2023; 59:14341-14352. [PMID: 37987689 DOI: 10.1039/d3cc04771g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The construction of carbon-nitrogen bonds is vital for producing versatile nitrogenous compounds for the chemical and pharmaceutical industries. Among developed synthetic approaches to nitrogenous chemicals, photocatalysis is particularly prominent and has become one of the emerging fields due to its unique advantages of eco-sustainable characteristics, efficient process integration, no need for high-pressure H2, and tunable synthesis methods for developing advanced photocatalytic materials. Here, the review focuses on potential photocatalytic protocols developed for the construction of robust carbon-nitrogen bonds in discrepant activation environments to produce high-value nitrogenous chemicals. The photocatalytic C-N bond construction strategies and involved reaction mechanisms are elucidated.
Collapse
Affiliation(s)
- Jie Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Tengyu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Nittan Singh
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Zhuochun Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Yan Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Jinshu Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Putla Sudarsanam
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India.
| | - Hu Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
13
|
Roy VJ, Dagar N, Choudhury S, Raha Roy S. Unified Approach to Diverse Heterocyclic Synthesis: Organo-Photocatalyzed Carboacylation of Alkenes and Alkynes from Feedstock Aldehydes and Alcohols. J Org Chem 2023; 88:15374-15388. [PMID: 37871233 DOI: 10.1021/acs.joc.3c01884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
We report an organo-photocatalyzed carboacylation reaction that offers a springboard to create chemical complexity in a diversity-driven approach. The modular one-pot method uses feedstock aldehydes and alcohols as acyl surrogates and commercially available Eosin Y as the photoredox catalyst, making it simple and affordable to introduce structural diversity. Several biologically relevant skeletons have been easily synthesized under mild conditions in the presence of visible light irradiation by fostering a radical acylation/cyclization cascade. The proposed reaction mechanism was further illuminated by a number of spectroscopic studies. Furthermore, we applied this protocol for the late-stage functionalization of pharmaceuticals and blockbuster drugs.
Collapse
Affiliation(s)
- Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Swagata Choudhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
14
|
Li X, Yuan X, Hu J, Li Y, Bao H. Radical Decarboxylative Carbon-Nitrogen Bond Formation. Molecules 2023; 28:4249. [PMID: 37241989 PMCID: PMC10223573 DOI: 10.3390/molecules28104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The carbon-nitrogen bond is one of the most prevalent chemical bonds in natural and artificial molecules, as many naturally existing organic molecules, pharmaceuticals, agrochemicals, and functional materials contain at least one nitrogen atom. Radical decarboxylative carbon-nitrogen bond formation from readily available carboxylic acids and their derivatives has emerged as an attractive and valuable tool in modern synthetic chemistry. The promising achievements in this research topic have been demonstrated via utilizing this strategy in the synthesis of complex natural products. In this review, we will cover carbon-nitrogen bond formation via radical decarboxylation of carboxylic acids, Barton esters, MPDOC esters, N-hydroxyphthalimide esters (NHP esters), oxime esters, aryliodine(III) dicarboxylates, and others, respectively. This review aims to bring readers a comprehensive survey of the development in this rapidly expanding field. We hope that this review will emphasize the knowledge, highlight the proposed mechanisms, and further disclose the fascinating features in modern synthetic applications.
Collapse
Affiliation(s)
- Xiangting Li
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Xiaobin Yuan
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Jiahao Hu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, China
| | - Yajun Li
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| |
Collapse
|
15
|
Jha RK, Batabyal M, Kumar S. Blue Light Irradiated Metal-, Oxidant-, and Base-Free Cross-Dehydrogenative Coupling of C( sp2)-H and N-H Bonds: Amination of Naphthoquinones with Amines. J Org Chem 2023. [PMID: 37171187 DOI: 10.1021/acs.joc.3c00666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Herein, we report a blue-light-driven amination of C(sp2)-H bond of naphthoquinones and quinones with the N-H bond of primary and secondary amines for the synthesis of 2-amino-naphthoquinones and 2-amino-quinones. The coupling of naphthoquinones with a wide array of aliphatic, aromatic, chiral, primary, and secondary amines having electron donating (-CH3, -OCH3, -SCH3), withdrawing (-F, -Cl, -Br, -I), and CO2H, -OH, -NH2 groups with acidic protons selectively occurred to afford C-N coupled 2-amino-naphthoquinones in 60-99% yields and hydrogen gas as a byproduct in methanol solvent without using any additional reagents, additives, and oxidant under the blue light irradiation. Mechanistic insight by DFT computation, controlled experiments, kinetic isotopic effect, and substitution effect of the substrates suggest that the reaction proceeds by radical pathway in which naphthoquinone forms a highly oxidizing naphthoquinonyl biradical upon irradiation of blue light (457 nm). Consequently, electron transfer from electron-rich amine to an oxidizing naphthoquinonyl biradical leads to a naphthoquinonyl radical anion and aminyl radical cation, followed by proton transfer and delocalization leading to a carbon-centered naphthoquinonyl radical. The cross-coupling of naphthoquinonyl carbon-centered and aminyl nitrogen radicals forms a C-N bond, with subsequent elimination of hydrogen gas (which was also confirmed by GC-TCD), affording 2-amino-1,4-naphthoquinone under metal-, reagent-, base-, and oxidant-free conditions.
Collapse
Affiliation(s)
- Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
16
|
Zhu Q, Zhao E, Shen Y, Chen Z, Fang W. Photocatalytic C-N cross-coupling mediated by heterogeneous nickel-coordinated carbon nitride. Org Biomol Chem 2023; 21:4276-4281. [PMID: 37144980 DOI: 10.1039/d3ob00388d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
An easy to prepare nickel-coordinated mesoporous graphitic carbon nitride (Ni-mpg-CN) was introduced as a heterogeneous photocatalyst, which efficiently accelerated the photocatalytic C-N cross-coupling of (hetero)aryl bromides and aliphatic amines, delivering the desired monoaminated products in good yields. In addition, the concise synthesis of the pharmaceutical tetracaine was accomplished in the final stage, further highlighting the practical applicability.
Collapse
Affiliation(s)
- Qi Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, 210037, Nanjing, China.
| | - En Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, 210037, Nanjing, China.
| | - Yajing Shen
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, 324000, Zhejiang, China
| | - Zupeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, 210037, Nanjing, China.
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, 210037, Nanjing, China.
| |
Collapse
|
17
|
Sen PP, Roy SR. Introducing Phenalenyl-Based Organic Lewis Acid as a Photocatalyst to Facilitate Oxidative Azolation of Unactivated Arenes. Org Lett 2023; 25:1895-1900. [PMID: 36892632 DOI: 10.1021/acs.orglett.3c00409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
By revealing the robust photooxidant properties of phenalenyl-based organic Lewis acid, we have introduced this moiety as an effective organophotocatalyst for the oxidative azolation of unactivated and feedstock arenes. In addition to its tolerance for various functional groups and scalability, this photocatalyst was shown to be promising for the defluorinative azolation of fluoroarenes.
Collapse
Affiliation(s)
- Partha Pratim Sen
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
18
|
Roy VJ, Raha Roy S. Light-Induced Activation of C-X Bond via Carbonate-Assisted Anion-π Interactions: Applications to C-P and C-B Bond Formation. Org Lett 2023; 25:923-927. [PMID: 36752768 DOI: 10.1021/acs.orglett.2c04208] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We have presented a carbonate anion assisted photochemical protocol for the C-X bond activation. Anion-π interactions have been leveraged to generate aryl radicals from easily accessible aryl halides that are further utilized in C-P and C-B bond formation reactions with excellent reactivity and broad functional group tolerance. Spectroscopic investigations and DFT studies were conducted for mechanistic insights. This inexpensive method alleviates the use of a photocatalyst and the need of preactivation of the substrate for the light-induced activation of C-X bonds.
Collapse
Affiliation(s)
- Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
19
|
Jyoti Roy V, Pathania V, Raha Roy S. Making and Breaking of C-N Bonds: Applications in the Synthesis of Unsymmetric Tertiary Amines and α-Amino Carbonyl Derivatives. Chem Asian J 2023; 18:e202200998. [PMID: 36373843 DOI: 10.1002/asia.202200998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Indexed: 11/16/2022]
Abstract
An operationally simple process has been developed for the synthesis of unsymmetrical amines and α-amino carbonyl derivatives in the absence of a catalyst, ligand, oxidant, or any additives. Contrary to known reductive amination methods, this protocol is amenable to substrates containing other reducible groups. This process effectively results in consecutive cleavage and formation of C-N bonds. DFT studies and Hammett analysis provide useful insight into the mechanism. The role of noncovalent interactions as a stabilizing factor have been examined in the protocol. A wide range of alkyl-bromides have been coupled efficiently with a variety of dimethyl anilines to get unsymmetric tertiary amines with yields up to 90%. This methodology was further extended to the synthesis of α-amino carbonyl derivatives with yields up to 93%.
Collapse
Affiliation(s)
- Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Vishali Pathania
- Department of Chemistry, Indian Institute of Technology Delhi, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
20
|
Pathania V, Roy VJ, Roy SR. Transforming Non-innocent Phenalenyl to a Potent Photoreductant: Captivating Reductive Functionalization of Aryl Halides through Visible-Light-Induced Electron Transfer Processes. J Org Chem 2022; 87:16550-16566. [DOI: 10.1021/acs.joc.2c02241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Vishali Pathania
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
21
|
Luo X, Yang Z, Zheng J, Liang G, Luo H, Yang W. CuX Dual Catalysis: Construction of Oxazolo[2,3- b][1,3]oxazines via a Tandem CuAAC/Ring Cleavage/[4+2+3] Annulation Reaction. Org Lett 2022; 24:7300-7304. [PMID: 36178978 DOI: 10.1021/acs.orglett.2c02705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CuX as a simple dual catalyst strategy that promotes the tandem transformations of fused oxazolo[2,3-b][1,3]oxazines has been developed. Copper catalyzed terminal ynones, sulfonyl azides, and nitriles for the CuAAC/ring cleavage/[4+2] annulation reaction, while the halogen catalyzed ring cleavage and [2+3] annulation of oxiranes to form the final fused products. This study provides a four-component, one-pot strategy for synthesizing complex fused heterocycles from simple ingredients and expands the application of CuAAC in organic synthesis.
Collapse
Affiliation(s)
- Xiai Luo
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China.,School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Zhongtao Yang
- The Marine Biomedical Research Institute of Guangdong, Zhanjiang 524023, China
| | - Jia Zheng
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Gang Liang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Hui Luo
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Weiguang Yang
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
22
|
Huang LZ, Xuan Z, Park JU, Kim JH. Dual Rh(II)/Pd(0) Relay Catalysis Involving Sigmatropic Rearrangement Using N-Sulfonyl Triazoles and 2-Hydroxymethylallyl Carbonates. Org Lett 2022; 24:6951-6956. [PMID: 36121333 DOI: 10.1021/acs.orglett.2c02752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dual Rh(II)/Pd(0) relay catalysis of N-sulfonyl triazoles and 2-hydroxymethylallyl carbonates has been developed, which affords N-sulfonyl pyrrolidines in moderate to good yields with high diastereoselectivities. The reaction proceeds via a relay mechanism involving O-H insertion onto the α-imino Rh(II)-carbene, [3,3]-sigmatropic rearrangement, dipole formation through Pd(0)-catalyzed decarboxylation, and intramolecular N-allylation, leading to the formation of multiple bonds in a one-pot operation.
Collapse
Affiliation(s)
- Liang-Zhu Huang
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea.,College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, P. R. China
| | - Zi Xuan
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| | - Jong-Un Park
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828 Jinju, Korea
| |
Collapse
|
23
|
Shen BR, Annamalai P, Bai R, Badsara SS, Lee CF. Blue LED-Mediated Syntheses of Arylazo Phosphine Oxides and Phosphonates via N-P Bond Formation. Org Lett 2022; 24:5988-5993. [PMID: 35926085 DOI: 10.1021/acs.orglett.2c02251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The synthesis of (E)-diphenyl(aryldiazenyl)phosphine oxides and dialkyl (E)-(aryldiazenyl)phosphonates via visible light-mediated N-P bond formation between diazo species and phosphine oxides and phosphite derivatives, respectively, is described. The diazo species were generated via the reaction of aniline with isoamyl nitrite, which upon reaction with phosphorus surrogates generated arylazophosphine oxides and arylazo phosphonates in good to excellent yields. This sustainable chemical process offers a broad substrate scope and reasonably viable product formation.
Collapse
Affiliation(s)
- Bo-Ru Shen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | | | - Rekha Bai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN, Marg, Jaipur, Rajasthan 302004, India
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, ROC.,i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan, ROC.,Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 402, Taiwan, ROC
| |
Collapse
|
24
|
Ravi Kishore D, Sreenivasulu C, Satyanarayana G, Dapkekar AB. Recent Applications on Dual-Catalysis for C–C and C–X Cross-Coupling Reactions. SYNOPEN 2022. [DOI: 10.1055/a-1896-4168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
AbstractCoupling reactions stand amid the most significant reactions in synthetic organic chemistry. Of late, these coupling strategies are being viewed as a versatile synthetic tool for a wide range of organic transformations in many sectors of chemistry, ranging from indispensable synthetic scaffolds and natural products of biological significance to novel organic materials. Further, the use of dual-catalysis in accomplishing various interesting cross-coupling transformations is an emerging field in synthetic organic chemistry, owing to their high catalytic performance rather than the use of a single catalyst. In recent years, synthetic organic chemists have given considerable attention to hetero-dual catalysis; wherein these catalytic systems have been employed for the construction of versatile carbon–carbon [C(sp
3)–C(sp
3), C(sp
3)–C(sp
2), C(sp
2)–C(sp
2)] and carbon–heteroatom (C–N, C–O, C–P, C–S) bonds. Therefore, in this mini-review, we are emphasizing recently developed various cross-coupling reactions catalysed by transition-metal dual-catalysis (i.e., using palladium and copper catalysts, but omitting the reports on photoredox/metal catalysis).1 Introduction2 Cu/Pd-Catalysed Bond Formation2.1 Pd/Cu-Catalysed C(sp
3)–C(sp
2) Bond Formation2.2 Pd/Cu-Catalysed C(sp
2)–C(sp
2) Bond Formation2.3 Pd/Cu-Catalysed C(sp)–C(sp
2) Bond Formation2.4 Pd/Cu-Catalysed C(sp
3)–C(sp
3) Bond Formation2.5 Pd/Cu-Catalysed C–X (X = B, N, P, S, Si) Bond Formation3 Conclusion
Collapse
|
25
|
Ballav T, Chakrabortty R, Das A, Ghosh S, Ganesh V. Palladium‐Catalyzed Dual Catalytic Synthesis of Heterocycles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tamal Ballav
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | | | - Aniruddha Das
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | - Suman Ghosh
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | - Venkataraman Ganesh
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry Department of Chemistry,Indian Institute Technology Kharagpur 721302 Kharagpur INDIA
| |
Collapse
|
26
|
Abstract
Synthetic chemists have long focused on selective C(sp 3)-N bond-forming approaches in response to the high value of this motif in natural products, pharmaceutical agents and functional materials. In recent years, visible light-induced protocols have become an important synthetic platform to promote this transformation under mild reaction conditions. These photo-driven methods rely on converting visible light into chemical energy to generate reactive but controllable radical species. This Review highlights recent advances in this area, mostly after 2014, with an emphasis placed on C(sp 3)-H bond activations, including amination of olefins and carbonyl compounds, and cross-coupling reactions.
Collapse
|
27
|
Xu ZY, Liu YP, Liu X, Fu R, Hao WJ, Tu SJ, Jiang B. Photocatalytic Chemodivergent Synthesis of α‐gem‐Dihalovinyl Ketones and Chromen‐2‐ones from Monoalkynes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Xin Liu
- Jiangsu Normal University CHINA
| | - Rong Fu
- Jiangsu Normal University CHINA
| | | | | | | |
Collapse
|
28
|
Vijeta A, Casadevall C, Reisner E. An Integrated Carbon Nitride-Nickel Photocatalyst for the Amination of Aryl Halides Using Sodium Azide. Angew Chem Int Ed Engl 2022; 61:e202203176. [PMID: 35332981 PMCID: PMC9321912 DOI: 10.1002/anie.202203176] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/12/2022]
Abstract
The synthesis of primary anilines via sustainable methods remains a challenge in organic synthesis. We report a photocatalytic protocol for the selective synthesis of primary anilines via cross-coupling of a wide range of aryl/heteroaryl halides with sodium azide using a photocatalyst powder consisting of nickel(II) deposited on mesoporous carbon nitride (Ni-mpg-CNx ). This heterogeneous photocatalyst contains a high surface area with a visible light-absorbing and adaptive "built-in" solid-state ligand for the integrated catalytic Ni site. The method displays a high functional group tolerance, requires mild reaction conditions, and benefits from easy recovery and reuse of the photocatalyst powder. Thereby, it overcomes the need of complex ligand scaffolds required in homogeneous catalysis, precious metals and elevated temperatures/pressures in existing protocols of primary anilines synthesis. The reported heterogeneous Ni-mpg-CNx holds potential for applications in the academic and industrial synthesis of anilines and exploration of other photocatalytic transformations.
Collapse
Affiliation(s)
- Arjun Vijeta
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Carla Casadevall
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| |
Collapse
|
29
|
Affiliation(s)
| | - Chengming Wang
- Jinan University Chemistry 601 West Huangpu Avenue 510632 Guangzhou CHINA
| |
Collapse
|
30
|
Vijeta A, Casadevall C, Reisner E. An Integrated Carbon Nitride‐Nickel Photocatalyst for the Amination of Aryl Halides using Sodium Azide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arjun Vijeta
- University of Cambridge Chemistry UNITED KINGDOM
| | | | - Erwin Reisner
- University of Cambridge Chemistry Lensfield Road CB2 1EW Cambridge UNITED KINGDOM
| |
Collapse
|
31
|
Singh S, Dagar N, Roy SR. Photoinduced ligand to metal charge transfer enabling cerium mediated decarboxylative alkylation of quinoxalin-2(1 H)-ones. Chem Commun (Camb) 2022; 58:3831-3834. [PMID: 35234798 DOI: 10.1039/d2cc00840h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here, we report the cerium-mediated decarboxylative alkylation of quinoxalin-2(1H)-ones utilizing feedstock carboxylic acids as a radical precursor via photoinduced-LMCT. This operationally simple protocol overcomes the limitation of the direct use of carboxylic acids to access alkyl radicals. Spectroscopic investigations reveal the photoinduced LMCT and CO2 evolving events. We have utilized a broad range of alkyl carboxylic acids (1° to 3° acids), amino acids and pharmaceutically-important acids as a coupling partner to synthesise the desired alkylated heterocyclic product in good to excellent yields.
Collapse
Affiliation(s)
- Swati Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
32
|
Padma Priya V, Natarajan K, Nandi GC. Advances in the photoredox catalysis of S(VI) compounds. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Roy VJ, Sen PP, Roy SR. Exploring Eosin Y as a bimodular catalyst: organophotoacid mediated Minisci-type acylation of N-heteroarenes. Chem Commun (Camb) 2022; 58:1776-1779. [PMID: 35037922 DOI: 10.1039/d1cc06483e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report Eosin Y as a bimodular catalyst for Minisci-type acylation reactions. The formation of organic exciplexes between photoexcited Eosin Y and N-heteroarenes was found to be a stabilizing factor for photoacid catalysis under optimized conditions. Spectroscopic investigations such as steady state fluorescence quenching and dynamic lifetime quenching experiments were employed to better understand the role of Eosin Y as both a photoredox catalyst and a photoacid. Feedstock aldehydes were employed as acyl radical precursors for engaging in C-C bond formation reactions with a variety of nitrogen containing heterocycles.
Collapse
Affiliation(s)
- Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Partha Pratim Sen
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
34
|
Patel B, Dahiya A, Das B, SAHOO ASHISHKUMAR. Visible‐Light‐Driven Isocyanide Insertion to o‐Alkenylanilines: A Route to Isoindolinone Synthesis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Bubul Das
- Indian Institute of Technology Guwahati INDIA
| | | |
Collapse
|
35
|
Battaglioli S, Bertuzzi G, Pedrazzani R, Benetti J, Valenti G, Montalti M, Monari M, Bandini M. Visible‐Light‐Assisted Synthesis of Allylic Triflamides via Dual Acridinium/Co Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Simone Battaglioli
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
| | - Giulio Bertuzzi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
- Center for Chemical Catalysis – C3, Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
| | - Riccardo Pedrazzani
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
- Center for Chemical Catalysis – C3, Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
| | - Jessica Benetti
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
| | - Giovanni Valenti
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
- Center for Chemical Catalysis – C3, Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
| | - Marco Montalti
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
- Center for Chemical Catalysis – C3, Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
| | - Magda Monari
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
- Center for Chemical Catalysis – C3, Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
| | - Marco Bandini
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
- Center for Chemical Catalysis – C3, Alma Mater Studiorum – Università di Bologna via Selmi 2 40126 – Bologna Italy
| |
Collapse
|
36
|
Roy VJ, Sen PP, Raha Roy S. Visible-Light-Mediated Cross Dehydrogenative Coupling of Thiols with Aldehydes: Metal-Free Synthesis of Thioesters at Room Temperature. J Org Chem 2021; 86:16965-16976. [PMID: 34726397 DOI: 10.1021/acs.joc.1c02111] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thioesters play a crucial role in biological systems and serve as important building blocks for organic synthesis. Herein, Eosin Y and TBHP mediated photochemical cross dehydrogenative coupling (PCDC) between feedstock aldehydes and thiols has been described at room temperature to synthesize thioesters. This thioesterification protocol proceeds smoothly to give the desired products in good to excellent yields by the suitable PCDC of both alkyl/aryl- aldehydes with a variety of alkyl/aryl-thiols and generates water and tBuOH as green byproducts. This method is also found to be scalable with good efficiency. Mechanistic investigations reveal that under this photochemical condition, the formation of acyl radical can be achieved from aldehyde. This acyl radical was further intercepted with an intermediate disulfide, generated in situ via the dehydrogenation of thiol to give the desired thioester. Moreover, disulfides, which are relatively easier to handle, also provided good to excellent yields in the optimized reaction condition. This protocol was further extended toward the more challenging direct transformation of alcohols to thioesters.
Collapse
Affiliation(s)
- Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Partha Pratim Sen
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
37
|
Abstract
Classical amination methods involve the reaction of a nitrogen nucleophile with an electrophilic carbon center; however, in recent years, umpoled strategies have gained traction where the nitrogen source acts as an electrophile. A wide range of electrophilic aminating agents are now available, and these underpin a range of powerful C-N bond-forming processes. In this Review, we highlight the strategic use of electrophilic aminating agents in total synthesis.
Collapse
Affiliation(s)
- Lauren G. O'Neil
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - John F. Bower
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
38
|
Affiliation(s)
- Lauren G. O'Neil
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - John F. Bower
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
39
|
Li J, Zhao J, Ma C, Yu Z, Zhu H, Yun L, Meng Q. Visible-Light-Driven Oxidative Cleavage of Alkenes Using Water-Soluble CdSe Quantum Dots. CHEMSUSCHEM 2021; 14:4985-4992. [PMID: 34494393 DOI: 10.1002/cssc.202101504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The oxidative cleavage of C=C bonds is an important chemical reaction, which is a popular reaction in the photocatalytic field. However, high catalyst-loading and low turnover number (TON) are general shortcomings in reported visible-light-driven reactions. Herein, the direct oxidative cleavage of C=C bonds through water-soluble CdSe quantum dots (QDs) is described under visible-light irradiation at room temperature with high TON (up to 3.7×104 ). Under the same conditions, water-soluble CdSe QDs could also oxidize sulfides to sulfoxides with 51-84 % yields and TONs up to 3.4×104 . The key features of this photocatalytic protocol include high TONs, wide substrates scope, low catalyst loadings, simple and mild reaction conditions, and molecular O2 as the oxidant.
Collapse
Affiliation(s)
- Jianing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Jingnan Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Cunfei Ma
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Zongyi Yu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Hongfei Zhu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Lei Yun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Qingwei Meng
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
- Ningbo Institute, Dalian University of Technology, Ningbo, Zhejiang, 315016, P. R. China
| |
Collapse
|
40
|
Manna K, Ganguly T, Baitalik S, Jana R. Visible-Light- and PPh 3-Mediated Direct C-N Coupling of Nitroarenes and Boronic Acids at Ambient Temperature. Org Lett 2021; 23:8634-8639. [PMID: 34643396 DOI: 10.1021/acs.orglett.1c03343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We present here a metal-free, visible-light- and triphenylphosphine-mediated intermolecular, reductive amination between nitroarenes and boronic acids at ambient temperature without any photocatalyst. Mechanistically, a slow reduction of nitroarenes to a nitroso and, finally, a nitrene intermediate occurs that leads to the amination product with concomitant 1,2-aryl/-alkyl migration from a boronate complex. A wide range of nitroarenes underwent C-N coupling with aryl-/alkylboronic acids providing high yields.
Collapse
Affiliation(s)
- Kartic Manna
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Tanusree Ganguly
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| |
Collapse
|
41
|
Wang L, Xu T, Rao Q, Zhang TS, Hao WJ, Tu SJ, Jiang B. Photocatalytic Biheterocyclization of 1,7-Diynes for Accessing Skeletally Diverse Tricyclic 2-Pyranones. Org Lett 2021; 23:7845-7850. [PMID: 34581592 DOI: 10.1021/acs.orglett.1c02865] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new and green route to skeletally diverse oxo-heterocyclic architectures such as pyrano[3,4-c]chromen-2-ones and pyrano[3,4-c]quinolin-2-ones is reported via an unprecedented photocatalytic Kharasch-type cyclization/1,5-(SN″)-substitution/elimination/6π-electrocyclization/double nucleophilic substitution cascade starting from easily available heteroatom-linked 1,7-diynes and low-cost CBrCl3. During this reaction process, the full scission of carbon-halogen bonds of BrCCl3 was realized to directly build two new rings, including a lactone scaffold, using H2O as the oxygen source of the ester group.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Ting Xu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Qian Rao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
42
|
Xie P, Xue C, Shi S, Du D. Visible-Light-Driven Selective Air-Oxygenation of C-H Bond via CeCl 3 Catalysis in Water. CHEMSUSCHEM 2021; 14:2689-2693. [PMID: 33877736 DOI: 10.1002/cssc.202100682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Visible-light-induced C-H aerobic oxidation is an important chemical transformation that can be applied for the synthesis of aromatic ketones. High-cost catalysts and toxic solvents were generally needed in the present methodologies. Here, an efficient aqueous C-H aerobic oxidation protocol was reported. Through CeCl3 -mediated photocatalysis, a series of aromatic ketones were produced in moderate to excellent yields. With air as the oxidant, this reaction could be performed under mild conditions in water and demonstrated high activity and functional group tolerance. This method is economical, highly efficient, and environmentally friendly, and it will provide inspiration for the development of aqueous photochemical synthesis reactions.
Collapse
Affiliation(s)
- Pan Xie
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Cheng Xue
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Sanshan Shi
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Dongdong Du
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| |
Collapse
|
43
|
Xie P, Xue C, Wang C, Du D, Shi S. Merging CF 3SO 2Na photocatalysis with palladium catalysis to enable decarboxylative cross-coupling for the synthesis of aromatic ketones at room temperature. Org Chem Front 2021. [DOI: 10.1039/d1qo00438g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
By merging CF3SO2Na-mediated photocatalysis with palladium catalysis, an efficient decarboxylative coupling strategy of α-keto acids and aryl boronic acids has been developed for the synthesis of aromatic ketones.
Collapse
Affiliation(s)
- Pan Xie
- College of Chemistry and Chemistry Engineering
- Shaanxi Key Laboratory of Chemistry Additives for Industry
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| | - Cheng Xue
- College of Chemistry and Chemistry Engineering
- Shaanxi Key Laboratory of Chemistry Additives for Industry
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| | - Cancan Wang
- College of Chemistry and Chemistry Engineering
- Shaanxi Key Laboratory of Chemistry Additives for Industry
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| | - Dongdong Du
- College of Chemistry and Chemistry Engineering
- Shaanxi Key Laboratory of Chemistry Additives for Industry
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| | - SanShan Shi
- College of Chemistry and Chemistry Engineering
- Shaanxi Key Laboratory of Chemistry Additives for Industry
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| |
Collapse
|