1
|
Hu J, Li B, Xiong F, Xu Y, Li Z, Gu L, Ma W, Mei R. Electrochemically Driven Chalcogenative Cyclization of 2-Alkynyl Aryl Oxime: Access to Functionalized Isoquinolines. J Org Chem 2025; 90:2626-2635. [PMID: 39918014 DOI: 10.1021/acs.joc.4c02655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
A transition-metal-free electrochemical chalcogenative cyclization of 2-alkynyl aryl oxime with dichalcogenides has been established to assemble valuable 4-organochalcogen isoquinolines concisely. This protocol proceeds via constant electrolysis in a user-friendly undivided cell setup. It circumvents the necessity of transition metal catalysts, chemical oxidants, and harsh reaction conditions. The practical utilities of the current protocol were illustrated by excellent functional group tolerance, remarkable regio-selectivity, easy scalability, mild reaction conditions, and transformable 4-organochalcogen isoquinoline products.
Collapse
Affiliation(s)
- Jiajun Hu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Bo Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Feng Xiong
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Yue Xu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Zheyu Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Linghui Gu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Wenbo Ma
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Ruhuai Mei
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, College of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| |
Collapse
|
2
|
Li H, Lu D, Qian BY, Lin J, Zhang HJ. Direct Synthesis of K-Region Functionalized Polycyclic Aromatic Hydrocarbons via Twofold Intramolecular C-H/C-H Arylation. Org Lett 2024; 26:11140-11144. [PMID: 39661452 DOI: 10.1021/acs.orglett.4c04156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Functionalized polycyclic aromatic hydrocarbons (PAHs) are essential building blocks for the bottom-up fabrication of structurally uniform nanocarbons. Herein we report a simple and efficient synthetic method toward K-region hydroxy-functionalized PAHs via TEMPO-mediated twofold intramolecular C-H/C-H arylations of 1-biphenyl-2-yl-2-aryl-ethanone derivatives. This method achieves high yields and selectivity, synthesizing a variety of PAH frameworks, including pyrenes, chrysenes, benzo[c]phenanthrenes, and benzo[k]tetraphenes. Our results also demonstrate the potential of these compounds as valuable candidates for the selective construction of larger PAH structures.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Dandan Lu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Bai-Yang Qian
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
3
|
Lefevre A, Guillot R, Kouklovsky C, Vincent G. Ferrocene-Mediated Electrochemical Polycyclization of Malonates. Org Lett 2024; 26:7403-7407. [PMID: 39189952 DOI: 10.1021/acs.orglett.4c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We report access to the core of biologically relevant aromatic abietane diterpenoids and to the formal synthesis of podocarpic and lambertic acids or γ-lactones via an electrochemical bicyclization process initiated by the ferrocene-mediated anodic oxidation of a malonate via single electron-transfer. This approach permits escaping the use of excess of oxidants such as Mn(OAc)3 and the associated complicated purification.
Collapse
Affiliation(s)
- Antoine Lefevre
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| |
Collapse
|
4
|
Hashmi SZ, Bareth D, Dwivedi J, Kishore D, Alvi PA. Green advancements towards the electrochemical synthesis of heterocycles. RSC Adv 2024; 14:18192-18246. [PMID: 38854834 PMCID: PMC11157331 DOI: 10.1039/d4ra02812k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
Heterocyclic chemistry is a large field with diverse applications in the areas of biological research and pharmaceutical advancement. Numerous initiatives have been proposed to further enhance the reaction conditions to reach these compounds without using harmful compounds. This paper focuses on the recent advances in the eco-friendly and green synthetic procedures to synthesize N-, S-, and O-heterocycles. This approach demonstrates considerable potential in accessing such compounds while circumventing the need for stoichiometric quantities of oxidizing/reducing agents or catalysts containing precious metals. Merely employing catalytic quantities of these substances proves sufficient, thereby offering an optimal means of contributing to resource efficiency. Renewable electricity plays a crucial role in generating environmentally friendly electrons (oxidant/reductant) that serve as catalysts for a series of reactions. These reactions involve the production of reactive intermediates, which in turn allow the synthesis of new chemical bonds, enabling beneficial transformations to occur. Furthermore, the utilization of metals as active catalysts in electrochemical activation has been recognized as an effective approach for achieving selective functionalization. The aim of this review was to summarize the electrochemical synthetic procedures so that the undesirable side reactions can be considerably reduced and the practical potential range of the chemical reactions can be expanded significantly.
Collapse
Affiliation(s)
- Sonia Zeba Hashmi
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - Diksha Bareth
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - P A Alvi
- Department of Physical Sciences, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| |
Collapse
|
5
|
Li JL, Yang Z, Shen S, Yang XL, Niu X. TEMPO-Mediated Interrupted 6π-Photocyclization of ortho-Biaryl-Appended 1,3-Dicarbonyl Compounds toward 10-Phenanthrenols. J Org Chem 2024; 89:44-56. [PMID: 38088910 DOI: 10.1021/acs.joc.3c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In this paper, we present an example of a photoinduced catalyst, halogen-, and base-free TEMPO-mediated interrupted 6π-photocyclization/dehydrogenative aromatization of ortho-biaryl-appended 1,3-dicarbonyl compounds for the preparation of 10-phenanthrenols. The reaction involves rapid photocycloaddition via a 1,2-biradical of 1,3-dicarbonyl compounds, followed by subsequent dehydrogenative aromatization of 1,4-biradical intermediates using TEMPO as the commercially available oxidant rather than trapped by TEMPO to form an alkoxyamine product.
Collapse
Affiliation(s)
- Jun-Li Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Zhao Yang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Shigang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaoying Niu
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
- Postdoctoral Research Station of Chemistry Affiliated College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
6
|
Shukla G, Singh M, Kumar Yadav A, Shankar Singh M. Aromatic C(sp 2 )-H Functionalization by Consecutive Paired Electrolysis: Dibromination of Aryl Amines with Dibromoethane at Room Temperature. Chemistry 2023:e202303179. [PMID: 38078727 DOI: 10.1002/chem.202303179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 12/23/2023]
Abstract
Herein, we disclose a facile and efficient electrochemical method for the dibromination of aryl amines by double functionalization of aromatic C(sp2 )-H (both para and ortho) under metal- and external oxidant-free conditions at room temperature for the first time. The reaction is demonstrated using 1,2-dibromoethane to dibrominate a wide range of N-substituted aryl amines in a simple setup with C(+)/Pt(-) electrodes under mild reaction conditions. This transformation proceeds smoothly with a broad substrate scope affording the valuable and versatile N-substituted 2,4-dibromoanilines in moderate to excellent yields with high regioselectivity. In this paired electrolysis, cathodic reduction of 1,2-DBE followed by anodic oxidation generates bromonium intermediates, which then couple with anilines to furnish the dibrominated products. It represents a distinctive approach to challenging redox-neutral reactions. The versatility of the electrochemical ortho-, para-dibromination was reflected by unique regioselectivities for challenging aryl amines and gram-scale electrosynthesis without the use of a stoichiometric oxidant or an activating agent.
Collapse
Affiliation(s)
- Gaurav Shukla
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Malkeet Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anup Kumar Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
7
|
Sa Y, Lv X, Yao JY, Lu XY, Wu AB, Shu WM, Yu WC. Tandem Ene/[4 + 2] Cycloaddition Reaction for the Synthesis of 9-Benzylphenanthrenes from Arynes and α-(Bromomethyl)styrenes. J Org Chem 2023. [PMID: 37319302 DOI: 10.1021/acs.joc.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A tandem reaction for the synthesis of phenanthrenes from arynes and α-(bromomethyl)styrenes is reported. The transformation proceeds via an ene reaction of α-(bromomethyl)styrenes with arynes, followed by a [4 + 2] cycloaddition reaction. The reaction generates 9-benzylphenanthrene derivatives in moderate to excellent yields.
Collapse
Affiliation(s)
- Yun Sa
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China
| | - Xin Lv
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China
| | - Jia-Yu Yao
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China
| | - Xu-Yang Lu
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China
| | - Ai-Bin Wu
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China
| | - Wen-Ming Shu
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China
| | - Wei-Chu Yu
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China
| |
Collapse
|
8
|
Aslam S, Sbei N, Rani S, Saad M, Fatima A, Ahmed N. Heterocyclic Electrochemistry: Renewable Electricity in the Construction of Heterocycles. ACS OMEGA 2023; 8:6175-6217. [PMID: 36844606 PMCID: PMC9948259 DOI: 10.1021/acsomega.2c07378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Numerous applications in the realm of biological exploration and drug synthesis can be found in heterocyclic chemistry, which is a vast subject. Many efforts have been developed to further improve the reaction conditions to access this interesting family to prevent employing hazardous ingredients. In this instance, it has been stated that green and environmentally friendly manufacturing methodologies have been introduced to create N-, S-, and O-heterocycles. It appears to be one of the most promising methods to access these types of compounds avoiding use of stoichiometric amounts of oxidizing/reducing species or precious metal catalysts, in which only catalytic amounts are sufficient, and it represent an ideal way of contributing toward the resource economy. Thus, renewable electricity provides clean electrons (oxidant/reductant) that initiate a reaction cascade via producing reactive intermediates that facilitate in building new bonds for valuable chemical transformations. Moreover, electrochemical activation using metals as catalytic mediators has been identified as a more efficient strategy toward selective functionalization. Thus, indirect electrolysis makes the potential range more practical, and less side reactions can occur. The latest developments in using an electrolytic strategy to create N-, S-, and O-heterocycles are the main topic of this mini review, which was documented over the last five years.
Collapse
Affiliation(s)
- Samina Aslam
- Department
of Chemistry, The Women University Multan, Multan60000, Pakistan
- The Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Najoua Sbei
- Institute
of Nanotechnology, Karlsruhe Institute of Technology, EggensteinLeopoldshafen, 76344KarlsruheGermany
| | - Sadia Rani
- Department
of Chemistry, The Women University Multan, Multan60000, Pakistan
| | - Manal Saad
- School
of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Aroog Fatima
- Department
of Chemistry, The Women University Multan, Multan60000, Pakistan
| | - Nisar Ahmed
- School
of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
9
|
Li JL, Yang XL, Shen S, Niu X. Synthesis of 10-Phenanthrenols via Photosensitized Triplet Energy Transfer, Photoinduced Electron Transfer, and Cobalt Catalysis. J Org Chem 2022; 87:16458-16472. [PMID: 36441578 DOI: 10.1021/acs.joc.2c02182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to the inert redox activity and high triplet energy, radical chemistry of 1,3-dicarbonyl compounds usually requires prefunctionalization substrates, external oxidant, and high-energy UV light. Here, we report a visible-light-driven photocatalyst/cobaloxime system composed of a photosensitized energy transfer reaction (PEnT) and photoinduced electron transfer reaction (PET) and with an interrupted 6π-photocyclization/dehydrogenative aromatization in one pot to synthesize 10-phenanthrenols. Preliminary mechanistic studies revealed that fac-Ir(ppy)3 plays the dual roles of energy transfer catalysis for photocycloaddition via 1,2-biradical intermediates of 1,3-dicarbonyl compounds and photoredox/cobaloxime catalysis dehydrogenative aromatization of 1,4-biradical rather than the intermediates via 6π photocyclization in the tandem reaction. In contrast to previous well-established radical chemistry of 1,3-dicarbonyl compounds, we provide a new strategy for the activation of 1,3-dicarbonyl compounds under visible light catalysis, affording a novel cyclization strategy with extremely high atom economy for the synthesis of 10-phenanthrenols.
Collapse
Affiliation(s)
- Jun-Li Li
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Shigang Shen
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaoying Niu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China.,Postdoctoral Research Station of Chemistry Affiliated College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
10
|
Liu W, Hao L, Zhang J, Zhu T. Progress in the Electrochemical Reactions of Sulfonyl Compounds. CHEMSUSCHEM 2022; 15:e202102557. [PMID: 35174969 DOI: 10.1002/cssc.202102557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Electrosynthesis has recently attracted more and more attention due to its great potential to replace chemical oxidants or reductants in molecule-electrode electron transfer. Sulfonyl compounds such as sulfonyl hydrazides, sulfinic acids (and their salts), sulfonyl halides have been discovered as practical precursors of several radicals. As electrochemical redox reactions can provide green and efficient pathways for the activation of sulfonyl compounds, studies for electrosynthesis have rapidly increased. Several types of radicals can be generated from anodic oxidation or cathodic reduction of sulfonyl compounds and can initiate fluoroalkylation, benzenesulfonylation, cyclization or rearrangement. In this Review, we summarize the electrosynthesis developments involving sulfonyl compounds mainly in the last decade.
Collapse
Affiliation(s)
- Wangsheng Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lin Hao
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tingshun Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
11
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
12
|
Liu C, Shi WY, Ding YN, Zheng N, Liang YM. Palladium-Catalyzed Rearrangement Reaction to Access 1-Phenanthrol Derivatives. Chem Commun (Camb) 2022; 58:3186-3189. [DOI: 10.1039/d2cc00392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript describes an unusual Pd-catalyzed rearrangement reaction. It provides efficient access to 1-phenanthrol derivatives using allyloxy-tethered aryl iodides. This rearrangement process involves the cleavage of C-I bond, C-O bond...
Collapse
|
13
|
Li JL, Niu X, Song YF, Du JL, Shen S, Yang XL. Photocatalytic synthesis of 10-phenanthrenols via intramolecular cycloaromatization under oxidant-free conditions. Org Chem Front 2022. [DOI: 10.1039/d2qo01085b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel tandem photocycloaddition/dehydrogenative aromatization with hydrogen evolution of ortho biaryl-appended 1,3-dicarbonyl compounds for the synthesis of 10-phenanthrenol via cobaloxime catalysis is disclosed.
Collapse
Affiliation(s)
- Jun-Li Li
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Xiaoying Niu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
- Postdoctoral Research Station of Chemistry Affiliated College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Yi-Fan Song
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Jian-Long Du
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Shigang Shen
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Xiu-Long Yang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| |
Collapse
|
14
|
Desai B, Patel M, Dholakiya BZ, Rana S, Naveen T. Recent advances in directed sp 2 C-H functionalization towards the synthesis of N-heterocycles and O-heterocycles. Chem Commun (Camb) 2021; 57:8699-8725. [PMID: 34397068 DOI: 10.1039/d1cc02176a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterocyclic compounds are widely present in the core structures of several natural products, pharmaceuticals and agrochemicals, and thus great efforts have been devoted to their synthesis in a mild and simpler way. In the past decade, remarkable progress has been made in the field of heterocycle synthesis by employing C-H functionalization as an emerging synthetic strategy. As a complement to previous protocols, transition metal catalyzed C-H functionalization of arenes using various directing groups has recently emerged as a powerful tool to create different classes of heterocycles. This review is mainly focussed on the recent key progress made in the field of the synthesis of N,O-heterocycles from olefins and allenes by using nitrogen based and oxidizing directing groups.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | | | | | | | | |
Collapse
|
15
|
|