1
|
Nian S, Wu X, Chen A, Lei Z, Song Q, Huang Q, Liu M, Lu S, Chen J, Wei D. Electrochemical Cascade Reactions of 1,2,3-Benzotriazinones with Alkynes to Assemble 3,4-Dihydroisoquinolin-1(2 H)-ones. J Org Chem 2025; 90:5862-5870. [PMID: 40257103 DOI: 10.1021/acs.joc.5c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
An unexpected electrochemical cascade reaction of 1,2,3-benzotriazinones with alkynes to assemble 3,4-dihydroisoquinolin-1(2H)-ones has been developed, which avoids the use of pressurized H2, any metal catalysts, and stoichiometric redox agents. This route tolerates a wide range of functional groups in both reactants and can be performed under an air atmosphere. The process of continuous cathodic reduction was demonstrated by control experiments and cyclic voltammograms. Moreover, the gram-scale reaction confirmed the potential of this environmentally benign method for practical applications.
Collapse
Affiliation(s)
- Sanfei Nian
- Key Lab of Process Analysis and Control of Sichuan Universities, College of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Xudong Wu
- Key Lab of Process Analysis and Control of Sichuan Universities, College of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Anwu Chen
- Key Lab of Process Analysis and Control of Sichuan Universities, College of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Zhiming Lei
- Key Lab of Process Analysis and Control of Sichuan Universities, College of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Qiuyue Song
- Key Lab of Process Analysis and Control of Sichuan Universities, College of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Quan Huang
- Key Lab of Process Analysis and Control of Sichuan Universities, College of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Min Liu
- Key Lab of Process Analysis and Control of Sichuan Universities, College of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Shengming Lu
- Key Lab of Process Analysis and Control of Sichuan Universities, College of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Jinkang Chen
- Zhejiang Jiuzhou Pharmaceutical Co., Ltd., Taizhou, Zhejiang 318000, China
| | - Daijing Wei
- YiBin Center of Food and Drug Inspection, 19 Yong'an Road, Yibin 644000, China
| |
Collapse
|
2
|
Li L, Xu B, Jia C, Wang C, Ma D, Fang Z, Duan J, Guo K. Electrochemical Reductive Bimolecular Cycloaddition of 2-Arylideneindane-1,3-diones for the Synthesis of Spirocyclopentanole Indane-1,3-diones. J Org Chem 2025; 90:570-579. [PMID: 39720908 DOI: 10.1021/acs.joc.4c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
An electrochemical reductive bimolecular cycloaddition of 2-arylideneindane-1,3-diones has been reported for the synthesis of spirocyclopentanole indane-1,3-diones bearing five contiguous stereocenters with vicinal tetrasubstituted stereocenters, especially involving a quaternary carbon center, in moderate to good yields and excellent diastereoselectivities. The present protocol features mild reaction conditions, no external chemical redox reagents, excellent atom economy, and gram-scale synthesis. In addition, a mechanistic investigation indicates that the reactions proceed through a radical pathway.
Collapse
Affiliation(s)
- Luchao Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Binyan Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Chenglong Jia
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Caipeng Wang
- Shandong Yanggu Huatai Chemical Co., Ltd., Liaocheng 252300, China
| | - Delong Ma
- Shandong Yanggu Huatai Chemical Co., Ltd., Liaocheng 252300, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| |
Collapse
|
3
|
Shao CW, Wan PF, Xu Q, Yang ZN, Geng MY, Zhang Y, Zhang XH, Li XW. Phosphinothio(seleno)ation of alkynes/olefins and application on the late-stage functionalization of natural products. Commun Chem 2024; 7:290. [PMID: 39638940 PMCID: PMC11621678 DOI: 10.1038/s42004-024-01326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Non-metallic catalysis has been known as a remarkable development strategy for hydrofunctionalization of unsaturated hydrocarbons. Herein, we report a unique chemically active method of BF3·OEt2 promoted multi-component, highly regioselective, and chemoselective hydrothio(seleo)phosphonylation of unsaturated hydrocarbons, which exhibits high yield and good substrate universality. The reaction mechanism was further elucidated to be Markovnikov addition by controlling experiments, 31P and 19F NMR spectra tracking experiments, X-ray diffraction analysis, and DFT calculations. Furthermore, the gram-scale attempt and the application of the reaction on the derivatization of natural products have been successfully conducted, leading to the discovery of 3as with potential anti-Parkinson's disease (PD) activities at 1 μM. This streamlined and efficient methodology has established a new platform for non-metallic Lewis acids-promoted hydrofunctionalization of unsaturated hydrocarbons and its application on new drug research.
Collapse
Affiliation(s)
- Chang-Wei Shao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Pei-Feng Wan
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Quan Xu
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Ze-Nan Yang
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Mei-Yu Geng
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Yu Zhang
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China.
| | - Xing-Hua Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China.
| | - Xu-Wen Li
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China.
| |
Collapse
|
4
|
Kolb S, Werz DB. Correspondence on "Organo-Mediator Enabled Electrochemical Deuteration of Styrenes". Angew Chem Int Ed Engl 2024; 63:e202316037. [PMID: 38695672 DOI: 10.1002/anie.202316037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 11/05/2024]
Abstract
The recently reported electrochemical, organo-mediator enabled deuteration of styrenes, a reaction referred to as "electrochemical deuterium atom transfer", differs mechanistically from reported direct electrochemical hydrogenations/deuterations only by a mediated, homogeneous SET to the substrates. By comparing direct vs. mediated processes in general and for styrene reduction, we display that Qiu's work does not change the concept of this chemistry. Experiments with mediators and the direct reduction of examples from the reported scope show that even electron-rich substrates can be reduced when our direct protocol, published six months before Qiu's work, is applied.
Collapse
Affiliation(s)
- Simon Kolb
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstr. 21, 79104, Freiburg im Breisgau, Germany
| | - Daniel B Werz
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstr. 21, 79104, Freiburg im Breisgau, Germany
| |
Collapse
|
5
|
Li L, Wang X, Fu N. Electrochemical Nickel-Catalyzed Hydrogenation. Angew Chem Int Ed Engl 2024; 63:e202403475. [PMID: 38504466 DOI: 10.1002/anie.202403475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Olefin hydrogenation is one of the most important transformations in organic synthesis. Electrochemical transition metal-catalyzed hydrogenation is an attractive approach to replace the dangerous hydrogen gas with electrons and protons. However, this reaction poses major challenges due to rapid hydrogen evolution reaction (HER) of metal-hydride species that outcompetes alkene hydrogenation step, and facile deposition of the metal catalyst at the electrode that stalls reaction. Here we report an economical and efficient strategy to achieve high selectivity for hydrogenation reactivity over the well-established HER. Using an inexpensive and bench-stable nickel salt as the catalyst, this mild reaction features outstanding substrate generality and functional group compatibility, and distinct chemoselectivity. In addition, hydrodebromination of alkyl and aryl bromides could be realized using the same reaction system with a different ligand, and high chemoselectivity between hydrogenation and hydrodebromination could be achieved through ligand selection. The practicability of our method has been demonstrated by the success of large-scale synthesis using catalytic amount of electrolyte and a minimal amount of solvent. Cyclic voltammetry and kinetic studies were performed, which support a NiII/0 catalytic cycle and the pre-coordination of the substrate to the nickel center.
Collapse
Affiliation(s)
- Liubo Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Tian X, Liu Y, Yakubov S, Schütte J, Chiba S, Barham JP. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem Soc Rev 2024; 53:263-316. [PMID: 38059728 DOI: 10.1039/d2cs00581f] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The employment of light and/or electricity - alternatively to conventional thermal energy - unlocks new reactivity paradigms as tools for chemical substrate activations. This leads to the development of new synthetic reactions and a vast expansion of chemical spaces. This review summarizes recent developments in photo- and/or electrochemical activation strategies for the functionalization of strong bonds - particularly carbon-heteroatom (C-X) bonds - via: (1) direct photoexcitation by high energy UV light; (2) activation via photoredox catalysis under irradiation with relatively lower energy UVA or blue light; (3) electrochemical reduction; (4) combination of photocatalysis and electrochemistry. Based on the types of the targeted C-X bonds, various transformations ranging from hydrodefunctionalization to cross-coupling are covered with detailed discussions of their reaction mechanisms.
Collapse
Affiliation(s)
- Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Yuliang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Jonathan Schütte
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Shunsuke Chiba
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
7
|
Li HR, Guo XY, Guo MZ, Liu K, Wen LR, Li M, Zhang LB. Electrochemical chemoselective hydrogenation of 1,4-enediones with HFIP as the hydrogen donor: scalable access to 1,4-diketones. Org Biomol Chem 2023; 21:8646-8650. [PMID: 37870475 DOI: 10.1039/d3ob01465g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
A straightforward electrochemical protocol for efficient hydrogenation of unsaturated CC bonds has been reported in an undivided cell. A series of versatile 1,4-diketones are smoothly generated under metal-free and external-reductant-free electrolytic conditions. Moreover, the tolerance of various functional groups and decagram-scale experiments have shown the practicability and potential applications of this methodology. Moreover, a range of heterocyclic compounds were easily prepared through follow-up procedures of 1,4-diketones.
Collapse
Affiliation(s)
- Hao-Ran Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Xue-Yang Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Ming-Zhong Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Kui Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
8
|
Hatch CE, Martin MI, Gilmartin PH, Xiong L, Beam DJ, Yap GPA, Von Bargen MJ, Rosenthal J, Chain WJ. Electrochemically Mediated Oxidation of Sensitive Propargylic Benzylic Alcohols. Org Lett 2022; 24:1423-1428. [PMID: 35148118 PMCID: PMC9097598 DOI: 10.1021/acs.orglett.1c03860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrochemical oxidation of sensitive propargylic benzylic alcohols having varying substituents is reported. We describe the preparation and characterization of N-hydroxytetrafluorophthalimide (TFNHPI) and pseudo-high-throughput development of a green electrochemical oxidation protocol for sensitive propargylic benzylic alcohols that employs TFNHPI as a stable electrochemical mediator. The electrochemical oxidation of propargylic benzylic alcohols was leveraged to develop short synthetic pathways for preparing gram quantities of resveratrol natural products such as pauciflorols.
Collapse
Affiliation(s)
- Chad E Hatch
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Maxwell I Martin
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Philip H Gilmartin
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Lu Xiong
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Danielle J Beam
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Matthew J Von Bargen
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joel Rosenthal
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - William J Chain
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
9
|
Xu L, Ma Z, Hu X, Zhang X, Gao S, Liang D, Wang B, Li W, Li Y. Electroreductive synthesis of polyfunctionalized pyridin-2-ones from acetoacetanilides and carbon disulfide with oxygen evolution. Org Biomol Chem 2022; 20:1013-1018. [PMID: 35043137 DOI: 10.1039/d1ob02379a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A chemical reductant or a sacrificial electron donor is required in any reduction reactions, generally resulting in undesired chemical waste. Herein, we report a reductant-free reductive [3 + 2 + 1] annulation of β-keto amides with CS2 enabled by the synergy of electro/copper/base using water as an innocuous anodic sacrifice with O2 as a sustainable by-product. This electrochemical protocol is mild and provides access to polyfunctionalized pyridin-2-ones from simple starting materials in a single step.
Collapse
Affiliation(s)
- Lichun Xu
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Zhongxiao Ma
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Xi Hu
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Shulin Gao
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Baoling Wang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Weili Li
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Yanni Li
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| |
Collapse
|
10
|
Sun X, Yang J, Yan K, Zhuang X, Yu J, Song X, Zhang F, Li B, Wen J. Hydrophosphorylation of Electron-Deficient Alkenes and Alkynes Mediated by Convergent Paired Electrolysis. Chem Commun (Camb) 2022; 58:8238-8241. [DOI: 10.1039/d2cc02745c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward and practical strategy for hydrophosphorylation of electron-deficient alkenes and alkynes to access γ-ketophosphine oxides, enabled by a convergent paired electrolysis (CPE) in the absence of metal, base, and...
Collapse
|
11
|
Yang J, Ma J, Yan K, Tian L, Li B, Wen J. Electrochemical Ammonium Cation‐Assisted Hydropyridylation of Ketone‐Activated Alkenes: Experimental and Computational Mechanistic Studies. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jianjing Yang
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 People's Republic of China
| | - Jing Ma
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 People's Republic of China
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 People's Republic of China
| | - Laijin Tian
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 People's Republic of China
| | - Bingwen Li
- Shandong Key Laboratory of Biophysics Institute of Biophysics Dezhou University Dezhou 253023 People's Republic of China
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 People's Republic of China
| |
Collapse
|
12
|
Yang J, Qin H, Yan K, Cheng X, Wen J. Advances in Electrochemical Hydrogenation Since 2010. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jianjing Yang
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 People's Republic of China
| | - Hongyun Qin
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 People's Republic of China
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 People's Republic of China
| | - Xingda Cheng
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 People's Republic of China
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 People's Republic of China
| |
Collapse
|