1
|
Guo X, Zhang Y, Deng Z, Chen Y, Yuan Z, Liu C, Rao Y, Luo Z. Highly Efficient Biosynthesis of Rebaudioside M9 through Enzyme Screening and Structure-Guided Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3559-3568. [PMID: 39882950 DOI: 10.1021/acs.jafc.4c08431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Steviol glycosides (SGs) are highly valued for their sweetness, safety, and zero calories, but their bitter taste and low solubility limit their application. Modifying glycosyl units is a promising strategy to improve sensory qualities. In this study, we identified the enzyme UGT94E13 through phylogenetic analysis and enzyme screening, which catalyzes the glycosylation of rebaudioside M2 (Reb M2) at the C-13 position, producing the novel β-1,6-O-glycosylated product rebaudioside M9 (Reb M9). Subsequently, the catalytic activity of UGT94E13 toward Reb M2 was enhanced 12.0-fold through a structure-guided enzyme engineering strategy, and the mechanism behind this enhancement was analyzed. Finally, an enzymatic cascade system comprising the optimal mutant UGT94E13-F169A/I185A and sucrose synthase AtSuSy was constructed and optimized, achieving efficient synthesis of Reb M9 with a yield of 98.3% and a titer of 42.8 g·L-1. Overall, this study provides an effective method for enhancing glycosylation of SGs and a reference for the glycosylation modification of natural products.
Collapse
Affiliation(s)
- Xupeng Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yilin Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
2
|
Rodriguez-Garcia D, Uceda C, Barahona L, Ruiz-Nuñez M, Ballesteros AO, Desmet T, Sanz-Aparicio J, Fernandez-Lobato M, Gonzalez-Alfonso JL, Plou FJ. Enzymatic modification of dihydromyricetin by glucosylation and acylation, and its effect on the solubility and antioxidant activity. Org Biomol Chem 2025; 23:1136-1145. [PMID: 39688129 DOI: 10.1039/d4ob01682c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Although dihydromyricetin exhibits strong potential for pharmaceutical applications, its limited aqueous solubility, permeability and stability restrict its use. In this work, we have synthesized a series of glucosides and acyl-glucosides of dihydromyricetin that could increase the bioavailability of this molecule. First, the R134A variant of sucrose phosphorylase from Thermoanaerobacterium thermosaccharolyticum catalyzed the formation of three monoglucosides, and the major one was identified as dihydromyricetin 4'-O-α-D-glucopyranoside (>75% conversion yield). The molecular features that define this specificity for the 4'-OH phenolic group were investigated through induced-fit docking analysis of each potential derivative. Furthermore, the acylation of the 4'-monoglucoside with fatty acid vinyl esters (C8, C12, and C16) was performed with high efficiency using the lipase from Thermomyces lanuginosus. Three novel acyl derivatives of dihydromyricetin were characterized. Furthermore, the water solubility and antioxidant activity (ABTS, DPPH) of the synthesized compounds were measured, concluding that the location of the glucosyl moiety may affect their physicochemical properties and, as a result, their bioactivity.
Collapse
Affiliation(s)
| | - Carlos Uceda
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain.
| | - Laura Barahona
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Marta Ruiz-Nuñez
- Instituto de Química Física Blas Cabrera, CSIC, 28006 Madrid, Spain
| | | | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | | | - Maria Fernandez-Lobato
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | - Francisco J Plou
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain.
| |
Collapse
|
3
|
Milivojević A, Ćorović M, Petrov Ivanković A, Simović M, Banjanac K, Pjanović R, Bezbradica D. In vitro skin permeation of flavonoid esters enzymatically derived from natural oils: release mechanism from gel emulsion, stability, and dermatological compatibility. Pharm Dev Technol 2024; 29:1121-1132. [PMID: 39498532 DOI: 10.1080/10837450.2024.2424977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/10/2024]
Abstract
Due to their broad spectrum of biological activities and attractive pharmacological properties, flavonoids are very promising molecules for application in skin care products. In this study, phloridzin and naringin medium- and long-chain fatty acid esters were enzymatically synthesized in reaction with natural oils (coconut and linseed oil) and in vitro transdermal delivery of synthesized esters through artificial Strat-M® membrane was investigated. Experimental results were succesfully fitted using Peppas and Sahlin model which includes the lag phase. Release kinetics of all examined flavonoid esters from gel emulsions through the membrane depended on both diffusion and polymer relaxation effect (0.5
Collapse
Affiliation(s)
- Ana Milivojević
- Faculty of Technology and Metallurgy, Department of Biochemical Engineering and Biotechnology, University of Belgrade, Belgrade, Serbia
| | - Marija Ćorović
- Faculty of Technology and Metallurgy, Department of Biochemical Engineering and Biotechnology, University of Belgrade, Belgrade, Serbia
| | | | - Milica Simović
- Faculty of Technology and Metallurgy, Department of Biochemical Engineering and Biotechnology, University of Belgrade, Belgrade, Serbia
| | - Katarina Banjanac
- Innovation Center of Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Rada Pjanović
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia
| | - Dejan Bezbradica
- Faculty of Technology and Metallurgy, Department of Biochemical Engineering and Biotechnology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Valdés-Sánchez L, Moshtaghion SM, Caballano-Infantes E, Peñalver P, Rodríguez-Ruiz R, González-Alfonso JL, Plou FJ, Desmet T, Morales JC, Díaz-Corrales FJ. Synthesis and Evaluation of Glucosyl-, Acyl- and Silyl- Resveratrol Derivatives as Retinoprotective Agents: Piceid Octanoate Notably Delays Photoreceptor Degeneration in a Retinitis Pigmentosa Mouse Model. Pharmaceuticals (Basel) 2024; 17:1482. [PMID: 39598393 PMCID: PMC11597447 DOI: 10.3390/ph17111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP), the leading cause of inherited blindness in adults, is marked by the progressive degeneration of rod photoreceptors in the retina. While gene therapy has shown promise in treating RP in patients with specific mutations, no effective therapies currently exist for the majority of patients with diverse genetic backgrounds. Additionally, no intervention can yet prevent or delay photoreceptor loss across the broader RP patient population. Resveratrol (RES), a naturally occurring polyphenol, has shown cytoprotective effects in various neurodegenerative disease models; however, its therapeutic potential is limited by low bioavailability. METHODS In this study, we synthesized novel RES derivatives and assessed their retinoprotective effects in a murine model of RP (rd10 mice). RESULTS Among these derivatives, piceid octanoate (PIC-OCT) significantly delayed photoreceptor degeneration in the RP model, demonstrating superior efficacy compared to RES. CONCLUSIONS PIC-OCT shows strong potential as a leading candidate for developing new therapeutic strategies for RP.
Collapse
Affiliation(s)
- Lourdes Valdés-Sánchez
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Seville, Spain; (L.V.-S.); (S.M.M.); (E.C.-I.)
| | - Seyed Mohamadmehdi Moshtaghion
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Seville, Spain; (L.V.-S.); (S.M.M.); (E.C.-I.)
| | - Estefanía Caballano-Infantes
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Seville, Spain; (L.V.-S.); (S.M.M.); (E.C.-I.)
| | - Pablo Peñalver
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain; (P.P.); (R.R.-R.)
| | - Rosario Rodríguez-Ruiz
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain; (P.P.); (R.R.-R.)
| | - José Luis González-Alfonso
- Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, 28049 Madrid, Madrid, Spain; (J.L.G.-A.) (F.J.P.)
| | - Francisco José Plou
- Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, 28049 Madrid, Madrid, Spain; (J.L.G.-A.) (F.J.P.)
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| | - Juan C. Morales
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain; (P.P.); (R.R.-R.)
| | - Francisco J. Díaz-Corrales
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Seville, Spain; (L.V.-S.); (S.M.M.); (E.C.-I.)
| |
Collapse
|
5
|
Zhang H, Zhu L, Zhou Z, Wang D, Yang J, Wang S, Lou T. Advancements in the Heterologous Expression of Sucrose Phosphorylase and Its Molecular Modification for the Synthesis of Glycosylated Products. Molecules 2024; 29:4086. [PMID: 39274934 PMCID: PMC11397096 DOI: 10.3390/molecules29174086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Sucrose phosphorylase (SPase), a member of the glycoside hydrolase GH13 family, possesses the ability to catalyze the hydrolysis of sucrose to generate α-glucose-1-phosphate and can also glycosylate diverse substrates, showcasing a wide substrate specificity. This enzyme has found extensive utility in the fields of food, medicine, and cosmetics, and has garnered significant attention as a focal point of research in transglycosylation enzymes. Nevertheless, SPase encounters numerous obstacles in industrial settings, including low enzyme yield, inadequate thermal stability, mixed regioselectivity, and limited transglycosylation activity. In-depth exploration of efficient expression strategies and molecular modifications based on the crystal structure and functional information of SPase is now a critical research priority. This paper systematically reviews the source microorganisms, crystal structure, and catalytic mechanism of SPase, summarizes diverse heterologous expression systems based on expression hosts and vectors, and examines the application and molecular modification progress of SPase in synthesizing typical glycosylated products. Additionally, it anticipates the broad application prospects of SPase in industrial production and related research fields, laying the groundwork for its engineering modification and industrial application.
Collapse
Affiliation(s)
- Hongyu Zhang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (H.Z.)
| | - Leting Zhu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (H.Z.)
| | - Zixuan Zhou
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (H.Z.)
| | - Danyun Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (H.Z.)
| | - Jinshan Yang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (H.Z.)
| | - Suying Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (H.Z.)
| | - Tingting Lou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
6
|
Gonzalez-Alfonso JL, Alonso C, Poveda A, Ubiparip Z, Ballesteros AO, Desmet T, Jiménez-Barbero J, Coderch L, Plou FJ. Strategy for the Enzymatic Acylation of the Apple Flavonoid Phloretin Based on Prior α-Glucosylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4325-4333. [PMID: 38350922 PMCID: PMC10905995 DOI: 10.1021/acs.jafc.3c09261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
The acylation of flavonoids serves as a means to alter their physicochemical properties, enhance their stability, and improve their bioactivity. Compared with natural flavonoid glycosides, the acylation of nonglycosylated flavonoids presents greater challenges since they contain fewer reactive sites. In this work, we propose an efficient strategy to solve this problem based on a first α-glucosylation step catalyzed by a sucrose phosphorylase, followed by acylation using a lipase. The method was applied to phloretin, a bioactive dihydrochalcone mainly present in apples. Phloretin underwent initial glucosylation at the 4'-OH position, followed by subsequent (and quantitative) acylation with C8, C12, and C16 acyl chains employing an immobilized lipase from Thermomyces lanuginosus. Electrospray ionization-mass spectrometry (ESI-MS) and two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) confirmed that the acylation took place at 6-OH of glucose. The water solubility of C8 acyl glucoside closely resembled that of aglycone, but for C12 and C16 derivatives, it was approximately 3 times lower. Compared with phloretin, the radical scavenging capacity of the new derivatives slightly decreased with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and was similar to 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+). Interestingly, C12 acyl-α-glucoside displayed an enhanced (3-fold) transdermal absorption (using pig skin biopsies) compared to phloretin and its α-glucoside.
Collapse
Affiliation(s)
| | - Cristina Alonso
- Institute
of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Ana Poveda
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
| | - Zorica Ubiparip
- Centre
for Synthetic Biology (CSB), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Antonio O. Ballesteros
- Institute
of Catalysis and Petrochemistry (ICP-CSIC), Marie Curie 2, 28049 Madrid, Spain
| | - Tom Desmet
- Centre
for Synthetic Biology (CSB), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
- Basque
Foundation for Science, 48009 Bilbao, Spain
| | - Luisa Coderch
- Institute
of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Francisco J. Plou
- Institute
of Catalysis and Petrochemistry (ICP-CSIC), Marie Curie 2, 28049 Madrid, Spain
| |
Collapse
|
7
|
Synthesis and Characterization of a Novel Resveratrol Xylobioside Obtained Using a Mutagenic Variant of a GH10 Endoxylanase. Antioxidants (Basel) 2022; 12:antiox12010085. [PMID: 36670947 PMCID: PMC9855058 DOI: 10.3390/antiox12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Resveratrol is a natural polyphenol with antioxidant activity and numerous health benefits. However, in vivo application of this compound is still a challenge due to its poor aqueous solubility and rapid metabolism, which leads to an extremely low bioavailability in the target tissues. In this work, rXynSOS-E236G glycosynthase, designed from a GH10 endoxylanase of the fungus Talaromyces amestolkiae, was used to glycosylate resveratrol by using xylobiosyl-fluoride as a sugar donor. The major product from this reaction was identified by NMR as 3-O-ꞵ-d-xylobiosyl resveratrol, together with other glycosides produced in a lower amount as 4'-O-ꞵ-d-xylobiosyl resveratrol and 3-O-ꞵ-d-xylotetraosyl resveratrol. The application of response surface methodology made it possible to optimize the reaction, producing 35% of 3-O-ꞵ-d-xylobiosyl resveratrol. Since other minor glycosides are obtained in addition to this compound, the transformation of the phenolic substrate amounted to 70%. Xylobiosylation decreased the antioxidant capacity of resveratrol by 2.21-fold, but, in return, produced a staggering 4,866-fold improvement in solubility, facilitating the delivery of large amounts of the molecule and its transit to the colon. A preliminary study has also shown that the colonic microbiota is capable of releasing resveratrol from 3-O-ꞵ-d-xylobiosyl resveratrol. These results support the potential of mutagenic variants of glycosyl hydrolases to synthesize highly soluble resveratrol glycosides, which could, in turn, improve the bioavailability and bioactive properties of this polyphenol.
Collapse
|
8
|
Milivojević A, Ćorović M, Simović M, Banjanac K, Pjanović R, Bezbradica D. Evaluation of in vitro Skin Permeation of Enzymatically Synthesized Phloridzin Acetates from Emulsions and Liposomes Dispersed in Gel. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana Milivojević
- Innovation Center of Faculty of Technology and Metallurgy Karnegijeva 4 Belgrade 11000 Serbia
| | - Marija Ćorović
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade 11000
| | - Milica Simović
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade 11000
| | - Katarina Banjanac
- Innovation Center of Faculty of Technology and Metallurgy Karnegijeva 4 Belgrade 11000 Serbia
| | - Rada Pjanović
- Department of Chemical Engineering Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade 11000
| | - Dejan Bezbradica
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade 11000
| |
Collapse
|
9
|
Méndez-Líter JA, Pozo-Rodríguez A, Madruga E, Rubert M, Santana AG, de Eugenio LI, Sánchez C, Martínez A, Prieto A, Martínez MJ. Glycosylation of Epigallocatechin Gallate by Engineered Glycoside Hydrolases from Talaromyces amestolkiae: Potential Antiproliferative and Neuroprotective Effect of These Molecules. Antioxidants (Basel) 2022; 11:antiox11071325. [PMID: 35883816 PMCID: PMC9312355 DOI: 10.3390/antiox11071325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glycoside hydrolases (GHs) are enzymes that hydrolyze glycosidic bonds, but some of them can also catalyze the synthesis of glycosides by transglycosylation. However, the yields of this reaction are generally low since the glycosides formed end up being hydrolyzed by these same enzymes. For this reason, mutagenic variants with null or drastically reduced hydrolytic activity have been developed, thus enhancing their synthetic ability. Two mutagenic variants, a glycosynthase engineered from a β-glucosidase (BGL-1-E521G) and a thioglycoligase from a β-xylosidase (BxTW1-E495A), both from the ascomycete Talaromyces amestolkiae, were used to synthesize three novel epigallocatechin gallate (EGCG) glycosides. EGCG is a phenolic compound from green tea known for its antioxidant effects and therapeutic benefits, whose glycosylation could increase its bioavailability and improve its bioactive properties. The glycosynthase BGL-1-E521G produced a β-glucoside and a β-sophoroside of EGCG, while the thioglycoligase BxTW1-E495A formed the β-xyloside of EGCG. Glycosylation occurred in the 5″ and 4″ positions of EGCG, respectively. In this work, the reaction conditions for glycosides’ production were optimized, achieving around 90% conversion of EGCG with BGL-1-E521G and 60% with BxTW1-E495A. The glycosylation of EGCG caused a slight loss of its antioxidant capacity but notably increased its solubility (between 23 and 44 times) and, in the case of glucoside, also improved its thermal stability. All three glycosides showed better antiproliferative properties on breast adenocarcinoma cell line MDA-MB-231 than EGCG, and the glucosylated and sophorylated derivatives induced higher neuroprotection, increasing the viability of SH-S5Y5 neurons exposed to okadaic acid.
Collapse
Affiliation(s)
- Juan A. Méndez-Líter
- Centro de Investigaciones Biológicas Margarita Salas, Department of Microbial and Plant Biotechnology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (A.P.-R.); (L.I.d.E.); (A.P.)
| | - Ana Pozo-Rodríguez
- Centro de Investigaciones Biológicas Margarita Salas, Department of Microbial and Plant Biotechnology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (A.P.-R.); (L.I.d.E.); (A.P.)
| | - Enrique Madruga
- Centro de Investigaciones Biológicas Margarita Salas, Department of Structural and Chemical Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (A.M.)
| | - María Rubert
- Department of Biochemistry and Molecular Biology, School of Biology, Instituto de Investigación Hospital 12 de Octubre, Universidad Complutense de Madrid, C/de José Antonio Nováis 12, 28040 Madrid, Spain; (M.R.); (C.S.)
| | - Andrés G. Santana
- Department of Bioorganic Chemistry, Instituto de Química Orgánica General, Spanish National Research Council (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Laura I. de Eugenio
- Centro de Investigaciones Biológicas Margarita Salas, Department of Microbial and Plant Biotechnology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (A.P.-R.); (L.I.d.E.); (A.P.)
| | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology, School of Biology, Instituto de Investigación Hospital 12 de Octubre, Universidad Complutense de Madrid, C/de José Antonio Nováis 12, 28040 Madrid, Spain; (M.R.); (C.S.)
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas, Department of Structural and Chemical Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (A.M.)
| | - Alicia Prieto
- Centro de Investigaciones Biológicas Margarita Salas, Department of Microbial and Plant Biotechnology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (A.P.-R.); (L.I.d.E.); (A.P.)
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas Margarita Salas, Department of Microbial and Plant Biotechnology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (A.P.-R.); (L.I.d.E.); (A.P.)
- Correspondence:
| |
Collapse
|
10
|
A Fungal Versatile GH10 Endoxylanase and Its Glycosynthase Variant: Synthesis of Xylooligosaccharides and Glycosides of Bioactive Phenolic Compounds. Int J Mol Sci 2022; 23:ijms23031383. [PMID: 35163307 PMCID: PMC8836076 DOI: 10.3390/ijms23031383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
The study of endoxylanases as catalysts to valorize hemicellulosic residues and to obtain glycosides with improved properties is a topic of great industrial interest. In this work, a GH10 β-1,4-endoxylanase (XynSOS), from the ascomycetous fungus Talaromyces amestolkiae, has been heterologously produced in Pichia pastoris, purified, and characterized. rXynSOS is a highly glycosylated monomeric enzyme of 53 kDa that contains a functional CBM1 domain and shows its optimal activity on azurine cross-linked (AZCL)-beechwood xylan at 70 °C and pH 5. Substrate specificity and kinetic studies confirmed its versatility and high affinity for beechwood xylan and wheat arabinoxylan. Moreover, rXynSOS was capable of transglycosylating phenolic compounds, although with low efficiencies. For expanding its synthetic capacity, a glycosynthase variant of rXynSOS was developed by directed mutagenesis, replacing its nucleophile catalytic residue E236 by a glycine (rXynSOS-E236G). This novel glycosynthase was able to synthesize β-1,4-xylooligosaccharides (XOS) of different lengths (four, six, eight, and ten xylose units), which are known to be emerging prebiotics. rXynSOS-E236G was also much more active than the native enzyme in the glycosylation of a broad range of phenolic compounds with antioxidant properties. The interesting capabilities of rXynSOS and its glycosynthase variant make them promising tools for biotechnological applications.
Collapse
|
11
|
González-Alfonso JL, Poveda A, Arribas M, Hirose Y, Fernández-Lobato M, Olmo Ballesteros A, Jiménez-Barbero J, Plou FJ. Polyglucosylation of Rutin Catalyzed by Cyclodextrin Glucanotransferase from Geobacillus sp.: Optimization and Chemical Characterization of Products. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Ana Poveda
- Center for Cooperative Research in Biosciences, CIC bioGUNE, Basque Research & Technology Alliance, BRTA, 48160 Derio, Biscay, Spain
| | - Miguel Arribas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - María Fernández-Lobato
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences, CIC bioGUNE, Basque Research & Technology Alliance, BRTA, 48160 Derio, Biscay, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Francisco J. Plou
- Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie, 2, 28049 Madrid, Spain
| |
Collapse
|